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Abstract. A spatially homogeneous locally-rotationally-symmetric (LRS) Bianchi
type-V cosmological model is considered with a perfect fluid in general relativity. We
present two types of cosmologies (power-law and exponential forms) by using a law of
variation for the mean Hubble parameter that yields a constant value for the deceleration
parameter. We discuss the physical properties of the non-flat and flat models in each
cosmology. Exact solutions that correspond to singular and non-singular models are pre-
sented. In a generic situation, models can be interpolated between different phases of the
Universe. We find that a constant value for the deceleration parameter is reasonable for
a description of different phases of the Universe. We arrive at the conclusion that the
Universe decelerates when the value of the deceleration parameter is positive whereas it
accelerates when the value is negative. The dynamical behaviours of the solutions and
kinematical parameters like expansion, shear and the anisotropy parameter are discussed
in detail in each section. Exact expressions for look-back time, luminosity distance and
event horizon vs. redshift are derived and their significances are discussed in some de-
tail. It has been observed that the solutions are compatible with the results of recent
observations.
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1. Introduction

The cosmological problem within the framework of general relativity consists of
finding a model of the physical Universe which correctly predicts the result of astro-
nomical observations and which is determined by those physical laws that describe
the behaviour of matter on scales up to those of clusters of galaxies. The simplest
models of the expanding Universe are those which are spatially homogeneous and
isotropic at each instance of time.

The Bianchi cosmologies which are spatially homogeneous and anisotropic play
an important role in theoretical cosmology and have been much studied since the
1960s. For simplification and description of the large scale behaviour of the actual
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Universe, LRS Bianchi models have great importance. Lidsey [1] showed that these
models are equivalent to Friedmann-Robertson-Walker (FRW) Universes.

The study of Bianchi type-V cosmological models create more interest as these
models contain isotropic special cases and permit arbitrarily small anisotropy levels
at some instant of cosmic time. These properties make them suitable as models of
our Universe. Also the Bianchi type-V models are more complicated than the sim-
plest Bianchi type models. Space-time models of Bianchi type-I and V Universes
are generalizations of FRW models and it will be interesting to construct cosmolog-
ical models of types which are of class one. Roy and Prasad [2] investigated Bianchi
type-V Universes, which are LRS and are of embedding class one filled with per-
fect fluid with heat conduction and radiation. Bianchi type-V cosmological models
have been studied by Farnsworth [3], Maartenes and Nel [4], Wainwraight et al [5],
Collins [6], Coley and Dunn [7], Coley and Hoogen [8], Meena and Bali [9] and
Pradhan and Rai [10], amongst others.

In recent years, the solutions of Einstein’s field equations (EFEs) for homoge-
neous and anisotropic Bianchi type models have been studied by several authors,
e.g., Hajj-Boutros [11,12], ShriRam [13,14], Mazumder [15], Camci et al [16] and
Pradhan and Kumar [17] using different generating techniques. Solutions of the
field equations may also be generated by applying a law of variation for the Hubble
parameter, which was initially proposed by Berman [18] for FRW models. The law
yields a constant value of the deceleration parameter. The theory of the constant
deceleration parameter has been further developed by Berman and Gomide [19].
It should be remarked that the formula is independent of the particular gravita-
tional theory being considered. It is a property valid for FRW metric, and it is
approximately valid also for slowly time varying deceleration parameter.

In literature, cosmological models with a constant deceleration parameter have
been studied by Johri and Desikan [20], Singh and Desikan [21], Maharaj and
Naidoo [22], Pradhan et al [23], Pradhan and Vishwakarma [24,25], Rahaman et al
[26], Reddy et al [27] and others in different theories of FRW and Bianchi type-I
models. Recently, in a series of work, Singh and Kumar [28-30] and Kumar and
Singh [31] extended Berman’s work for the anisotropic Bianchi type-I and II space-
time models by formulating a law of variation for the mean Hubble parameter and
found the solutions to EFEs in the simplest way.

In this paper we extend the work to a spatially homogeneous LRS Bianchi type-
V model with perfect fluid as a source. In §2 we outline LRS Bianchi type-V
model and their field equations for perfect fluid, and a law for variation for the
mean Hubble parameter that yields a constant value of the deceleration parameter.
Solutions of the field equations are presented for two cosmologies using two forms of
the average scale factor in §3. We discuss the physical and geometrical properties
of non-flat and flat models in each cosmology. Exact solutions that correspond
to singular and non-singular models are found. The behaviour of observationally
important parameters like expansion scalar, mean anisotropy parameter and shear
scalar are discussed in some detail in each section. Exact expressions for look-
back time, luminosity distance and event horizon vs. redshift are derived and their
significances are discussed in detail in §4. It has been observed that the solutions
are compatible with the results of recent observations. In §5 the phases of the
Universe are discussed. Section 6 contains the concluding remarks.
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LRS Bianchi type-V cosmology in general relativity
2. Model and field equations

We consider a locally-rotationally-symmetric (LRS) Bianchi type-V space-time with
metric [32]

ds? = —dt? + A%(t)d2? + ** B2(t)(dy? + dz?), (1)

where A(t) and B(t) are the cosmic scale functions. The Einstein’s field equations
are given by

1
Rij - igin = 87TGTij, (2)

where the energy-momentum tensor T; is
Tij = (p + p) uiv; + pgij- 3)

Here, p is the matter density and p is the thermodynamics pressure. Taking into
account the conservation principle, i.e. div(T}) = 0, and co-moving system of
coordinates (u; = d)), the resulting field equations for the metric (1) are as follows:

2% + %z - % = —87nGp, (4)
%+g+%g—%=—8ﬂGp, (5)
Q%g + g—z - % = 81Gp, (6)
p+(p+p) <j+2§>0, (8)

where an overdot denotes ordinary derivative with respect to the cosmic time t.
Now, we define the following physical and geometrical parameters to be used in
formulating the law and further in solving the field eqs (4)—(7).
The average scale factor a for the LRS Bianchi type-V model is defined as

a=(AB2)"". 9)

A volume scale factor is given by

V =a®= AB% (10)
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The generalized mean Hubble parameter H is given by
1
H:§(H1+H2+H3), (11)

where H, = A/A, Hy = Hs = B/B are the directional Hubble parameters in the
directions of z-, y- and z-axes, respectively. The physical quantities of observational
interest in cosmology are the expansion scalar 6, the average anisotropy parameter
Ap and the shear scalar 02. These are defined as

(i B

3 2
1 AH;
A :75 : 1

where AH; = H; — H (i=1,2,3).

N
1 .. 1({A B
0'2 = 50’1‘3'0'] = g (A — B) . (14)
From egs (9)—(11), we obtain an important relation
a 1(A _B
H=-=- 2— . 1
a 3 <A * B> (15)

For any physically relevant model, the Hubble parameter H and deceleration
parameter ¢ are the most important observational quantities in cosmology. The
first quantity sets the present time scale of the expansion while the second one
is telling us that the present stage is speeding up instead of slowing down as ex-
pected before the supernovae type Ia observations. The values of the deceleration
parameter separate decelerating (¢ > 0) from accelerating (¢ < 0) periods in the
evolution of the Universe. Determination of the deceleration parameter from the
count magnitude relation for galaxies is a difficult task due to evolutionary effects.
The present value g of the deceleration parameter obtained from observations [33]
are —1.27 < gp < 2. Studies of galaxy counts from redshift surveys provide a value
of go = 0.1, with an upper limit of ¢g < 0.75 [33]. Recent observations by Perlmut-
ter et al [34,35] and Riess et al [36] show that the deceleration parameter of the
Universe is in the range —1 < ¢ < 0, and the present day Universe is undergoing
accelerated expansion. It may be noted that though the current observations of
SNe Ta and the CMBR favour accelerating models (¢ < 0), they do not altogether
rule out the existence of the decelerating phase in the early history of our Universe
which are also consistent with these observations [37].

Now, the law to be examined in this paper for LRS Bianchi type-V space-time
model is

H=Da"=D(AB?) "°, (16)
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where D(>0) and n(>0) are constants. The above law is valid since the line element
(1) is completely characterized by Hubble parameter H.
The deceleration parameter (q) is defined as

From (15) and (16), we get

a = Da "t (18)

i=—-D*(n—1)a " (19)
Using (18) and (19), eq. (17) gives
g=n-—1 (20)

It is noted that ¢ is constant. The theory of constant deceleration parameter has
been developed by Berman [18], and Berman and Gomide [19], who found that the
age of Universe, ¢, Hubble parameter H, and constant n are related by H = (nt)~!.
Later on, many authors (see, Singh and Kumar [28] and references therein) have
studied flat FRW and Bianchi type models in different physical context. The sign
of ¢ indicates whether the model inflates or not. A positive sign for ¢, i.e., n > 1
corresponds to the ‘standard’ decelerating model whereas the negative sign —1 <
q < 0 for 0 < n < 1 indicates inflation.
From (18), we obtain the law for average scale factor a as

a = (nDt)"/™ (21)
for n # 0 and
a = ¢ exp(Dt) (22)

for n = 0, where ¢ is a constant of integration. Here, in eq. (21) we have assumed
that for ¢ = 0 the value a = 0 so that the constant of integration turns out to be
zero. Thus we have derived two types of models depending upon whether n # 0 or
n = 0. It is however possible to have D = 0 in eq. (16) for which we would have a
static Universe. But D > 0 is consistent with observation for which the Universe
must be expanding. Hence we disregard a static Universe. The present day Universe
has been thought of as Einstein—de Sitter, with a constant deceleration parameter
g = 1/2. Since the recent observations of Supernovae data [34-36] confirm that
the Universe is accelerating, we may ask whether the value of the deceleration
parameter could be different from the de Sitter Universe, say as defined in eq. (20).
In the case of an accelerating Universe, the second case for n = 0 becomes very
relevant. Equation (21) implies that the condition for the expansion of the Universe
isn=qg+1>0.
The age of Universe, in the first case, is

1
to=—H'=—H 23
o= —Hyp 15 g0 (23)
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Forn =0
3/D
to = In (‘LO) , (24)
C

where subscript 0 denotes the present phase. A numerical calculation can be made
to estimate the present age of the Universe, the value of deceleration parameter
compatible with the Supernovae observations. It should be remarked that eqs (21)
and (22) are independent of the particular gravitational theory being considered.
It is approximately valid also for slowly time-varying deceleration parameter. If
n > 0, we expect that

lima=o00, limp=0, lim p=0. (25)

t—o0 a— 00 a— 00
It deserves to mention here that eq. (16) refers to Bianchi type-V space-time in
any physical theory. Our intention is to solve the Einstein’s field equations for
the Bianchi type-V model with a perfect fluid as the energy—momentum tensor
using the above law of variation for the mean Hubble parameter (16) that yields a
constant value of the deceleration parameter.

3. Solution of field equations

From eq. (7) it follows that
A=kB, (26)

where k is a constant of integration. In this scenario the shear scalar and anisotropy
parameter are zero, and the field equations (4)—(6) reduce to only two independent
equations

2B B2 1

B E e 27)
3B2 3

Bz~ jage = SrGr. (28)

The conservation equation (8) reduces to

p+3(otp) B =0 (29)

Equations (27) and (28) can be rewritten as

3B2? = 87GpB? + 3/k> (30)
68 = —87G (p+ 3p)B. (31)
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If we consifier that the gravitational-mass density is p + 3p, then from eq. (31),
we see that B < 0, or that, from (19), n > 1, i.e. ¢ > 0.
Using (18) and (19), the field equations (27) and (28) reduce to

Cop 3 _
87Gp = 3D*a™*" — 173 2 (32)
1
87Gp = (2n — 3)D%*a™*" + Wa_Q. (33)

For p = 0 (matter-dominated era), we have

} 1/(n—1) -

ag = [D k4/3 (3 — 2n)

For this case we must have 1 < n < 1.5 and k > 0 for the expansion of the Universe.

Now, the field equations (30) and (31) are a system of two equations with three
unknown variables, namely, B, p and p. For complete solutions of the system, one
extra condition is needed. For this we use eqs (21) and (22), defined for the average
scale factor to solve the field equations (30) and (31).

3.1 Whenn #0

In this case, from (9), (21) and (26), we get the solution of scale factors as

B(t) = k=3 (nDt)/™ (35)

A(t) = k*3 (nDt)"™ . (36)
Hence the geometry of the space-time (1) takes the form

ds? = —dt? + (nDt)?/ " [kY3dx? + 2 k23 (dy? + d2?)]. (37)
Here, we consider the following two sub-cases.

3.1.1 Non-flat model

In this case the Ricci scalar is given by
R=06[(2—n)(nt)"2 — k=43(nDt)~2/"]. (38)

Using eq. (35) in egs (30) and (31), the energy density and pressure are respectively
given by

87Gp = 3 (nt) > — 3k~4/3 (nDt)~*/" (39)
8rGp = (2n — 3)(nt) "2 + k~*/3 (nDt) /™. (40)
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The expansion scalar is given by
0 = 3(nt)"". (41)

The above set of solutions identically satisfy the conservation equation (29). It
is well-accepted that, for the present Universe the scale factors can be represented
by power-law of time. We have thus obtained the solutions of the model with a
constant deceleration parameter. We find that a constant deceleration parameter
is reasonable for the description of different phases of the Universe. In this scenario
the average anisotropy parameter and shear scalar are zero, and the model involves
at most energy density and pressure. A simple analysis in this model shows that
A(t) and B(t) are positive and increasing function of cosmic time ¢, and the model
is expanding (i.e. 6 > 0). The expansion parameters H; in the directions of
coordinate axes (x,y,z) are same, i.e. H; = Hy = H3z = (nt)”"'. The model
represents non-shearing, non-rotating isotropic and conformally flat Universe. The
model starts expanding with Big-Bang at ¢ = 0, which is a point singularity of
the model. The model exhibits the power-law expansion after Big-Bang. Both
the scale factors tend to zero at the point of singularity but tend to infinity as
t — 0o. The Ricci scalar, energy density and pressure tend to infinity when ¢t — 0
and R — 0, p — 0, p — 0 when ¢t — oo. Thus, the model would give essentially
empty Universe at large times. The rate of expansion in the model stops when
t — o0o. The dominant energy condition p + p > 0 requires n > 1 whereas the
strong energy condition p + 3p > 0 given by Hawking and Ellis [38] requires that
(nDt)=m/7 > |=2/3 /D /n. The ratio lim; .. p/6#?> = constant for 0 < n < 1,
which shows that the Universe remains homogeneous with time. Since df/dt < 0,
we conclude that the model starts expanding from its singular state and the rate
of expansion decreases to become zero as t — oo.

3.1.2 Flat model

In this case, Ricci scalar, R = 0 and hence we get

(2 —n)(nt)~? = k=3 (nDt)~2/". (42)
The energy density and pressure are given by

87Gp = 3(n — 1)(nt)~2 (43)

87Gp = (n —1)(nt) 2. (44)

We find that the model starts expanding with the Big-Bang at t = 0 as p and p
both tend to infinity at this point. As ¢ — oo, both p and p tend to zero. When
density is large (p — o0), the model corresponds to a radiation era and when density
is small (p — 0) the model corresponds to vacuum phase. Therefore, in a generic
situation, models can be interpolating between different phases of the Universe:
from a radiation Universe with equation of state p = p/3 to vacuum p = p = 0.
Also, for n = 1, we find the vacuum case p = p = 0 result. Thus, eqs (43) and (44)
describe the mixture of radiation and vacuum phases. For the reality of p > 0 and
p > 0, we must have n > 1. Elimination of cosmic time ¢ gives an equation of state
p = p/3, which is the case of radiation-dominated phase. The model represents an
expanding, non-shearing and isotropic Universe.
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3.2 Whenn =0

In this case, the average scale factor a is given by eq. (22). From (22), (9) and
(26), the scale factors can be written as

A(t) = k*/3¢ exp(Dt), (45)

B(t) = k™3¢ exp(Dt). (46)
The geometry of space-time (1) takes the form

ds? = —dt? + ¢ 2P R 3d2? + ¥ k723 (dy? 4 d22)). (47)
Now, we consider the following two sub-cases:

3.2.1 Non-flat model

The Ricci scalar is given by
R =6[2D? — k=*/3¢"2 exp(—2Dt)]. (48)

When t =0, R = 6(2D? — k=*/3¢~?) and when t — oo, R = 12D?,
Using (45) and (46) in (30) and (31), the energy density and pressure respectively
are given by

87Gp = 3D? — 3k~ 43¢ 2 exp(—2Dt) (49)

81Gp = —3D? + k43072 exp(—2Dt). (50)

The above set of solutions identically satisfy the conservation equation (29).
The expansion scalar is given by 8 = 3D, whereas all the directional Hubble’s
parameters are constant, i.e. H; = Hy = H3 = D throughout the evolution. The
average anisotropy and shear scalar are zero. The ratio lim; .., p/6? tends to be
constant, which shows that the Universe remains homogeneous with cosmic time.
The scale factors, energy density and pressure are constant at ¢ = 0 and the rate
of expansion is also constant throughout the evolution. The model starts with a
constant volume and expands exponentially with time. As time passes the volume
and scale factors expand exponentially and Universe becomes infinitely large as
t — oo. The pressure and energy density describe an equation of state p = —p at
later stage of evolution. The negative pressure predicts the accelerating expansion
of Universe for which deceleration parameter is negative. In general relativity, the
vacuum energy density can be included in the cosmological constant term.

3.2.2 Flat model

For flat model R = 0 and hence in this case, we have

2D? = k=43¢ 2 exp(—2Dt). (51)
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The energy density and pressure are given by

87Gp = —3D? (52)

87Gp = —D?. (53)

For flat model we find solutions of (30) and (31). Unfortunately, from (52) it can
be seen that this solution is unphysical since it leads to a negative energy density.
But we find that pressure and density are constant and describes a relation with an
equation of state p = p/3, which shows that the Universe is dominated by radiation.
The solutions identically satisfy the conservation equation.

4. Kinematics tests

The formulas for a(t) derived in (21) and (22) may be used to extend the kinematics
tests for any arbitrary large redshifts. We now study the consistency of our models
for both the cases with the observational parameters through kinematics tests.

4.1 Whenn #0

4.1.1 Look-back time — Redshift

The look-back time, At = tg—t(2), is the difference between the age of the Universe
at present time (z = 0) and the age of the Universe when a particular light ray
at redshift z was emitted. For a given redshift z, the expansion scale factor of the
Universe a(t,) is related to ag by 1+ z = ag/a, where ag is the present scale factor.
Therefore from (21), we get

to 1/n
1—|—z=<t> . n#0. (54)

The above equation gives
t=to(1+2)"" (55)

This equation can also be expressed as
1 —-n
Holto—1) = ~[1= (1+2) 7", (56)

where Hj is the Hubble’s constant at present in km s~! Mpc~! and its value
is believed to be somewhere between 50 and 100 km s~ Mpc~—'. However, the
reciprocal of Hubble’s constant is called the Hubble time Ty: Ty = Hy 1, where Ty
is expressed in s and Hy in s~ 1.
For small z, eq. (56) gives
Ho(to—t):% nz—w,z2+m : (57)
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Using ¢ = (n — 1), this transforms into

Ho(to—t):z—ng+-~-. (58)

Taking limit z — oo in (56), the present age of Universe (the extrapolated time
back to the bang) is

Hy'  Hy™'

n  144q’

to = (59)

which is the same as expected in (23). For n = 3/2, we get the well-known Einstein—
de Sitter result

Ho(to —t) = %[1 — (142)7%7), (60)

which is used to describe look-back time in Einstein—de Sitter Universe. In the limit
as z — 00, we obtain

2 2
to = 3 H, = 3T (61)
4.1.2 Luminosity distance — Redshift

The luminosity distance of a light source is derived as the ratio of the detected
energy flux L and the apparent luminosity [, i.e., dL? = L/4xl,. It takes the form

dr, = aor1(2)(1 + 2), (62)

where 71(2) is the radial coordinate distance of the object at light emission and is
given by

to dt Ho_lao_l 1-n
7‘1(Z)=/t1 ZZWH—(L"Z) J (63)
Using eqs (63) into (62), we get
Hody, = (71:'? 1—(1+2)"], n#l (64)

For small z, eq. (64) gives

17
HOdL:z+(27q)22+-~-. (65)

For ¢ =1,
Hydyp, = 2 (66)

which shares linear relationship between luminosity distance and redshift, and for
q=0,

1 22
dL—HO<z+2>. (67)
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4.2 Whenn =20

4.2.1 Look-back time — Redshift
Hy(to —t) = log (1 + 2). (68)

For small z, we have
2

Ho(to—t):{z—22+~-~]. (69)

4.2.2 Luminosity distance — Redshift

1
dp, = E(z + 2%), (70)
which shows that the luminosity distance increases faster with redshift z for ¢ = —1.

4.2.3 Event horizon

The event horizon is given by

rp— a(to)/: a‘z) _ CQLH (71)

which shows that the event horizon exists in this model. This value of the limit

gives the event horizon where no observer beyond a proper distance rg at t = tg
can communicate with another observer.

5. The phases of the Universe

Gron [39] has remarked that it is the current belief that the Universe had the
following early phases:

ay < t'? p=p/3 (72)
az < exp(Ht), p=—p (73)
az < tY2 p=p/3. (74)

On the other hand, according to Schwarzschild [40], the matter-dominated phase
of the Universe is given by

as x 23, p=0. (75)

The current accelerated phase of the Universe can be represented by
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as o t4/3, (76)

or, alternatively, by eq. (73).

We have already discussed in previous sections that the law of variation for the
mean Hubble parameter (16) yields a constant value of the deceleration parameter
n = ¢+ 1 and generates two forms of cosmologies (21) and (22). We find out that
the above five phases are particular cases of the constant deceleration parameter
type. It is evident from eqs (21) and (22) that n = 0 stands for inflation, while
n =2, n=23/2 and 3/4 stand, respectively, for the first, third, fourth and the fifth
phases. A relation between pressure and energy density for n # 0 can be written

p= <2”3_ 3) b, (77)

which is the perfect gas law equation of state. Comparing eq. (77) with the equation
of state p = wp, we find that n = %(1 + w) and consequently the deceleration
parameter and the age of the Universe are given by

143 2H !
=R = (78)

e 3(1+w)

The above equation yields for a radiation-dominated Universe (w =1/3,q¢ = 1) an
age of Hoto = 1/2 while for dust (w = 0,q = 1/2) we have Hptg = 2/3, and, finally,
for a flat Universe dominated by K-matter (w = —1/3,¢ = 0) one finds Hptg = 1.
All these results agree with the expressions (72)—(76).

On the other hand, for n = 0, we have

p=—p. (79)

Thus, we observed that for n # 0 phases, we have a perfect gas equation of state,
while for the n = 0 (inflation) case, we have negative pressure. The equation of
state described by eq. (77) can be taken to get the solutions for different phases of
Universe.

6. Conclusion

In this paper we have discussed a law of variation for the mean Hubble parameter
in homogeneous LRS Bianchi type-V space-time model that yields a constant value
of the deceleration parameter. We have obtained two types of exact non-singular
and singular solutions of Einstein’s field equations with the constant deceleration
parameter. The law (16) gives the explicit solution of scale factors in a very simple
manner, which are regarded as physically viable to describe the evolution of Uni-
verse. The law (16) generates two type of cosmologies for n # 0 and n = 0. We
conclude that for the power-law solutions, as t = 0 the proper volume and scale
factors vanish, the expansion scalar § — oo, and in consequence p — 0o, p — 00,
R — 0. It is a point singularity. On the other hand, as t — oo, we have found that
the scale factors become infinity, § — 0, p — 0, p — 0 and proper volume tends
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to infinity. The models explode from singularity stage and approach an infinite
expansion stage at ¢ — oco. For the flat models, the Universe interpolates between
the radiation phase to vacuum phase. The model is shear free, non-rotating and
conformally flat of Petrov type 0 and of Segré-type {1, (111)}.

For exponential models as t — 0, all the physical parameters such as the proper
volume, scale factors, expansion scalar, energy density and pressure are constant.
The rate of expansion is constant throughout the evolution. The average anisotropy
parameter and shear scalar are zero. The model is non-singular at ¢ = 0. On the
other hand, as t — oo, we have A(t) — oo, B(t) — oo, § = const., p = const.,
p = const. and R = const. It is noted that the Universe describes the equation of
state p = —p for the non-flat model and p = p/3 for the flat models. In general
relativity the vacuum energy density can be included in the cosmological constant
term, which is supposed to be responsible for the cosmic expansion of the present
day Universe. This class of solution is consistent with the recent observations of
Supernovae Ia [34-36,41,42] that require the present Universe to be accelerating. A
positive cosmological constant resists the attractive gravity of matter due to its neg-
ative pressure. For most Universes, the positive cosmological constant eventually
dominates over the attraction of matter and drives the Universe to expand expo-
nentially. Both the power-law and exponential solutions satisfy the conservation
equation (29). Therefore, the law (16) provides an alternative and easy approach
to get exact solutions in a very simple manner since nature strives for simplicity.
Under the law (16) we have investigated the models, arriving at the conclusion that
if ¢ > 0, the model expands but always decelerates whereas ¢ < 0 gives exponential
expansion and later accelerates the Universe. It is noted that the law (16) refers
to the anisotropic LRS Bianchi type-V model in any physical theory. We have
observed that for the n # 0 phases, we have a perfect gas equation of state, while
for the n = 0 (inflation) case, we have negative pressure.

We have also discussed the well-known astrophysical phenomena, namely the
look-back time, luminosity distance and event horizon with redshift. It has been
observed that such models are compatible with present observations. We have
observed that luminosity distance increases linearly with redshift for ¢ = 1 whereas
it increases faster with redshift z for ¢ = 0 and —1. The solutions obtained in the
present paper could give an appropriate description of the evolution of Universe.
More realistic models may be analysed using this technique, which may lead to
interesting and different physical behaviour of the evolution of Universe. Further,
we are studying whether a variation for the Hubble parameter could explain the
continuous transition from a decelerated Universe to an accelerated one.
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