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Abstract. The cytoplasm of a living cell is crowded with several macromolecules of
different shapes and sizes. Molecular diffusion in such a medium becomes anomalous due
to the presence of macromolecules and diffusivity is expected to decrease with increase in
macromolecular crowding. Moreover, many cellular processes are dependent on molecular
diffusion in the cell cytosol. The enzymatic reaction rate has been shown to be affected by
the presence of such macromolecules. A simple numerical model is proposed here based
on percolation and diffusion in disordered systems to study the effect of macromolecular
crowding on the enzymatic reaction rates. The model qualitatively explains some of the
experimental observations.
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1. Introduction

The aqueous phase of cell cytoplasm is crowded with macromolecules such as solu-
ble proteins, nucleic acids and membranes [1]. The influences of such crowding on
biochemical reactions inside physiological media are manifold [2]. Due to crowding,
the average free energy µ of a non-specific interaction between any molecule in the
medium and a crowding molecule may change considerably which may influence
the reaction activity γ = exp(µ/kBT ), where kB is the Boltzmann constant and T
is the absolute temperature. Steric repulsion is the most fundamental of all interac-
tions between macromolecules in solution at finite concentration and as an effect of
such repulsion the macromolecules occupy a substantial volume fraction in the cell
interior [3]. Significant volume fraction of macromolecules in the medium imposes
a constraint on introducing any new macromolecule. As a consequence of crowding,
macromolecular association reactions become increasingly favourable. Because of
crowding, the molecular diffusion in the medium is expected to be anomalous [4].
The effect of macromolecular crowding on different kinetic steps of enzyme cataly-
sis such as formation of enzyme–substrate complex and enzyme–product complex
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were analysed through different equilibrium thermodynamic models [5]. A number
of approaches have been proposed to study the effects of macromolecular crowding
on the reaction kinetic rate laws such as the law of mass action [5], fractal-like
kinetics [6], the power-law approximation [7], stochastic simulation [8] and lat-
tice gas simulation [9]. In these analytic and numerical models, the influence of
macromolecular crowding on both equilibrium thermodynamics and reaction rates
were addressed and it was observed that the rate decays exponentially with time
as expected in equilibrium kinetics. The influence of macromolecular crowding on
the enzymatic reaction rates has been investigated experimentally using a variety
of crowding agents [10]. These studies have also indicated a significant influence
of crowding on the rate parameters of the enzymatic reaction. It was found that
the effect of crowding on the enzymatic reaction may be different depending on
whether the product formation in the enzyme reaction is limited by the diffusional
encounter of substrate and enzyme or the formation of the transition state complex,
an association of enzyme and substrate. Moreover, molecular diffusion is known to
be the major determinant of many cellular processes and plays a key role in cell
metabolism where the encounter of the free substrate with an active site of the en-
zyme is often the rate determining step. However, how the kinetics of an enzymatic
reaction is dependent on the size and concentration of the crowding macromole-
cules is still not fully understood. The macromolecular crowding till date remains
an underappreciated and neglected aspect of the intracellular environment [11]. It
is hence essential to understand the experimental observations from microscopic
origin.

In this paper, an approach based on non-equilibrium dynamics of enzymatic
reactions in the diffusion-limited regime is considered. The aim is to understand
qualitatively the influence of inert macromolecular crowding on the diffusion-limited
enzymatic reactions governed by non-equilibrium thermodynamics. A simple nu-
merical model in two dimensions (2d) based on molecular diffusion in disordered
systems coupled with enzymatic reaction is proposed here. The disordered sys-
tem is modelled by percolation clusters [12]. It is predicted that the rate of a
diffusion-limited enzyme-catalysed reaction will experience a monotonic decrease
with increase in the fractional volume occupancy of the crowding agent. The model
explains qualitatively certain experimental observations.

2. The model

In brief, the enzyme kinetic reaction in the cell cytoplasm can be described as
substrate molecules diffusing through crowding macromolecules and binding to the
active site of the freely floating enzymes. Subsequently, a product is formed if
the reaction is energetically favourable and this product diffuses through the same
crowd of macromolecules. The classical Michaelis–Menten equilibrium enzyme ki-
netic reaction is given as [13]

E + S ­ ES → E + P, (1)

where E represents enzyme, S represents substrate, P represents product and ES is
the intermediate enzyme–substrate complex.
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In the present model, the reaction is limited by diffusion only and the formation
of the transition state complex ES is not taken into account. The conversion of
substrate to product is also assumed to be instantaneous. Note that diffusion has
the slowest time scale in this problem. Hence, the above enzymatic reaction reduces
to an irreversible one as

E + S → E + P. (2)

The final equilibrium state corresponds to conversion of all substrates to products.
A Monte Carlo (MC) algorithm has been developed to study diffusion-limited enzy-
matic reaction as in eq. (2) in the presence of inert macromolecules. The algorithm
is developed on the 2d square lattice of size L × L. For simplicity, the motion of
the macromolecules is ignored and these act as immobile and inert obstacles. The
inert obstacles do not interact either among themselves or with the substrate or
product. The obstacles (O), enzyme (E), substrate (S) and product (P) are all
represented as point particles in this model. It is also assumed that there exists
only one immobile enzyme in the whole system. The enzyme is placed at the cen-
tre of the lattice. After placing the enzyme, the obstacles and the substrates are
distributed randomly over the lattice sites with their specified concentrations CO

and CS respectively. A random number r is called from a uniform distribution of
random numbers between 0 and 1 corresponding to each lattice site. If r ≤ CS, the
site is occupied with a substrate and if CS < r ≤ af the site is occupied with an
obstacle where af = CS +CO is the area fraction. The excluded volume condition is
maintained, i.e., at any instant of time one lattice site cannot be occupied by more
than one molecule of the same or different species. The substrate molecules diffuse
through the space not occupied by the obstacles which will be referred as empty
space later. As soon as an S reaches E, a product P is produced with unit prob-
ability. The diffusion of substrate or product in the system is modelled by simple
random walk in the presence of obstacles or disorder. At each MC time step, all
the random walkers (all S and P) make an attempt to move to one of their nearest
neighbours. The destination site, a site out of the four neighbours, of a random
walker is chosen calling a random number r uniformly distributed between 0 and
1. With respect to the present site, the destination site is going to be on the left if
0 < r ≤ 1/4, it is at the top if 1/4 < r ≤ 1/2, it is on the right if 1/2 < r ≤ 3/4,
and it is at the bottom if 3/4 < r ≤ 1. The destination site could be either empty
or occupied by S, P, O or E. Depending on the status of the destination site, there
are then four possibilities: (a) if the destination site is empty, the present S or P
moves to the destination site, (b) if the destination site is occupied by an S or P, S
or P remains on the same site, (c) if the destination site is occupied by an O, P or
S also remains on the same site, and (d) if the destination site is occupied by the
enzyme E, P remains on the same site but S is converted to P with unit probability.
If all the molecules of S and P are checked for an attempt of motion, time t (the MC
time step) is increased to t + 1. To ensure percolation of the substrate molecules,
the maximum area fraction af = CS + CO is taken as 0.4, far below the percolation
threshold, ∼0.59 on the square lattice [12]. Note that, the present non-equilibrium
diffusion-limited enzymatic reaction model is substantially different from that of
lattice gas model incorporating equilibrium reaction rates proposed by Schnell and
Turner [9] which leads to an unusual equilibrium constant equal to zero in the
crowded environment [14].
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(a) t = 212 (b) t = 218 (c) t = 220

Figure 1. The system morphology on a 256 × 256 square lattice is shown
at three different times (a) t = 212, (b) t = 218 and (c) t = 220 for substrate
concentration Cs = 0.01 and area fraction af = CS + CO = 0.1 (CO = 0.09).
The black dots represent the substrates and the gray boxes represent the
products. For clarity, obstacles are not shown. The enzyme is represented by
a cross at the center of the lattice. Products are formed due to the enzymatic
reaction and in the long time limit almost all the substrates are converted into
products.

Cyclic boundary condition has been applied in the motion of S and P. The sim-
ulation has been performed up to 106 MC time steps on a 256× 256 square lattice.
The data are averaged over 100 ensembles. The time evolution of the system mor-
phology for af = 0.1 with CS = 0.01 is shown in figure 1 at three different times.
The black dots represent the substrates and the gray boxes represent the products.
For clarity, obstacles are not shown. It can be seen that the initial black dots are
converted to gray boxes at the end. That means, the substrate molecules are dif-
fusing, reacting with the enzyme, and are getting converted into products. In time,
almost all the substrate molecules are converted to products and the product mole-
cules also diffuse and spread all over the space uniformly. Lin and coworkers [15]
simulated some elementary kinetic reactions like A+B → 0 with no obstacles under
reflective boundary condition and observed Zeldovich cross-over (segregation of A
and B) [16]. Such segregation is not observed with periodic boundary condition in
the present simulation. Effect of impenetrable boundary on diffusion-limited reac-
tion like A + A → 0 leads to different behaviour depending on different boundary
conditions [17].

3. Results and discussion

Classical diffusion of a tracer particle in disordered systems has already been stud-
ied extensively and the results are well-understood [18]. Generally the diffusion
is modelled by random walk and the disordered system is modelled by spanning
percolation clusters [12]. For studying diffusion, a quantity of interest is the root
mean square (rms) distance r(t) covered by the diffusing particle in time t. The
rms distance r(t) in 2d is given by

r2(t) = 4D × t2k, (3)
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Figure 2. (a) Plot of diffusion length r(t) against time t in double logarithmic
scale for different area fractions af keeping substrate concentration CS at 0.01.
(b) and (c) Plot of the local exponent kt vs. time t for CS = 0.1 and CS = 0.01
respectively. The same symbol set of (a) has been used in (b) and (c) for
different area fractions af = CS + CO.

where D is the diffusivity of the system. The exponent k has a value 1/2 for diffusion
on a regular lattice in the t →∞ limit. On the percolation cluster, diffusion is found
to be anomalous and the value of k becomes less than 1/2 [18]. The enzyme kinetic
reaction inside a cell cytoplasm involves (i) diffusion of a large number of substrate
molecules through the random structure of inert macromolecules, (ii) reaction with
the enzyme to have products, and (iii) finally diffusion of products from the enzyme
through the same macromolecular crowding. The diffusion process involved here is
then a collective motion of a large number of particles in the presence of disorder
which is a complicated process compared to diffusion of a single tracer particle in a
disordered medium. Self-diffusion is expected to play a non-trivial role along with
the diffusion of S or P in the presence of disorder in these systems. In order to check
whether the enzyme kinetic reaction considered here is diffusion-limited or not, one
needs to analyse the diffusive behaviour of either the substrates or the products.
To calculate the average diffusion length of the product particles, the coordinates
{xi(t), yi(t)} of each product i is recorded with time t. Time is measured starting
from the birth of a product. The rms distance r(t) travelled in time t is then
calculated as

r2(t) =
1

NP(t)

NP(t)∑

i=1

[{x0 − xi(t)}2 + {y0 − yi(t)}2
]
, (4)

where (x0, y0) is the coordinate of the enzyme at the centre of the lattice and NP(t)
is the number of products of age t. The data are then sample averaged over 100
ensembles.

In figure 2a, r(t) is plotted against time t in double logarithmic scale for different
area fractions af = CS + CO keeping the substrate concentration constant at CS =
0.01. It can be seen that the magnitude of the diffusion length decreases with
increasing af . The collective motion of the particles is then affected more and more
by the presence of increasing inert macromolecules in the system. However, in order
to check the diffusive behaviour of the particles one needs to estimate the exponent
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k defined in eq. (3). The local slope kt = d log2 r(t)/d log2 t of the curve log2 r(t)
vs. log2 t is determined by employing central difference method. In figures 2b and
2c, kt is plotted against time t for two different substrate concentrations CS = 0.10
(b) and CS = 0.01 (c) for the same set of area fractions af as in figure 2a. The
value of kt saturates to 1/2 starting from a smaller value as t tends to a large
value. Thus, a cross-over from sub-diffusive to diffusive behaviour has occurred for
all area fractions in the long time limit. In the case of low substrate concentration
CS = 0.01 and high area fraction af = 0.4, kt shows certain anomalous behaviour.
Note that, at this parameter regime the macromolecular concentration is 0.39 which
is just below 1 − pc ≈ 0.41 since the percolation threshold for a 2d square lattice
pc ≈ 0.59. The empty sites provide the connectivity for the substrate molecules
all over the lattice. However, pc is defined on an infinitely large system. For a
smaller system, even at the concentration of 0.39 the connectivity of empty sites
may be lost for some of the ensembles considered. Consequently, the product may
be trapped in a localized region around the enzyme and this may be the reason
behind the anomalous behaviour observed in this parameter regime.

Since the parameter regime here is limited by diffusion, the enzyme kinetic reac-
tion is then expected to be diffusion-limited. Due to the enzyme kinetic reaction
(given in eq. (2)) the substrates are converted to products in time with unit proba-
bility on their encounter. In order to characterize the enzyme kinetic reaction, the
number of products NP are counted as function of time t, the MC time step, for
different substrate concentrations CS and area fractions af = CS + CO. In figure 3,
the product numbers NP is plotted against time t for different area fractions af with
CS = 0.01. Initially, NP increases linearly, then slows down and finally saturates in
the long time limit. For low area fraction, it can be seen that the reaction is almost
complete, i.e., most of the substrates given initially, NS(0) = CS × L2 ≈ 655, are
converted to products exponentially as in classical equilibrium Michaelis–Menten
kinetics though in the present model a non-equilibrium kinetics is considered. How-
ever, note that there is a considerable decrease in the product yield with increase
in area fraction and their profiles are found not to follow an exponential increase.
It has already been predicted by numerical simulations that classical Michaelis–
Menten kinetics may not apply to enzymatic reactions in crowded media [19]. In a
1d model of reaction diffusion with disorder, Doussal and Monthus [20] also found
large time decay in the species density via real space renormalization group calcula-
tions. The macromolecular crowding then could have a considerable and non-trivial
effect on the enzymatic reaction rate.

Initial rate of enzymatic reactions determines most of the molecular processes
and thus is an important quantity to estimate. Since non-equilibrium enzymatic
reaction is considered here, the reaction rate R is defined as the ratio of the number
of products NP to time t for 10% conversion of the substrates. R is then sample av-
eraged. A similar analysis has also been performed for NP vs. t plots corresponding
to CS = 0.1 for different area fractions af . In figure 4a, the normalized reaction rate
Rn = R/CS is plotted against obstacle concentration CO for two different substrate
concentrations CS = 0.01 (circles) and CS = 0.1 (squares). Note that, area fraction
af = CS+CO is not a good parameter to study the reaction rate since af will remain
finite for finite CS even at CO = 0. In the inset, Rn is also plotted against CO in
semi-logarithmic scale. There are few things to notice. First, the reaction rate is
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Figure 3. Plot of the number of products NP vs. time t for different area
fractions af = CS+CO keeping substrate concentration constant at CS = 0.01.

decreasing with the increase in obstacle concentration CO in a nonlinear fashion.
Second, the reaction rates are different for a particular CO even after normalizing
by the substrate concentration CS. Third, there is a monotonic decrease of ln(Rn)
for small CO and deviates from linear decrease for large CO. The decrease in reac-
tion rate with increasing crowding concentration is expected and also observed in
experiments [10,21]. However, the dependence of the rate on the crowding concen-
tration is different from the prediction made by Minton [5] in the transition state as
well as diffusion-limited enzymatic reaction in which a hump in the ln(Rn) vs. CO

curve is expected for an intermediate CO. Fourth, the normalized reaction rate is
approaching zero as CO approaches 1−pc ≈ 0.41. Beyond CO = 0.41, the obstacles
could block the spanning clusters of the empty sites. Consequently the enzymatic
reaction will be localized and the reaction rate is expected to go to zero.

The above observations can qualitatively be understood in terms of diffusion and
percolation phenomena. As CO increases, diffusivity is expected to decrease be-
cause of the crowding due to obstacles. The influence of macromolecular crowding
on the diffusion of solutes has been investigated in recent experiments utilizing dif-
ferent crowding agents and a reduced solute diffusion coefficient was observed with
increasing size and concentration of crowding macromolecules [22]. An estimate
of diffusivity D = (dr2(t)/dt)/4 (as given in eq. (3)) has been made utilizing the
data of diffusion length r(t) for different sets of substrates (CS) and obstacles (CO)
concentrations. In figure 4b, D is plotted against CO for CS = 0.01 (circles) and
CS = 0.10 (squares). Like reaction rate, diffusivity D is also studied as a function
of obstacle concentration CO instead of af . It can be seen that D also decreases
with CO in a nonlinear fashion. First of all, it is interesting to note that the whole
dependence of Rn on CO is in accordance with the behaviour of D with CO. The
enzymatic reaction rate in this parameter regime is therefore mostly governed by
diffusion and can be considered a purely diffusion-limited enzymatic reaction. It
is important now to consider the low CO values, especially the case of CO = 0.
For low CO values, D is slightly less for CS = 0.1 than that of CS = 0.01 for the
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Figure 4. (a) Plot of normalized reaction rate Rn = R/CS against CO for
two different CS values 0.01 (circles) and 0.1 (squares). ln(Rn) is plotted
against CO for the same CS values in the inset. The same symbol set for
different CS values is used. (b) Plot of diffusivity D against CO for CS = 0.01
and CS = 0.1. The same symbol set of (a) is used.

same CO. This slight decrease in D is due to diffusion through the self-crowding at
higher CS. On the other hand, the reaction rate at zero obstacle concentration is
expected to be proportional to CS and D and R can be obtained as R ≈ CS × D.
It can be seen that the normalized reaction rate Rn obtained here is very close to
the corresponding values of D at CO = 0 for both the CS values. At CO = 0, the
self-diffusion of the substrate molecules eventually determines the reaction rates
and might be responsible for a slight decrease in Rn for CS = 0.1 with respect to
CS = 0.01 as seen in figure 4a. The effect of CS in the absence of obstacles has
been verified numerically for several higher values of CS and a considerable effect of
self-crowding has been observed on the reaction rate as well as on diffusivity. Note
that, Rn values are slightly greater than D for almost all values of CO as it can be
seen by comparing figures 4a and b. This might have happened firstly due to the
fact that the initial yield occurs only from the locally available substrate molecules.
The diffusion length of these substrate molecules are very less in comparison to the
expected diffusion length. Secondly, one should note that the initial reaction rate
for a given CO has to be calculated keeping the substrate concentration CS fixed.
However, in the present model the substrate concentration is decreasing with time
as the substrates are being converted into products. The effect will be predominant
for low CS and small system size. Consequently, the rate determination will be
erroneous in the t → 0 limit due to low yield. Hence, extreme care has to be taken
in determining the initial reaction rate. The enzymatic reaction considered here
is completely diffusion-limited and the results obtained are explained in terms of
diffusion in disordered systems. It is therefore intriguing to note that such a simple
model of enzymatic reaction, based only on diffusion and percolation phenomena, is
able to explain qualitatively the experimental observations [10,21] as well as results
obtained in complicated models [5–9]. Hence, diffusion is observed to be playing a
crucial role in determining the enzymatic reaction rates.
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It should be emphasized here that enzymatic reactions occur in three-dimensional
space in living systems whereas the simulation is performed in two dimensions here.
The simulation results obtained here agree qualitatively with the experimental ob-
servations and it is expected that the features of the model will be retained in higher
dimensions also. The main difficulty in 3d simulation is in parallel updating of a
large number of substrate and product molecules during time evolution through a
large number of MC time steps. Time required for the full conversion of substrate
to product increases exponentially with the number of molecules (NS = CS × Ld)
which strongly depends on the dimensionality of space for a fixed substrate concen-
tration. However, for quantitative comparison of the results obtained in simulation
with that of experiments, the model must be extended to three dimensions.

The biochemical events in the densely crowded mitochondrial matrix, the site
for TCA cycle and fatty acid oxidation pathway are largely governed by large
macromolecules of various sizes. It is thus important to investigate the influence
of crowding as exerted by macromolecules of different sizes. A decrease in reaction
rate has been observed in experiments for varying obstacle sizes keeping the obstacle
concentration constant [21]. It seems that the complex interaction between obsta-
cles and the substrate is size dependent and might be governing the enzymatic
reaction rate. It is expected that the diffusion of substrates across large macro-
molecules might be slow due to the complex interactions with the obstacles. In the
present model of enzymatic reaction, this complex interaction between obstacle and
substrate may be incorporated by introducing a residence time for the substrate
molecules at each encounter with the obstacle. A slowing down in the reaction rate
with increasing residence time has been observed in the simulation in accordance
with the experimental results [21]. The details will be reported elsewhere.

4. Summary

The effect of macromolecular crowding on the enzymatic reaction rates has been
modelled by an MC algorithm based on diffusion and percolation phenomena. The
substrates, products, obstacles and enzyme all are represented by point particles.
A single immobile enzyme is considered and placed at the centre of the lattice. The
obstacles and the substrates are distributed randomly with their specific concen-
trations following a uniform distribution of random numbers between 0 and 1. The
obstacles remain immobile throughout the simulation. It is found that the reaction
is solely diffusion limited under these conditions. The diffusion of substrates and
products are modeled by a collective random walk. The products form gradually
and subsequently almost all the substrates are converted into products after a long
time. The initial reaction rate has been estimated for different substrate and obsta-
cle concentrations. The normalized reaction rate has a nonlinear dependence on the
obstacle concentration and found slightly dependent on the substrate concentration.
The dependence of reaction rate on the substrate as well as obstacle concentrations
is then qualitatively understood with the help of diffusion and percolation theory.
The results qualitatively explains the experimental observations.
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