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Abstract. The phase diagram of the coupled sine circle map system exhibits a variety
of interesting phenomena including spreading regions with spatiotemporal intermittency,
non-spreading regions with spatial intermittency, and coherent structures termed solitons.
A spreading to non-spreading transition is seen in the system. A cellular automaton ver-
sion of the coupled system maps the spreading to non-spreading transition to a transition
from a probabilistic to a deterministic cellular automaton. The solitonic sector of the
system shows spatiotemporal intermittency with soliton creation, propagation and ab-
sorption. A probabilistic cellular automaton mapping is set up for this sector which can
identify each one of these phenomena.
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1. Introduction

The coupled sine circle map lattice has been known to model the mode-locking
behaviour [1] seen commonly in coupled oscillators, Josephson junction arrays, etc.,
and is also found to be amenable to analytical studies [2,3]. In addition to mode-
locked and synchronised behaviour, the model exhibits a rich variety of phenomena
such as spatiotemporal intermittency of the directed percolation class [4,5], spatial
intermittency, cluster solutions and regimes with long-lived coherent structures,
also known as solitons [6].

The coupled sine circle map lattice is defined on a one-dimensional lattice, and
evolves via the equation:

€ €

2= (1= O (ah) + S(rly) + 5 f(aty)  (mod 1) (1)
Here, ! defines the state variable at site i (i = 1,..., N, where N is the system size)
and time t. The site 7 at each time step is coupled to its two nearest neighbours

i—1 and 7 + 1 with a coupling strength e. The local map at each site i, f(x!)
is the sine circle map defined as f(z) = x + Q — £ sin(27z), where K denotes
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Figure 1. (a) The phase diagram obtained for a lattice of size N = 1000, af-
ter discarding 15,000 transients. Synchronised solutions are seen in the region
marked with dots. Spatiotemporal intermittency of the DP class is seen at
points marked with diamonds (<), and spatial intermittency at points marked
with triangles (A) and asterisks (*). Inset shows a part of the phase diagram
where spatiotemporal intermittency with travelling wave laminar states and
solitons is seen at points marked with boxes (O). (b) The space-time plot of
spatiotemporal intermittency with solitons.

the strength of nonlinearity in the map and €2 is the frequency of the map in the
absence of nonlinearity.

The phase diagram of the model has been obtained in earlier studies [5] by syn-
chronously updating the coupled sine circle map lattice with random initial con-
ditions, in the parameter region 0 < < %, 0<e<1landat K =1.0. The
phase diagram is seen to be organised around the bifurcation boundary of the spa-
tiotemporally synchronised solution as well as a line, called the infection line, that
separates the lower half of the parameter space into a spreading and a non-spreading
regime (figure 1a). The burst states are capable of infecting their neighbouring lam-
inar states in the spreading regime, whereas they are seen to be non-infectious and
localised in the non-spreading regime. Spatiotemporal intermittency contaminated
by long-lived travelling coherent structures, also named as solitons, is seen in the
upper part of the phase diagram (figure la (inset)).

Special behaviour is seen near the bifurcation boundary of the synchronised solu-
tions in these two regimes. In the spreading regime, spatiotemporal intermittency
with exponents of the directed percolation (DP) universality class is seen near the
bifurcation boundary of the synchronised solutions. This type of intermittency is
completely free of coherent structures and a complete set of exponents obtained at
the onset of this intermittency matches convincingly with the directed percolation
class [5]. In the non-spreading regime, spatial intermittency (SI) with synchronised
laminar states and periodic or quasi-periodic bursts are seen near the bifurcation
boundary [6]. The scaling exponents for the laminar length distributions in this
type of intermittency are seen to be similar to those obtained for spatial intermit-
tency seen in the inhomogeneous logistic map lattice [7].
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Further insights into the spreading to non-spreading transition are obtained when
the coupled map lattice is mapped onto a cellular automaton [8]. In the spreading
regime, including the points where DP behaviour is seen, the probabilities associ-
ated with the cellular automaton update rules are seen to lie in the (0,1) interval.
In other words, the update rules obtained in the spreading regime are seen to be
probabilistic. In contrast, the probabilities in the entire non-spreading regime are
seen to be either zero or one. Thus, the update rules in non-spreading regime
are found to be deterministic. Therefore, the cellular automaton mapping of the
coupled map lattice shows that the spreading regime can be mapped onto a set
of probabilistic cellular automata whereas the entire non-spreading regime can be
mapped to a deterministic cellular automaton.

Apart from the spatiotemporal intermittency of the directed percolation class
and the spatial intermittency seen in the lower part of the phase diagram, spa-
tiotemporal intermittency with travelling wave laminar states interspersed with
turbulent bursts is seen in the upper part of the phase diagram (see inset of fig-
ure 1a). This kind of spatiotemporal intermittency contains coherent structures or
‘solitons’, which spoil the analogy with directed percolation and are responsible for
non-universal exponents in this region [6]. In this paper, we show that a cellular
automaton can be designed for this type of spatiotemporal intermittency, which
successfully picks up signatures of the ‘solitons’. We discuss this in the following
section.

2. Spatiotemporal intermittency with travelling wave laminar states
and solitons

Spatiotemporal intermittency with travelling wave laminar states is seen in the
upper part of the phase diagram at points marked with boxes (O) (figure 1a).
In this type of intermittency, the lattice relaxes to the absorbing travelling wave
laminar state asymptotically. The burst states are turbulent and lie in the interval
(0,1), and can spread through the lattice. Apart from the burst states, coherent
structures, which have been called ‘solitons’, are seen in the travelling wave laminar
background. These structures have been marked in the space-time plot of this type
of spatiotemporal intermittency in figure 1b. As can be seen from the space-time
plot, these solitons are generated from the turbulent burst states. Moreover, both
left-moving and right-moving solitons occur in pairs in the lattice and eventually
annihilate each other on collision. When these solitons collide, they either die down
to the travelling wave laminar state or give rise to turbulent bursts. Therefore, the
burst states are created in the lattice either by infection of a laminar site by a
neighbouring burst site or by the annihilation of solitons. Regions of synchronised
fixed point solutions, £* are seen to exist between the left- and right-moving solitons,
which perish with the annihilation of the solitons. The coherent structures seen in
this type of spatiotemporal intermittency show a strong resemblance to the ‘solitons’
seen in the Chaté—Manneville coupled map lattice [9], where these solitons were
responsible for spoiling the directed percolation behaviour [10,11].

The solitons alter the dynamical behaviour of the system in this regime in sev-
eral significant ways. They spoil the analogy with DP behaviour by acting as an
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Table 1. The laminar length distribution exponent, ¢ obtained for different
values of the coupling strength, € at 2 = 0.035 in the spatiotemporal inter-
mittency with travelling wave laminar state and solitons regime. The table
also shows the scaling exponents associated with the distribution of soliton
lifetimes, and the maximum soliton lifetime observed, Tiax.

Q =0.035 Distribution of soliton lifetimes
€ ¢ Nature Scaling exponent  Tiax
0.933 1.53 £ 0.01 Scales with a power-law 1.14 19010
0.943 1.40 £ 0.01 Scales with a power-law 1.35 2481
0.950 1.17 £ 0.01 Scales with a power-law 1.64 794
0.962 1.02 + 0.01 Peaked distribution with a power-law tail 2.84 305

additional source of turbulent bursts. They also introduce a new time-scale in the
system, namely the soliton lifetime, which depends on €2 and e and gives rise to
non-universal exponents. This can be seen in table 1 in which the scaling expo-
nents ¢ associated with the distribution of laminar lengths P(I) ~ [~¢, obtained at
various values of coupling strengths e for 2 = 0.035 have been shown.

The exponent ( is seen to vary from 1 to 1.5 for different values of e. The soliton
lifetimes also decrease with increase in coupling strength and give rise to two distinct
regimes. In regimes of long average soliton lifetimes, the distribution of soliton
lifetimes shows a power-law behaviour whereas the distribution shows a peak with
a characteristic time-scale (~ 20) in regimes of short soliton lifetimes. These varying
average soliton lifetimes influence the extent of spreading in the lattice and therefore
lead to varying values for the laminar length distribution exponents [6]. Thus, the
creation, propagation, and annihilation of solitons lead to significant changes in the
statistical and dynamical behaviour of the system. A cellular automaton mapping
for this type of spatiotemporal intermittency can be designed which mimics the
dynamics observed in this region [9,12,13], and contains significant signatures of
these solitonic processes. We discuss this in the next section.

3. A cellular automaton for spatiotemporal intermittency containing
solitons

The cellular automaton is defined on a (1 + 1)D lattice. There are four states in
the solitonic region, the travelling wave laminar state, the burst state, the soliton
state, and the fixed point state. Therefore, the variable v} at site i and time ¢ is
assigned a value v! = 0 if it exists in the travelling wave laminar state, v! = 1 for
a burst state, v! = 2 for a solitonic state, and v} = 3 if it exists in the fixed point
state, *. Since, the probability that the site ¢ at time ¢ + 1 exists in the state
vf“, depends on the states of the sites ¢ — 1,4, + 1 at time ¢ as defined in the
evolution equation (1), the update rules of the cellular automaton are given by the

conditional probability P(v/™!v!_, vl vt ;).
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Figure 2. The probabilities (a) P(2|111), which indicate the creation of
solitons, (b) P(0]022,220) which is the probability of propagation of solitons,
and (c) P(1|222) and P(1|022,220), which gives the probability of creation
of bursts due to the annihilation of solitons. These probabilities have been
obtained for various values of the coupling strengths € at 2 = 0.0455.

For the above defined CA, 43 initial states are possible. After considering the four
possible final states vf“ =0,1,2,3, we can define 4 x 43 update rules of the cellular
automaton in this region. However, the number of relevant update rules required
to understand the dynamics is much smaller, and can be reduced by (i) using the
symmetry between the sites ¢ — 1 and ¢ + 1 as defined in the evolution equation,
and considering the states P(v/7'/001) and P(v!T'|100) (say) as equivalent, (ii)
eliminating the states which do not exist as neighbours (e.g.: the states vf = 0 and
v} = 3 do not exist as nearest neighbours, as the travelling wave state and the fixed
point state are never nearest neighbours). Finally, we reduce the number further
by focussing on states which appear more frequently in the system.

The values of these probabilities can be estimated from the evolution of the CML
equation (1) starting from random initial conditions. Let Ny be the number of sites
1 at time ¢, which along with its neighbours ¢ — 1 and ¢ + 1 exist in the kth state at
time ¢. If NP, N, N2, and N} be the fraction of Ny, sites, which, at time ¢+1, exist
in 0 (travelling wave), 1 (burst), 2 (soliton) and 3 (fixed point z*) states respectively
such that Ny = N + N! + N2 + N3, then the probability p}" is estimated using
pit = N[ /Ny, where m =0,1,2, or 3.

As a result, we get the following 17 prominent initial configurations that consti-
tute at least 0.1% of the total dynamics: 000, (001,100), 010, (011,110), 101, 111,
(002,200), (022,220), (112,211), (122,221), 222, (331,133), (311, 113), (332,233),
(322,223), 232, and 333. Further identification of the most relevant update rules
is carried out by concentrating on those configurations which show a higher prob-
ability of transition to the final states vf“ =0,1,2, or 3.

The CA probabilities thus identified contain information about the infective dy-
namics of the burst states and also show significant signatures of the solitons. For
example, the probabilities which are indicative of the infective behaviour of the
burst states include P(1|001,100), P(1]|011,110), P(1]101), P(1|111), P(1]112,211),
P(1]122,221), and P(1|133,331). In all the above configurations, the variable at
the central site 7 changes into a burst state at time t + 1, after being infected by a
neighbouring burst state at time t.
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Features of the creation, propagation, and annihilation of solitons are seen in the
following update rules. As discussed earlier, a small fraction of the burst states
are seen to generate pairs of left- and right-moving solitons. This information
is contained in the following probabilities: P(2[001,100), P(2]011,110), P(2]101),
P(2]111), P(2]|112,211), P(2|133,331), P(2|113,311). For instance, the update
rule defined by the conditional probability P(2|111) determines the probability of
obtaining a solitonic state (v;»erl = 2) at site ¢ at time ¢t + 1, given that the sites
i—1,4,7+ 1 exist in the burst state (v!_,vf,vf, | = 1) at time ¢. Figure 2a shows
the probability P(2]|111) obtained at 2 = 0.0455 for various values of the coupling
strength e. The probability has been calculated for a lattice of size 500 over 5000
time steps (after discarding 3000 transients), and has been averaged over 50 initial
conditions. This soliton creation probability shows a prominent increase at € = 0.9,
which implies that the burst states generate ‘solitons’ at € > 0.9. This is also
the point at which spatiotemporal intermittency with synchronised laminar states
bifurcates to spatiotemporal intermittency with travelling wave laminar states and
solitons. The probabilities are further seen to die down to zero at e = 0.96. At this
point, the synchronised solutions reappear in the phase diagram.

The probabilities which are indicative of the propagation of solitons
through the lattice are as follows: P(0]022,220), P(2]|022,220), P(2[122,221),
P(2|222), P(2|233,332), P(2]223,322), P(2]232). Figure 2b shows the probabil-
ity P(0]220,022) plotted for various values of € at 0 = 0.0455. The probability is
non-zero for 0.9 < € < 0.96. And finally, when the left- and right-moving solitons
collide with each other, they either die down to the laminar state or give rise to
turbulent bursts. Signatures of annihilation of the solitons are seen in the prob-
abilities: P(0]022,220), P(1]022,220), P(1|122,221), P(1]222), P(1|223,322), and
P(1]232). The probabilities P(1|220,022), and P(1]|222) are plotted in figure 2c.
These probabilities are again seen to be non-zero for 0.9 < € < 0.96. Hence, we see
that the cellular automaton designed for spatiotemporal intermittency with travel-
ling wave states describes the infection dynamics of the burst states as well as picks
up the signatures of the creation, propagation, and the annihilation of the solitons.

4. Conclusions

In earlier studies, we saw that the transition from the spreading to non-spreading
regime in the phase diagram of the coupled sine circle map lattice can be mapped
onto a cellular automaton, whereby the cellular automaton undergoes a transition
from a set of probabilistic cellular automata in the spreading regime to a determin-
istic cellular automaton in the non-spreading regime. In this paper, we show that a
similar cellular automaton can be designed for spatiotemporal intermittency with
travelling wave laminar states contaminated by solitons. This cellular automaton
effectively picks up the key signatures of the solitons including their creation from
the burst states, propagation through the lattice and their annihilation. Moreover,
it detects the regions in the phase diagram, where the solitons and spatiotempo-
ral intermittency with travelling waves are seen to exist. Hence, we see that the
cellular automaton mapping, though a coarse-grained version of the coupled map
lattice, can still recognise the salient features of the local dynamics, while filtering
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out the intricate details. Therefore, cellular automata mappings can be used as
a very useful tool in studying dynamics on spatially extended systems, as well as
in other areas such as studies of critical behaviour of absorbing phase transitions
[14,15], stock markets [16], traffic flows [17], and cell growth kinetics [18].
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