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Abstract. In this paper I give a short and elementary review of numerical simulations
in granular assemblies, giving the process of discharge of a 2D silo as an example. The
strengths and limitations of different approaches are discussed, together with some com-
ments on the specific issues related to the numerics of discontinuous dissipative collisions.
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1. Introduction

Granular matter is defined as the collection of independent pieces of solid matter
with sizes ranging from hundreds of µm to several km, which interact with each
other only by excluded volume and are too large to be disturbed by thermal fluctu-
ations [1–4]. This form of matter, although very common in nature – think of sand,
gravel, edible grains, metal nuggets, the asteroid belt, etc. – and of great practical
importance, has been explored by physicists only recently. The main reason for
this is that the collisions between different elements of the assembly – in short,
different grains – are dissipative, and therefore not amenable to a Hamiltonian de-
scription. This implies that all the well-known techniques of statistical mechanics
do not apply, and that granular matter is either static or out of equilibrium.

There is plenty of interesting phenomenology in both cases. In the static situa-
tion one finds that, due to the macroscopic size of the constituents and to quenched
disorder in their packing arrangement, granular matter does not show homogeneous
distributions of stresses, and tend to form arches that direct the load of the ma-
terial sideways [5]. As a consequence of this, pressure inside a container saturates
(Janssen’s law [6]) and systems can spontaneously stop flowing (jamming) [7].

In the dynamic case, the most notorious effects are directly related to being out
of equilibrium, as already mentioned. In particular, it is common that driven in-
homogeneous granular assemblies segregate by size, weight, or even by frictional
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characteristics [8–11], reducing in the process the entropy of the aggregate; in ho-
mogeneous assemblies clustering [12–14] – usually called ‘inhomogeneous cooling’ –
is often found.

There is no general theoretical framework to describe granular matter, and most
of the analytical approaches are limited to diluted assemblies in the low dissi-
pative limit [15]. Therefore our understanding of the experimental results come
either from ad hoc models, applicable to very specific experimental settings, and
from numerical simulations. These represent a particular version of the well-known
methods of molecular dynamics (MD) [16,17], adapted to discontinuous potentials
and dissipation.

In this paper I want to give a limited, but hopefully pedagogical, view of some of
the issues confronted in these simulations, together with the results of a particular
application, namely, the flow of matter out of a 2D silo. The text is directed mostly
to researchers in the nonlinear community with limited experience in MD, and so it
remains very close to the basics. In §2, we will discuss the general issues of granular
matter simulation, in §3 we will concentrate on the soft particle model (time-driven
molecular dynamics), in §4 will describe the silo model and the results of a soft
particle simulation, and some final comments will be given in §5.

2. Numerical approaches

There are basically three main ways of doing a simulation in granular matter,
depending on (a) whether one takes the grains to be absolutely hard or not, and
(b) whether one allows long-lasting contacts – going all the way to static assemblies
– or limit these contact to be instantaneous. The first approach, known as event
driven molecular dynamics (EDMD), goes back to the pioneering work of Adler and
Wainwright in the hard disk gas [18], and considers a group of grains that move
freely (or with some easily integrable kinematics) between collisions. Upon collision
the velocities of the colliding grains are changed accordingly to some predetermined
rules that preserve linear and angular momentum but reduce kinetic energies. For
grains with spherical symmetry the rules are simple and are given in the following
way [16,19,20]: consider a collision between two grains a and b, or radii Ra and Rb,
masses ma and mb, and inertia moments Ia and Ib, located in positions ra and rb

in 3D space, as shown in figure 1. Define the distance vector between the spheres,
and the corresponding normal vector, as

∆r ≡ rb − ra, n̂ = ∆r/|∆r|. (1)

Now, the relative velocity at the contact point is

vab = va − vb + (Raωa + Rbωb)× n̂, (2)

where ωa and ωb are the respective angular velocities. Split this relative velocity
into its normal and tangential components

vab(n) = (vab · n̂) n̂, (3)
vab(s) = vab − vab(n) = −n̂× (n̂× vab). (4)
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Figure 1. Diagram of a collision of two spherical grains.

Upon collision these two components of velocity transform as

v′ab(n) = −εnvab(n), (5)
v′ab(s) = εsvab(s), (6)

where εn and εs are the normal and tangential restitution coefficients, restricted to
the ranges 0 ≤ εn ≤ 1 and −1 ≤ εs ≤ 1. These represent the ratios of the normal
and tangential velocities after the collision to the corresponding velocities before.
The limits |ε| → 1 correspond to perfectly elastic collisions, while |ε| → 0 give
the behavior in completely inelastic (fully dissipative) situation. Even though in
many simulations the restitution coefficients are assumed as constants, they are in
principle velocity dependent. In particular, care must be taken to let εn tend to 1 if
very small velocities appear, in order to avoid the so-called ‘inelastic collapse’, where
two grains forced to be close to each other have a divergent number of collisions as
their relative velocity vanishes [21,22].

To complete the process conservation of linear and angular momenta around the
contact point are used. Here it is convenient to introduce a few definitions: start
by calling I ≡ I/mR2 the adimensional reduced inertia moment of a grain with
spherical symmetry, and define a couple of constants

S = ma + mb, T = ma
1 + Ib

Ib
+ mb

1 + Ia

Ia
. (7)

Using these constants, and the restitution coefficients, define the vector

D = −1 + εn

S
vab(n) +

εs − 1
T

vab(s); (8)

using this vector all after-collision quantities can be calculated:

v′a = va + mbD, ω′a = ωa +
(

mb

RaIa

)
n̂×D, (9)

v′b = vb −maD, ω′b = ωb +
(

ma

RbIb

)
n̂×D. (10)
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In its simplest form, the typical calculation in this scheme will go as follows:
starting from some initial configuration of positions and velocities, at some time t0,
all future first collisions, either between two grains or between a grain and a wall, are
analytically calculated. The times of these events are sorted and the first one, that
happens at t1, is realized. This means that all grains are moved to their calculated
positions at t1, and the linear and angular velocities of the grains participating
in the collision are recalculated according to the given formulas. At this moment
the collisions between the grains that changed their velocities and all other grains
and walls are recalculated, and their timings are used to insert these new events in
the sorted list. Finally, one has to remember that the change in velocities of the
colliding grains mean that some previously calculated events are now not going to
happen, and therefore should be deleted from the sorted list. After doing this, time
advances to the next event on the list, and so on.

There are of course many improvements over this simplistic approach. A very
useful one is the division of the physical space in small cells, containing just a few
grains, so that the search for collision partners for a given grain is restricted to the
next nearest cells. The price to be paid for this improvement is that one now needs
to know in which cell each grain is, and this means considering the change of cell of
any grain as an event, to be included in the list of future events. Another important
algorithmic trick is to organize the event time-table not in the form of a simple list,
but in the form of a binary tree. This accelerates the location of new events in
the time-table, giving a computational effort of just log2 N for N grains. It is also
possible to assign a different time variable to each grain, so that one does not need
to upgrade the variables of every grain in the assembly upon a collision, only of
those that actually collided. Setting up a working code with all these subtleties is
however not completely trivial; fortunately very detailed instructions on how to do
this are given in refs [23–25].

The main advantage of EDMD is its speed. Simulations with tens of thousands
of grains for many minutes of actual kinematics can be carried out in reasonable
time even with modest desktop computers. There are however some important
drawbacks: first of all, it is not possible to consider any static situation: in its very
essence, the method assumes colliding grains and cannot deal with one grain just
sitting on top of some others. This also means that very dense flows – say, the
drainage of a silo – are not really well-handled by EDMD. Another fundamental
problem is the inability of the method to incorporate any complex external po-
tential: the trajectory of a grain has to be analytically solved between collisions,
otherwise the advantages of this approach disappear. A minor point that is also
missed by the method is the qualitative difference that exists between fluidized
material, where most collisions are binary, and dense dynamics where multiple si-
multaneous interactions are common; this impossibility arises because EDMD can
handle only binary collisions.

A second approach tries to follow the dynamics step by step, and at the same
time to preserve the impenetrability of the grains. It is known as contact dynamics
(CD), and allows for both collisions and standing contacts [26–29]. In order to do
so, the method looks for a solution of the equations of motion using an implicit
Euler method, where at every iteration positions, velocities and internal (contact)
forces have to be calculated:
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ri(t + δt) = ri(t) + vi(t + ∆t)∆t, (11)

vi(t + δt) = vi(t) +
1

mi
Fi(t + ∆t)∆t− ẑg ∆t, (12)

where it has been assumed that the only external force is gravity. Given that no a
priori internal forces are prescribed, the method imposes two conditions: the first
says that the normal force between two grains is zero when they are not in touch,
and it is whatever is needed to avoid interpenetration when they touch. This is
known as the Signorini condition. For tangential forces, arising from friction, the
method implements exactly the Coulomb form: if the sum of other tangential forces
has a magnitude below the limit µsN (here N is the normal force), static friction
will provide a counter-force of equal magnitude and opposite direction, so that the
contact point does not slide; otherwise a dynamic friction of the form −µdN v̂t

appears. Now, the main difficulty here is that as one is trying to simultaneously
solve for the future values of position and velocity, and for the forces that depend
on them, for more than two particles, the resulting equations of motion have to
be solved in a self-consistent manner. Thus, every step of integration requires an
unspecified number of iterations to get some consistent solution – which besides
may not be unique [30]. From here one gets that the order of the method is N2 in
2D and N2.5 in 3D; for other methods algorithms of order N can be found.

Finally, the most versatile and common approach is the standard molecular dy-
namics with a fixed time-step, known as time-driven molecular dynamics (TDMD).
This is for many applications the slowest method, but its simplicity, applicability
to different problems, and suitability for parallelization makes it the workhorse of
the field. The method will be explored in the next section.

3. Time-driven molecular dynamics

The idea behind this approach is simply to integrate Newton’s equations using
very small time-steps, assuming that the collision between two grains is not an
instantaneous event , but that it does represent some dynamical process that occurs
over some finite interval of time, small as it may be. The main assumption is that
the grains are not perfectly rigid, but that there is some elasticity and therefore
some deformation upon contact. Because of this condition the method is sometimes
referred to as soft particle simulations. This approach may look initially simply as
an approximation, but in fact it goes to the actual physical process of a collision:
in real life, there are no perfectly rigid bodies, any piece of matter deforms on
a collision, and any collision takes some time to run its course. Then, in a way,
TDMD is trying to be faithful to the actual physics.

In reality the implementation of TDMD requires other approximations that di-
minish the faithfulness, namely the definition of the interaction potential, the defi-
nition of frictional forces, and in particular the handling of static friction. There is
of course the extra approximation involved in the integration method, that will be
mentioned later.
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3.1 Potentials and dissipative forces

Consider the same situation of two colliding grains, both with spherical symmetry,
as was described before. We assume here that there is no force between these
spherical grains when they do not touch, although it is also possible to include
short-distance forces – say, some adhesion caused by liquid films on the surfaces –
or even long distance potentials. The calculation of excluded-volume forces start
with the compression, which is defined by

ξ ≡ max(0, Ra + Rb − |∆r|); (13)

also of importance is the rate of change of this compression, ξ̇. One then calculates
a normal force, which can be given by many different expressions [31,32]. The
simplest one, often used, assumes a linear spring with dissipation proportional to
ξ̇, and is given by

fn = min(0,−κξ − Γξ̇). (14)

This force is simple and robust, and gives in many situations results that compare
quite well with experiments. The min function is included so that the force is
always repulsive, and this is fundamental since the simple force −κξ − Γξ̇ becomes
positive near the end of a collision, as long as the grains separate with finite speed,
when ξ is small and ξ̇ is finite and negative. Within the restriction given in eq. (14),
and using the definitions Ω ≡

√
κ/meff, γ = Γ/2meff and ω =

√
Ω2 − γ2, where

meff = (m−1
a + m−1

b )−1, the explicit calculation of the collision time gives [33]

ω tcoll =
{

π − arctan(2γω/(ω2 − γ2)), for γ < Ω/
√

2
arctan(2γω/(ω2 − γ2)), for γ > Ω/

√
2

(15)

and the normal restitution constant is simply

εn = e−γtcoll . (16)

Notice that here only under-damped collisions are considered. A more comprehen-
sive discussion can be found in ref. [33].

A better approximation to the actual physics of a collision is given by the well-
known Hertz formula. To include dissipation a good approach is given by [34,35]

f = min(0,−κHξ3/2 − ΓHξ1/2 ξ̇). (17)

This form does not allow for an analytic calculation of tcoll or εn, although some
detailed approximations are given in [36]. Notice that in this case the second
argument of the min function in (17) also represents an attractive force near the
end of the collision, and the restriction to repulsive forces, instead of using the
simple Hertz force −κHξ3/2 − ΓHξ1/2ξ̇ for all ξ > 0, modifies not only the values
of tcoll and εn, but also their qualitative dependence on the collision’s parameters
[36].

Although there are many other options – for instances, forces of the form
−κHξ3/2 − Γξ̇ [37], or −κHξ3/2 − Γξ1/4ξ̇ [38] have been explored – this section
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Figure 2. Two options for the force vs. compression diagram in the
two-springs approach. In (a) some plastic deformation remains after the end
of the collision.

will finish mentioning just another approach that is even simpler than the linear-
spring dash-pot formula. It considers two different spring constants for loading
and unloading [39]. The original version of this approach is given by the force vs.
compression graph given in figure 2a, where in the unloading part of the collision
the normal force vanishes for some finite compression (this is due to viscoelastic-
ity). Another way of implementing the same idea is to reduce the value of κ during
the unloading part of the collision, making in this way the dissipation simply a
modification of the strength of the spring, as shown in figure 2b. In any case, the
loading–unloading triangle in the diagram represents work, and that in turn is the
energy lost in the collision.

3.2 Friction and tangential forces

The basic description of dry frictional forces between macroscopic bodies is well-
known since Coulomb, but the implementation of these forces in a numerical sim-
ulation is not simple (making this issue one of the main selling points for CD).
Looking only at the magnitudes, the Coulomb prescription is

fs < µsfn (static friction), (18)
fd = µdfn (dynamic friction), (19)

where in general µs > µd, and both constants are in the (0,1) range. Dynamic
friction is not too complicated to implement, since it is just proportional to normal
forces, with its direction opposite to the tangential relative velocity, already given
in (2). Once this direction is defined, one only needs to add a frictional component
−µdfnv̂s to the forces, and calculate the corresponding torques. In many situations
this is enough to give a reasonable description of the granular medium; there are
however some situations where static friction is fundamental: for instance, any pile
of grains more than a monolayer thick and supported by a flat surface depends on
static friction for its very existence.

To implement this static component an often used prescription is the Cundall–
Strak form [40]; for simplicity only the 2D form (collisions between disks) of this
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frictional force will be covered here. In this approach it is assumed that static fric-
tion can be represented by a stiff spring whose elongation is given by the tangential
displacement ζ (of a with respect to b) accumulated from the instant of contact t0,
something that in 2D is the scalar

ζ =
∫ t

t0

vs(t′) dt′. (20)

It is understood that this tangential spring disappears when the two disks break
contact. Here vs is the tangential relative velocity, given in 2D by

vs = (va − vb) · ŝ + (Raωa + Rbωb), (21)

where ŝ = ẑ× n̂, assuming dynamics confined to the x–y plane.
The tangential displacement ζ produces a force fs = −κsζ, that, following

Coulomb’s prescription with equal friction constants, should always be smaller than
the possible dynamic friction. So the final friction force is usually written as [31]

ff = −min(|κsζ|, |µfn|) sign(ζ). (22)

A naive implementation of these equations can lead to some unphysical behavior,
since long-lasting contacts may involve several changes from rolling to sliding and
back, without breaking contact between the disks. This in turn can produce ar-
bitrarily large values for ζ, since by definition it keeps on growing even when the
disks are sliding. This difficulty is simply solved by controlling the growth of ζ,
using [41]

ζ =
∫ t

t0

vs(t′)Θ (µfn/κs − |ζ(t)|) dt′ (23)

with the simple posterior definition of ff = −κsζ. Here Θ is the Heaviside function.
One final ingredient needs to be added: representing static friction with a fic-

titious spring has the disadvantage of introducing tangential oscillations in the
system. In order to damp them one needs to put some dissipation in this tangential
interaction. Following the linear-spring dash-pot model one needs to add to (22)
a term of the form −Γsζ̇. For the parameter κs, ref. [31] uses the matching of the
periods for compressive and tangential oscillations and give κs/κn = 2/7, although
reasonable results (in comparison with experiments) are found for close values, like
κs/κn = 1/5. For disks the same prescription gives κs/κn = 1/3. The simplest op-
tion for Γs is to make it proportional to Γn, using the same proportional constant
used for the ratio κs/κn.

3.3 Integrators

The next step in the TDMD simulation is the actual integration of the equations
of motion. There are several well-known algorithms to this, but in practice few
are relevant. The basic initial point in a simulation of this kind is that the most
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computationally expensive part of the process is the calculation of forces, and there-
fore the integration algorithm should evaluate them only once at every iteration.
This leaves out some of the common workhorses in the area, like all the high-order
Runge–Kutta methods.

The surviving algorithms can be roughly divided in to two camps: the Verlet and
Verlet-related methods, that are symplectic in the absence of dissipation, and the
Gear family of predictor–corrector formulas. A very complete description of most
of these algorithms can be found in MD textbooks [16,17]. For concreteness only
three among the most often used will be mentioned here: the velocity-Verlet, the
Beeman and the Gear sixth-order algorithms.

The velocity-Verlet method advances the phase-space variables over one time-step
dt using the formulas

r(t + dt) = r(t) + v(t) dt + a(t) dt2 +O(dt3), (24)
a(t + dt) = F(r(t + dt))/m, (25)

v(t + dt) = v(t) +
1
2
(a(t + dt) + a(t)) dt +O(dt3). (26)

This algorithm is self-starting , that is, it does not need information about the
value of the variables at previous times, or the values of higher derivatives. As
mentioned, it is symplectic. It is also very popular in actual use, the facility of its
coding being an advantage not to be ignored. Many other options arise within this
line of algorithms, some equivalent to the one just described, others with higher
order precision.

However, the algorithm as given above is not correct for most applications in
granular matter, where velocity-dependent forces appear. The simplest solution is
to include a predictor step for the velocity, to improve the evaluation of the force
in eq. (25). The resulting formulas are now

r(t + dt) = r(t) + v(t) dt +
1
2
a(t) dt2 +O(dt3), (27)

vp(t + dt) = v(t) + a(t) dt +O(dt2), (28)
a(t + dt) = F(r(t + dt),vp(t + dt))/m, (29)

v(t + dt) = vp(t) +
1
2

[a(t + dt)− a(t)] dt +O(dt3). (30)

A more elaborate approach is given by the following Beeman algorithm [42,43] for
velocity-dependent forces:

r(t + dt) = r(t) + v(t) dt +
1
6

[4a(t)− a(t− dt)] dt2 +O(dt4), (31)

vp(t + dt) = v(t) +
1
2

[3a(t)− a(t− dt)] dt +O(dt3) (32)

a(t + dt) = F (r(t + dt),vp(t + dt)) /m, (33)

v(t + dt) = v(t) +
1
12

[5a(t + dt) + 8a(t)− a(t− dt)] dt +O(dt4). (34)

It should be noticed that this algorithm is not self-starting, some other method
(may be a fourth-order Runge–Kutta, or a simple Euler with a much reduced
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time-step) has to be used to generate good quality values for the needed quan-
tities at the past time t− dt.

The second family of methods does a complete predictor–corrector calculation
for all variables, and represents basically an adaptation of the Adams–Bashford–
Moulton sequence of algorithms, moving the dependence on previous values of r
and v to a dependence on higher derivatives. A very commonly used form [20] is
the sixth-order algorithm, given as follows. Define first the following quantities:

V(t) = v(t) dt, A(t) = a(t) dt2,

J(t) = [da(t)/dt] dt3, K(t) = [d2a(t)/dt2] dt4,

L(t) = [d3a(t)/dt3] dt5. (35)

Then the prediction step is a simple application of Taylor’s expansion to fifth order
for a well-behaved function:




rp(t + dt)
Vp(t + dt)
Ap(t + dt)
Jp(t + dt)
Kp(t + dt)
Lp(t + dt)




=




1 1 1/2 1/6 1/24 1/120
0 1 1 1/2 1/6 1/24
0 0 1 1 1/2 1/6
0 0 0 1 1 1/2
0 0 0 0 1 1
0 0 0 0 0 1







r(t)
V(t)
A(t)
J(t)
K(t)
L(t)




. (36)

With the predicted values one evaluates now the forces, and gets the basic correction

∆A =
1
2

[
1
m

F(xp(t + dt),vp(t + dt)) dt2 −Ap(t + dt)
]

, (37)

and from here generate the corrected quantities



r(t + dt)
V(t + dt)
A(t + dt)
J(t + dt)
K(t + dt)
L(t + dt)




=




rp(t + dt)
Vp(t + dt)
Ap(t + dt)
Jp(t + dt)
Kp(t + dt)
Lp(t + dt)




+




3/16
251/360

2
11/3

4
2




∆A, (38)

with a local truncation errorO(dt6). This theoretical accuracy may look impressive,
but in reality the numerical simulations are never anywhere this good. To begin
with, as has been pointed out in the standard ref. [17], MD with many-body inter-
actions is a clear case of chaotic dynamics, and so, even assuming the unphysical
(and not too interesting) situation of just one grain interacting with a fixed back-
ground of other grains, the chaotic nature of the dynamics implies a fast divergence
between calculated and exact trajectories. Now, to this problem one should add
the fact that in reality all grains are moving, and therefore the potential landscape
in which a given grain is moving changes constantly [16]. And finally, what really
spoils high-order precision in the integrators is the fact that the most often used
force prescriptions between grains, eqs (14) and (17), are either discontinuous or
have divergent derivatives at the moment of contact (or breaking contact), for any

998 Pramana – J. Phys., Vol. 70, No. 6, June 2008



Numerical simulations in granular matter

Figure 3. Difference between speeds for a numerically integrated and ana-
lytically solved collision. Here t = 0 has been set at contact, t < 0 corresponds
to free flight, where all integrating algorithms become exact. For t > 0 the
solid line gives the error for the Beeman algorithm, and the dash–dot line is
a superposition of the errors for the modified velocity Verlet and the Gear
sixth-order methods, that cannot be separated at the scale of the graph. The
time step was set to 1/200 of half a period of the oscillation.

impact with a nonzero velocity, and this introduces a large error at contact time
that usually nullifies any accuracy gained by higher-order methods.

To see how this affects the behavior of the simulations, consider the simplest
possible example: a grain with some initial velocity v0 hits a hard flat surface. Using
the linear-spring dash-pot model for the force, one can get an exact integration of
the collision (ignoring for simplicity the restriction to repulsive forces at the end
of the collision). The dynamics can also be numerically integrated, and in figure 3
the difference between this exact solution and the modified velocity Verlet, Beeman
and Gear sixth-order algorithms are shown. It is clear from the figure that there
is almost no difference in the accuracies of these three integrators, and that the
largest error comes from the discontinuities at the moment of contact.

4. Example: The discharge of a 2D silo

The discharge of granular matter from a container is a very common phenomenon,
but it is not yet completely understood. In practice, one has only a few empirical
rules to explain the process [6,44,45]. Due to its intrinsic interest and its obvious
practical applications this phenomenon has received much attention recently.

A common example of granular matter discharge is given in hoppers and silos
[46]. In these containers jamming – that is, a complete arrest of the flow making
the granular material behave like a solid – is known to appear as soon as the size
of the exit hole is reduced to a few times the average diameter of the grains inside.
Experimental work in both 2D and 3D hoppers [47,48] and silos [49–53] have shown
that jamming depends only on the ratio between particle and exit hole sizes, as long
as the diameter and height of the silo are large enough such that (1) the boundary
effects of the walls can be neglected and (2) the pressure at the bottom of the silo
saturates, following the Janssen effect [6].
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A question not yet fully answered about silos, and one of the simplest and more
fundamental, is the possible existence of a critical hole size such that for larger
holes the flow cannot jam. This critical size has been found to exist in experiments
for several types of grains, such as smooth and rough spheres and edible grains [50].
The same work shows that the distribution of avalanche sizes for a given value of
R can be well fitted to an exponential, and this in turn is consistent with a simple
model where each grain – may be cluster of grains – has a constant probability of
exiting the silo, uncorrelated to the behavior of other grains (clusters).

However, experiments carried in 2D [47,48], although supporting the hypothesis
of a fixed probability of exiting the silo for each grain, point towards a probability
of jamming that is exponentially decaying on R2. The earlier work reported in [52]
supports the hypothesis of an exponential divergence in R for the average avalanche.

The difference between both types of behavior is of a fundamental type: in the
second case grains flowing out of a silo is a transitory phenomenon, since there
is always a non-zero – even if exponentially small – probability of jamming. In
the first case one gets an assurance that for large enough holes the flow will never
develop a spontaneous blockage, and it is then a truly stationary process.

Here, as an example of the uses of numerical techniques in the study of granular
matter, a simulation of a 2D silo with variable hole size is given. This simulation
tries to get some information on the statistics of its discharge, and on the possible
presence of criticality in this process. There are some obvious limitations to this
particular simulation that puts it at a disadvantage with respect to actual experi-
ments, chiefly the fact that tracking the very long avalanches that appear for large
exit hole sizes consume an inordinate amount of computer time. Still, a systematic
study of the avalanches for different exit hole sizes allows the identification of some
well-defined trends.

Some previous simulations on the flow and jamming of silos were carried out
in [54] and [55]. In the later work the flow was simulated using a highly simplified
dynamics, built on inertia-less vertical and rolling movements applied sequentially
to the grains in the silo. The avalanches found for this model were distributed as a
power-law (becoming then an example of self-organized criticality [56]), while the
divergence of the average avalanche as a function of the exit hole size was inferred
to be an exponential in R.

4.1 Simulation

The simulations were done over an ensemble of N polydisperse disks, with diameter
given by di = dave + x∆d, where dave is the average diameter, ∆d is its maximum
fluctuation, and x is randomly chosen from the [−1, 1] uniform distribution. Poly-
dispersity is used here to frustrate the formation of crystalline (hexagonal) domains.
The silo has a bottom size D and indefinite height. At the center of the bottom
there is a hole of size dh. The disks have a 2D mass density σ, and the gravi-
tational acceleration g acts in the negative y direction. Upon contact, the disks
interact with the (perfectly rigid) walls of the silo, and with each other, via a linear
spring with a constant that on loading has the value κ, and on unloading is reduced
by a restitution factor ε2. The interaction is complemented by dynamic and static
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friction, using for both the same coefficient µ. Equations of motion were integrated
using the modified velocity-Verlet algorithm reported before.

It is possible to use natural units where the disks’ average diameter and mass,
together with the gravitational constant, are set to one, fixing in this way length,
mass and time scales. Here the numerical experiment has been implemented with
standard units, and have used N = 2000 disks with dave = 0.5, ∆d = 0.05, D = 15,
σ = 0.8 and κ = 4 × 106, with all quantities given in the cgs system. This value
for κ is not as large as could be expected for some hard real systems (steel or glass
spheres, for instance), but it allows for a more efficient use of computer time. It can
be realistic enough for softer grains, like the rice or lentils used in [50]. It has also
been reported that changes of up to one or two orders of magnitude in the stiffness
of the grains have little influence on the results of these types of simulations [57].
A warning should be given, however, about the use of very soft grains in these
numerical calculations: there are in this case two well-characterized deficiencies in
the simulation: brake failure, where in glancing collisions one does not find the
correct scaling for the reduction of the tangential velocity, and detachment effect
where a large number of grains in a compact cluster starts behaving as a single
elastic solid, failing to display the multiple intergranular collisions responsible for
the fast dissipation of energy [29,31]. The adimensional quantities µ and ε2 have
been set at 0.5 and 0.9 respectively. Gravity is fixed as g = 981. The ratio between
the diameters of the disks and the silo gives D/dave = 30, and for the number of
disks used the silo gets filled up to a height of around 2.5 times D. These two
values are large enough to put the silo in the limit where both the effects of the
walls and the height of the load become irrelevant [49,50,58], at least for the 3D
case. A time-step of 0.01 times the disk–disk collision time tcoll was used. For later
convenience, the time and speed scales t0 =

√
dave/g and v0 = g t0 are also defined.

The simulation proceeds as follows: first the silo is closed from below and the
disks are placed in a regular grid with random initial velocities. The system is
then allowed to relax, under the influence of gravity, up to the moment where the
maximum speed detected is some small fraction of v0. At this point a hole of length
dh appears at the center of the bottom line, and disks start pouring out of the silo.
These falling disks are followed until their centers are a distance ≈1.3dave below
the bottom, and at this moment they are eliminated from the exiting flow and
re-injected on top of the system, at a distance of 5.5 dave from the surface of the
dense aggregate of disks. In re-injection the disks preserve their z velocity, but their
horizontal velocity is set to zero. The re-injection point is chosen so as to keep the
top of the material roughly flat. With these conditions the observed flow is of a
mixed type, neither massic nor funnel-like; the disks close to the center of the silo
fall faster than those close to the walls, but the speed difference is not too large.

Occasionally, an arch is formed above the exiting hole and the flow stops. Given
that static friction is included, these arcs are not always convex. This jammed state
is detected by checking that (1) the maximum speed in the system is less than v0/c
and (2) no disk has exited the silo in a time longer than c t0. It has been found
that for the purposes of this simulation c = 8 is adequate. One needs to be aware
that, due to numerical truncation, the maximum velocity during a jamming event
does not decay all the way to zero, but saturates. (For the parameters used here,
this velocity saturates to a small value close to v0/160.) This persistent vibrational
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Figure 4. Histogram of avalanches for R = 3.6. Bin size has been set to 4,
and null avalanches have not been included.

noise implies that the actual succession of avalanches does depend on c, but as
mentioned, without affecting the statistics.

Once the two conditions that mark a jamming are fulfilled, the silo receives a tap
given by vertical displacement ztap = A sin(2πνt), applied for half a period. Here
A = 0.6 and ν = 8.0 have been used. In most cases this tap is enough to break
the arch or arches that are blocking the flow; however, given that the tap moves
the whole material in parallel, it does occasionally happen that there is not enough
rearrangement of the disks to break the blockage. It is possible therefore with
this unjamming protocol to get null avalanches, which are time intervals between
two taps where no material flows out of the silo. These null avalanches are highly
correlated among themselves, in the sense that, for small openings, they tend to
appear next to each other in the time record. This type of events have also appeared
in the experiments reported by Zuriguel [59]. Null avalanches are common for very
small hole sizes, less so for larger openings.

4.2 Results

The simulation has been carried on for hole sizes from 1.70 to 2.25, in steps of 0.05,
corresponding to hole/particle ratios R from 3.4 to 4.5 in steps of 0.1. In all cases
several runs starting from different grain configurations have been performed. For
each size at least 1000 avalanches are obtained. For all R values the distributions of
avalanches n(s) show basically an exponential form, except for a spike at s = 0 (null
avalanches), and a weak dip for small s (see figure 4). These two characteristics
are probably a peculiarity of the method used here to unjam the silo. It should
be noticed that the decrease in n(s) found for small s is not as pronounced as
the one reported from the experiments [50]. As for the probability of finding null
avalanches, it goes from a maximum of 0.20 at R = 3.4 to a minimum of 0.019 at
R = 4.4, but there is not enough statistics as to be able to predict their presence
or absence for larger values of R.

To avoid having to fix a bin size in the histograms, the normalized cumulative
distribution is used:
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Figure 5. Cumulative curve w(s) for R = 3.6. Null avalanches are excluded.

Figure 6. Collapse of the cumulatives w(s) for all values of R considered.
The regions of non-exponential behavior found for small s have some incidence
over the observed dispersion, since in all cases the normalization is w(1) = 1.
The values of the average avalanche vary from 〈s〉 = 50.4 for R = 3.4 to
〈s〉 = 1385.3 for R = 4.5.

w(s) =
∞∑

s′=s

n(s′)/
∞∑

s′=1

n(s′), (39)

that is, one counts the number of avalanches with s or more disks. Notice that in
this measure the null avalanches are left out. For a properly normalized exponential
distribution the normalized cumulative happens to be identical to the distribution
itself. Figure 5 shows the cumulative avalanche distribution for R = 3.6. Given
the claim that the distribution is exponential for all cases, it should be possible
to scale s to obtain a collapse of all cumulatives. This is shown in figure 6. Even
so, it should be remembered that the distribution is not a perfect exponential, due
to the smaller probabilities found for very small avalanches. This effect is almost
imperceptible in the cumulatives.

The question that remains to discuss is the behavior of the average avalanche
〈s〉 with respect to the hole/particle ratio. As expected, a rapidly growing curve
is found. In logarithmic scale a faster than linear behavior is found, and so an
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Figure 7. Scaling of the average avalanche 〈s〉 against the exit-hole/disk
ratio R. Both the power-law fit and the exponential-square fit are shown
(with parameters given in the text). At the scale of the figure both lines
superpose almost perfectly.

exponential divergence of the form 〈s(R)〉 ≈ s0 exp(AR) may be discarded. How-
ever, it is also clear from the figure that an exponential divergence in some higher
power of R (or even some polynomial in R) cannot be ruled out. In particular, the
form 〈s(R)〉 ≈ s0 exp(BR2) proposed in [48] should be considered. Another option
is a power-law of the form 〈s(R)〉 ≈ s0/(Rc −R)γ .

Trying both expressions for the results of this simulation, it is found that the
the avalanche averages give similar quality fits for either the exponential-of-square
or the power-law formulas, as can be seen in figure 7. For the first expression the
parameters s0 = 1.64 ± 0.08 and B = 0.0716 ± 0.0006 are found, with ξ2 = 0.20.
In the second case the fit gives s0 = 8.5 × 105, Rc = 6.7 ± 0.4 and γ = 8.2 ± 1.1.
For this fit the χ2/dof is 0.17. It is then clear that with the available data the
difference between the two fits is not really large enough as to allow for a definite
conclusion, as can be well seen in the figure, where the two behaviors superpose
almost perfectly.

Moreover, some other types of divergence have been hinted at, like an essential
singularity given by 〈s〉 ≈ s0 exp[1/(Rc − R)]. Still, the results agree with the
most extensive experiments performed at this time, and therefore adds support
to the existence of criticality in the jamming of silos. This leaves open the more
fundamental question about the origin of the correlations that may lead to critical
behavior in this type of phenomena.

So, the bottom line for simulations is at the moment mixed: on one side, the
general exponential form of the avalanche distribution for a given R is well con-
firmed, together with some other details like the deviation from this exponential for
small avalanches, and even the existence of null avalanches [59]. Unfortunately, the
simulations cannot get close enough to the proposed critical regime as to be able to
either confirm or deny it; the simple exp(BR2) regime proposed as an alternative
is also found to be compatible with the data. This is not the case for the published
data in the 3D experiments [50]: there, a fit to an exponential clearly fails. One
then has two options: either the behavior for the avalanches in 2D is also critical,
and neither experiments nor simulation have reached the correct regime, or there is
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a fundamental difference between the 3D and the 2D behaviors, one being critical
while the other is not. There is also, up to now, no indication at all of what physical
mechanisms may be responsible for criticality; or in other words, why stable arches
above certain size are impossible to generate. Naively, one would think that the
chance appearance of large arch is simply a very rare event, not an impossibility.

Besides the obvious – but computationally difficult – option of moving to larger
values of R, there are other tests that may be applied to the data generated by this
type of simulations in order to see if there is any sign of criticality. In particular, it
is of interest to analyze different time series that the simulation generates, like the
time intervals between grains leaving the silo, or the time evolution of average and
maximal stress. This work is now in progress.

5. Conclusions and final comments

This work has tried to give a view – incomplete and very basic – of how to do
numerical simulations in granular matter, concentrated in the few techniques that
are more frequently used. The very fundamental issue of parallelization is left out,
as are some interesting approximations that fall outside the molecular dynamics
camp, as are some types of cellular automata. Left out are also the extensions
needed for the description of non-spherical grains.

As mentioned, the three broad categories of algorithms considered here have
different areas of application: for instance, very dense flows with a static final
configuration and almost null restitution coefficient – a landslide is a good example
– are well suited to a CD simulation, while a diluted and almost elastic gas falls
more into the domain of EDMD. Still, there are no absolute limits among the
applicability ranges of the different algorithms, and in practice the availability of
the codes and the know-how developed over years of practice are paramount in
the researchers’ choice. In any simulation there will be some trade-offs, but it is
still comforting to see that qualitative – and often also quantitative – features of
granular flows are well described by the simulations.

The fundamental problem of the approximations in the definition of forces is
something that should not be completely ignored: for TDMD the force definitions
assume a clean split between compressional and frictional stresses, employs very
simplified models for frictional effects, and even the realistic Hertz forces [34,35]
are in part extrapolated from the static limit. One should probably wait for more
experiments, and for the very detailed numerical exploration of the collision of just
two grains, for models that can be closer to reality and applicable under broader
conditions. The price that will be paid of course is the increase in computational
complexity that those models will imply.
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