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Abstract. The equations obtained by Yang while discussing the condition of self-duality
of SU(2) gauge fields on Euclidean four-dimensional space have been generalized. Exact
solutions and their graphical representations for the generalized equation (for some par-
ticular values of the parameters) have been reported. They represent interesting physical
characteristics like waves with spreading solitary profile, spreading wave packets, waves
with pulsating solitary profile (between zero and a maximum), waves with oscillatory
solitary profile and chaos.

Keywords. Exact solutions with graphical representation; SU(2) gauge field; self-
duality; solitary wave; chaos.

PACS Nos 05.45.Yv; 11.10.Lm; 11.30.Na; 47.52.+j

1. Introduction

Yang’s equations were obtained by Yang [1] himself while discussing the condition
of self-duality of SU(2) gauge fields on Euclidean four-dimensional space. The
equations are given by

Φ(Φyȳ + Φzz̄)− ΦyΦȳ − ΦzΦz̄ + ρyρȳ + ρzρz̄ = 0, (1.1a)

Φ(ρyȳ + ρzz̄)− 2ρyΦȳ − 2ρzΦz̄ = 0, (1.1b)

where an overbar denotes the complex conjugate, Φ and ρ are functions of
y, ȳ, z, z̄, Φ is real, ρ is complex and

√
2y = x1+ix2,

√
2z = x3−ix4 and x1, x2, x3, x4

are real.
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Once one has found ρ and Φ, the corresponding R-gauge potentials are given by
Yang [1] as

Φ~by = (iρy, ρȳ,−iΦy), Φ~bȳ = (−iρȳ, ρ̄ȳ, iΦȳ), (1.2a, b)

Φ~bz = (iρz, ρz̄,−iΦz), Φ~bz̄ = (−iρz̄, ρ̄z̄, iΦz̄), (1.2c, d)

and the R-gauge field strengths Fµν are given by

Fµν = Bµ,ν −Bν,µ −BµBν + BνBµ, (1.3a)

Bµ = bi
µXi, (1.3b)

and

Xi = −(1/2)iσi, (1.3c)

where σi are the 2× 2 Pauli matrices.
All such solutions represent the condition of self-duality except when Φ is zero.

When Φ is zero, Fµν becomes singular and the solutions can only be treated as
solutions of Yang’s R-gauge equations and not self-dual solutions unless a transfor-
mation like F ′µν → U−1FµνU removes the singularity.

When written in terms of real variables the equations in (1.1) become

Φ11 + Φ22 + Φ33 + Φ44

= [(1/Φ)(Φ2
1 + Φ2

2 + Φ2
3 + Φ2

4)
−(1/Φ)(ψ2

1 + ψ2
2 + ψ2

3 + ψ2
4)

−(1/Φ)(χ2
1 + χ2

2 + χ2
3 + χ2

4)
−(2/Φ)(ψ1χ2 − ψ2χ1 + ψ4χ3 − ψ3χ4)], (1.4a)

ψ11 + ψ22 + ψ33 + ψ44

= [(2/Φ)(Φ1ψ1 + Φ2ψ2 + Φ3ψ3 + Φ4ψ4)
+(2/Φ)(Φ1χ2 − Φ2χ1 + Φ4χ3 − Φ3χ4)], (1.4b)

χ11 + χ22 + χ33 + χ44

= [(2/Φ)(Φ1χ1 + Φ2χ2 + Φ3χ3 + Φ4χ4)
+(2/Φ)(Φ2ψ1 − Φ1ψ2 + Φ3ψ4 − Φ4ψ3)], (1.4c)

where

Φ1 ≡ ∂Φ/∂x1, Φ11 ≡ ∂2Φ/∂(x1)2. (1.4d)

Yang [1] and several other authors [2] have presented solutions to (1.1) or its
equivalent (1.4). Chakraborty and Chanda [3] reported some graphical represen-
tation of one these exact solutions. It is observed from there that the solutions
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represent spreading wave with solitary profile and spreading wave packet. These
profiles of solitary wave and wave packet tend to vanish as time tends to infinity.

Jimbo et al [4] adopted the algorithm of Weiss et al [5] and showed that eqs (1.1)
pass the Painlevé test for integrability. Using the same algorithm, Chakraborty
and Chanda [6] have found that the real form of eqs (1.1), i.e. eqs (1.4), pass the
Painlevé test for integrability and admit truncation of series leading to non-trivial
exact solutions obtained previously and auto-Backlund transformation between two
pairs of these solutions (see, for example, the work of Larsen [7] and Roychowdhury
[8]). An important aspect of the work of Chakraborty and Chanda [6] was that they
had analyzed the equation keeping the singularity manifold completely general,
whereas Jimbo et al [4] analyzed the same equation with a restricted nature of
singularity manifold.

With this background and success, here we generalize eqs (1.4). The generalized
form is given by eqs (2) of the next section.

2. The generalized Yang equations under study

Φ11 + Φ22 + Φ33 + εΦ44

= k′[(1/Φ)(Φ2
1 + Φ2

2 + Φ2
3 + εΦ2

4)
−(1/Φ)(ψ2

1 + ψ2
2 + ψ2

3 + εψ2
4)

−(1/Φ)(χ2
1 + χ2

2 + χ2
3 + εχ2

4)
−(2/Φ)(ψ1χ2 − ψ2χ1 + ψ4χ3 − ψ3χ4)], (2.1a)

ψ11 + ψ22 + ψ33 + εψ44

= k′[(2/Φ)(Φ1ψ1 + Φ2ψ2 + Φ3ψ3 + εΦ4ψ4)
+(2/Φ)(Φ1χ2 − Φ2χ1 + Φ4χ3 − Φ3χ4)], (2.1b)

χ11 + χ22 + χ33 + εχ44

= k′[(2/Φ)(Φ1χ1 + Φ2χ2 + Φ3χ3 + εΦ4χ4)
+(2/Φ)(Φ2ψ1 − Φ1ψ2 + Φ3ψ4 − Φ4ψ3)], (2.1c)

where ε = ±1; k′ are arbitrary constants.
Equations (2) are being termed as the generalized Yang equations. However, one

should distinguish these equations from the extended Yang equations as discussed
by Chakraborty and Chanda in [3] where ε = 1, k′ 6= 0, k′′ 6= 0 and there are more
terms (obtainable from Charap’s equations for pion dynamics [9]) other than those
indicated here.

In this paper we have presented exact solutions along with their graphical repre-
sentations for (2) with (I) ε = 1, k′ = 1, (II) ε = 1, k′ = 1/2, (III) ε = −1, k′ = 1,
(IV) ε = −1, k′ = 1/2.

It may be noted that, for Case I, i.e. with ε = 1, k′ = 1, eqs (2) reduce to Yang’s
equations (1.4) which is again equivalent to (1.1). Here we report the work done
previously by De and Ray [2] and Chakraborty and Chanda [3].

Pramana – J. Phys., Vol. 70, No. 5, May 2008 765



Rupesh Kumar Saha and Pranab Krishna Chanda

The motivation for taking ε = 1 or −1 is that in such cases Φ, ψ, χ can ultimately
be represented in terms of ζ which satisfy the standard equations

ζ11 + ζ22 + ζ33 + ζ44 = 0, for ε = 1

and

ζ11 + ζ22 + ζ33 − ζ44 = 0, for ε = −1.

The motivation for the generalization of eqs (1.4) to eqs (2) is the identification
of model differential equations that may be useful for the representation of physical
reality. Here we have demonstrated that the variant forms of the celebrated equa-
tions (1.4) offer diverse types of physical solutions ranging from waves with solitary
profile to chaos.

On the other hand, the motivation for the choice of k′ = 1, k′ = 1/2 will be
revealed later in the subsequent section where it will be shown that for such values
of k′ the integration becomes straightforward [10].

We have used the same ansatz as was used by Ray [11] and De and Ray [12] and
rediscovered by Chakraborty and Chanda [3]. Actually, the ansatz used by De and
Ray [12] was ψ = ψ(Φ) and χ = χ(Φ). However, if we write Φ = Φ(u), where u is
an unspecified function of x1, x2, x3, x4, then we finally get

Φ = Φ(u), ψ = ψ(u), χ = χ(u).

With this we actually propose a regular space curve solution of the equation
with Φ, ψ, χ parametrized being of the form Φ(u), ψ(u) and χ(u). However,
unless a regular parametric curve is considered, it cannot have allowable change of
parameters. We use a regular parametric curve denoted by two parameters u and
v(u). Unless u and v are related by the condition of allowed change of parameters
of regular curves, one may face the problem of invert ability between u and v. In
other words, local inverses between these functions must exist. Fortunately this
property of regular curve has been satisfied in the calculations presented here [13].

Furthermore, the regular space curve considered in this calculation should at
least be class C2, because, u: R4 → R and v: R4 → R. The choice of ψ as a
function of v, for example, satisfies this requirement [13].

The procedure adopted by Ray [11] for obtaining the solutions of Charap’s equa-
tions for pion dynamics [9] has been used for obtaining all the solutions mentioned
in this paper.

3. Solutions

We start with the ansatz given by

Φ = Φ(u), ψ = ψ(u), χ = χ(u), (3.1)

where u is an unspecified function of x1, x2, x3 and x4.
At first we proceed keeping ε and k′ in (2) to be unspecified constants.
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After the use of (3.1), eqs (2) reduce to

(u11 + u22 + u33 + εu44) + A(u2
1 + u2

2 + u2
3 + εu2

4) = 0, (3.2a)

(u11 + u22 + u33 + εu44) + D(u2
1 + u2

2 + u2
3 + εu2

4) = 0, (3.2b)

(u11 + u22 + u33 + εu44) + E(u2
1 + u2

2 + u2
3 + εu2

4) = 0, (3.2c)

A = (Φuu/Φu)− k′{(Φ2
u − ψ2

u − χ2
u)/(ΦΦu)}, (3.2d)

D = (ψuu/ψu)− k′(2Φu/Φ), (3.2e)

E = (χuu/χu)− k′(2Φu/Φ), (3.2f)

so that either

A = D = E (3.3)

or

u2
1 + u2

2 + u2
3 + εu2

4 = 0 (3.4a)

and

u11 + u22 + u33 + εu44 = 0. (3.4b)

Equations (3.4) have simple solutions and are given in the work of Ray [11] and
Ghosh et al [14].

Considering (3.2e,f) one arrives at

χ = k1ψ + k2, (3.5)

where k1 and k2 are arbitrary constants.
Let us define

ψ = k3v + k4, (3.6)

where (i) v is some unspecified function of u and (ii) k3, k4 are arbitrary constants.
Since u is an unspecified function of x1, x2, x3, x4 (as defined in (3.1)) one can

conclude till now that v is an unspecified function of x1, x2, x3 and x4.
Putting (3.6) in (3.5) we get

χ = k5v + k6, (3.7)

where k1k3 = k5 and k1k4 + k2 = k6.
Now, from (3.1) we have ψ = ψ(u), χ = χ(u), where ψ and χ are unspecified

functions of u. Comparing this with (3.5) and (3.6) we have v = v(u), where v is
an unspecified function of u. Since from (3.1) we have Φ = Φ(u), where Φ is an
unspecified function of u one can now say without any loss of generality that
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Φ = Φ(v). (3.8)

The use of (3.6), (3.7) and (3.8) in (2) leads to

(v11 + v22 + v33 + εv44) + A′(v2
1 + v2

2 + v2
3 + εv2

4) = 0 (3.9a)

and

(v11 + v22 + v33 + εv44) + D′(v2
1 + v2

2 + v2
3 + εv2

4) = 0, (3.9b)

where

A′ = (Φvv/Φv)− k′{(Φ2
v − k2

3 − k2
5)/(ΦΦv)}, (3.9c)

and

D′ = −2k′(Φv/Φ). (3.9d)

Just as in the above the possibility other than

v11 + v22 + v33 + εv44 = 0, (3.10a)

v2
1 + v2

2 + v2
3 + εv2

4 = 0, (3.10b)

requires that

A′ = D′. (3.11)

From (3.11) one gets

ΦΦvv + k′Φ2
v + k′(k2

3 + k2
5) = 0 (3.12)

which may be integrated once to give

Φv = (1/Φk′)
√{k7 − (k2

3 + k2
5)Φ

2k′} = 0, (3.13)

where k7 is another arbitrary constant of integration and k7 > 0.
Simultaneously (3.9b) and (3.9d) can be rewritten as

ζ11 + ζ22 + ζ33 + εζ44 = 0, (3.14a)

where

ζ =
∫ [

exp
{∫

D′dv

}]
dv (3.14b)

and D′ is given by (3.9d).
Putting D′ from (3.9d) in (3.14b) one gets

ζ = k8

∫
(1/Φ2k′)dv + k9, (3.15)
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where k8 is an arbitrary constant of integration with a restriction k8 > 0 and k9 is
an arbitrary constant of integration.

Equation (3.15) can further be rewritten using (3.13) which is given as follows:

ζ = k8

∫
{1/f(Φ)}dΦ + k9, (3.16a)

where

f(Φ) = Φk′√{k7 − (k2
3 + k2

5)Φ
2k′}. (3.16b)

From (3.16) we get Φ in terms of ζ. Going back to (3.13) one can write that

v =
∫

[Φk′/
√{k7 − (k2

3 + k2
5)Φ

2k′}]dΦ (3.17)

which may be rewritten as

v = [(k7)1/2k′/{k′(k2
3 + k2

5)
(1+k′)/2k′}]

∫
(sinα)1/k′dα + k10, (3.18a)

where

α = sin−1[{(k2
3 + k2

5)/k7}1/2Φk′ ] (3.18b)

and k10 is an arbitrary constant of integration.
Thus (3.18) gives v in terms of Φ whereas (3.16) gives Φ in terms of ζ. So, we

can say that (3.16) and (3.18) give v in terms of ζ. Finally from (3.6) and (3.7) we
get ψ and χ in terms of ζ.

Here is the motivation for the choice k′ = 1 or 1/2. From (3.16) and (3.18) we
see that for such value of k′ integration becomes straightforward.

In the following we represent the solution for particular forms of (2) defined by
particular values of ε and k′.

Case I: ε = 1, k′ = 1
This case is exactly same as (1.4) which is the real form of (1.1) obtained by

Yang at the time of discussing self-duality of SU(2) gauge fields on Euclidean four-
dimensional space. Exact solutions for this case were reported by De and Ray [2]
and were rediscovered by Chakraborty and Chanda [3]. From (3.16), (3.18), (3.6),
(3.7), ε = 1, k′ = 1 and for some particular values of integration constants one can
have

Φ = {√k7/
√

(k2
3 + k2

5)}sech(ζ
√

k7/k8), (3.19a)

ψ = k3{
√

k7/(k2
3 + k2

5)} tanh(ζ
√

k7/k8), (3.19b)

χ = k5{
√

k7/(k2
3 + k2

5)} tanh(ζ
√

k7/k8), (3.19c)
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where ζ satisfies

ζ11 + ζ22 + ζ33 + ζ44 = 0, (3.19d)

and a particular example of ζ satisfying (3.19d) is given in [3] and is represented
by

ζ = [(sin τ)/τ ] cosh t, t = x4, (3.19e)

where

τ2 = (x1)2 + (x2)2 + (x3)2, ki are constants. (3.19f)

It may be noted that eqs (3.19) are exactly same as those reported by
Chakraborty and Chanda [3] subject to some minor scaling transformations. There-
fore, we have avoided reporting detailed calculations required for arriving at (3.19).
However, the calculations proceed in the same way as reported in the case of ε = 1,
k′ = 1/2.

From the graphical representations of (3.19) reported in [3] it was observed that
the solutions represent wave with a spreading solitary profile for Φ and spreading
wave packet for ψ and χ. These profiles of solitary wave and wave packet tend to
vanish as time tends to infinity. The graphical representations express the depen-
dence of Φ, ψ and χ on x1 (keeping x2 = 0 and x3 = 0) at different values of x4 (i.e.
time). This does not lead to much loss of generality as the solutions have exact
symmetrical dependence on x1, x2, x3.

The graphical representations mentioned above are given in figures 1.1–1.9 and
figures 2.1–2.9 by Chakraborty and Chanda [3].

Case II: ε = 1, k′ = 1/2
Without much loss of generality we can choose k9 = 0 when from (3.16) one can

write

ζ = k8

∫
[1/Φ1/2√{k7 − (k2

3 + k2
5)Φ}]dΦ + k9. (3.20)

With the transformation

Φ1/2 = {√k7/
√

(k2
3 + k2

5)} sin θ, (3.21)

eq. (3.20) reduces to

ζ = [2k8/
√

(k2
3 + k2

5)]θ (3.22)

which means

Φ = {k7/(k2
3 + k2

5)} sin2[{ζ√(k2
3 + k2

5)}/2k8]. (3.23)

Without much loss of generality we can choose k10 = 0. Then from (3.18a)

v = [2k7/{k2
3 + k2

5)
3/2}]

∫
sin2 α dα, (3.24a)
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where

α = sin−1[{(k2
3 + k2

5)/k7}1/2Φ1/2]. (3.24b)

Equations (3.24) can be integrated as

v = [k7/(k2
3 + k2

5)
3/2] sin−1[{(k2

3 + k2
5)/k7}Φ1/2]

−[
√

k7/(k2
3 + k2

5)]
√

[Φ− {(k2
3 + k2

5)/k7}Φ2]. (3.25)

With the use of (3.23) in (3.25) one finally gets

v = [k7/{2(k2
3 + k2

5)}][(ζ/k8)− {1/
√

(k2
3 + k2

5)} sin{ζ√(k2
3 + k2

5)/k8}].
(3.26)

So, finally from (3.23), (3.26), (3.6) and (3.7) we get (with k4 = 0, k6 = 0)

Φ = [k7/{2(k2
3 + k2

5)}][1− cos{ζ√(k2
3 + k2

5)/k8}], (3.27a)

ψ = [k3k7/{2(k2
3 + k2

5)}][(ζ/k8)− {1/
√

(k2
3 + k2

5)} sin{ζ√(k2
3 + k2

5)/k8}],
(3.27b)

χ = [k5k7/{2(k2
3 + k2

5)}][(ζ/k8)− {1/
√

(k2
3 + k2

5)} sin{ζ√(k2
3 + k2

5)/k8}].
(3.27c)

Here ζ satisfies

ζ11 + ζ22 + ζ33 + ζ44 = 0, (3.27d)

and a particular example of ζ satisfying (3.27d) is given in [3] and is represented
by

ζ = [(sin τ)/τ ]cosh t, t = x4, (3.27e)

where

τ2 = (x1)2 + (x2)2 + (x3)2, ki are constants. (3.27f)

Using the same procedure as stated in the case of (3.19) we can represent solutions
(3.27) graphically.

The graphical representations for (3.27) are given in figures 1.1–1.5 for Φ and
figures 2.1–2.5 for ψ or χ. It is interesting to see that the simple-looking solutions
given by (3.27) actually represent something like spatio-temporal chaos. Initially
the solution for Φ, ψ and χ represent waves with solitary profile, a regular one, which
gradually leads with time to irregular shapes over space. However, one should note
that nonintegrability is required for obtaining chaos [13]. One way to ascertain
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Figures 1. 1–1.5. Solutions for Φ in generalized Yang equations with
k′ = 1/2, ε = 1. Initially Φ represents a wave with solitary profile, a reg-
ular one, which gradually leads with time to irregular shape over space. The
situation may be correlated with spatio-temporal chaos. However non-integra-
bility is required for obtaining chaos. (Values of x1 in x-axis are in multiples
of π/2 and values of time, x4 are in multiples of π/4.)

Figures 2.1–2.5. Solutions for ψ and χ in generalized Yang equations with
k′ = 1/2, ε = 1. Initially ψ and χ represent waves with solitary profile, a reg-
ular one, which gradually leads with time to irregular shape over space. The
situation may be correlated with spatio-temporal chaos. However non-integra-
bility is required for obtaining chaos. (Values of x1 in x-axis are in multiples
of π/2 and values of time, x4 are in multiples of π/4.)
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Figures 3.1–3.5. Solutions for Φ in generalized Yang equations with k′ = 1,
ε = −1. Φ represents a wave with pulsating (between zero and a maximum)
solitary profile. Φ in figures 3.1–3.5 and that in figures 5.1–5.5 seem to have
a phase difference of 180◦. (Values of x1 in x-axis are in multiples of π/2 and
values of time, x4 are in multiples of π/4.)

Figures 4.1–4.5. Solutions for Ψ and χ in generalized Yang equations with
k′ = 1, ε = −1. ψ and χ represent solitary waves with oscillatory solitary
profile. (Values of x1 in x-axis are in multiples of π/2 and values of time, x4

are in multiples of π/4.)
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Figures 5. 1–5.5. Solutions for Φ in generalized Yang equations with
k′ = 1/2, ε = −1. Φ represents a wave with pulsating (between zero and
a maximum) solitary profile. Φ in figures 3.1–3.5 and that in figures 5.1–5.5
seem to have a phase difference of 180◦. (Values of x1 in x-axis are in multiples
of π/2 and values of time, x4 are in multiples of π/4.)

Figures 6.1–6.5. Solutions for ψ and χ in generalized Yang equations with
k′ = 1/2, ε = −1. ψ and χ represent solitary waves with oscillatory profile.
(Values of x1 in x-axis are in multiples of π/2 and values of time, x4 are in
multiples of π/4.)
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nonintegrability is Painlevé test for integrability [5]. Work in that direction is in
progress.

Case III: ε = −1, k′ = 1
Here the solutions have the same form as (3.19a,b,c) with the difference that here

ζ satisfies a separate equation. Starting again from (3.16) and (3.18) for ε = −1 and
k′ = 1 and with (3.6) and (3.7) we arrive (for some particular values of integration
constants) at

Φ = {√k7/
√

(k2
3 + k2

5)}sech(ζ
√

k7/k8), (3.28a)

ψ = k3{
√

k7/(k2
3 + k2

5)} tanh(ζ
√

k7/k8), (3.28b)

χ = k5{
√

k7/(k2
3 + k2

5)} tanh(ζ
√

k7/k8), (3.28c)

where ζ satisfies

ζ11 + ζ22 + ζ33 − ζ44 = 0, (3.28d)

and a particular example of ζ satisfying (3.28d) is given in [3] and is represented
by

ζ = [(sin τ)/τ ] cos t, t = x4, (3.28e)

where

τ2 = (x1)2 + (x2)2 + (x3)2, ki are constants. (3.28f)

Using again the same procedure as stated in (3.19) we observe from the graphical
representations (figures 3.1–3.5 and figures 4.1–4.5) of (3.28) that Φ represents a
wave with pulsating (between zero and a maximum) solitary profile, while both ψ
and χ represent waves with oscillatory solitary profile.

Case IV: ε = −1, k′ = 1/2
Here the solutions have the same form as (3.27a,b,c) with the difference that here

ζ satisfies a separate equation. Starting again from (3.16) and (3.18) for ε = −1
and k′ = 1/2 and with (3.6) and (3.7) we arrive (for some particular values of
integration constants) at

Φ = [k7/{2(k2
3 + k2

5)}][1− cos{ζ√(k2
3 + k2

5)/k8}], (3.29a)

ψ = [k3k7/{2(k2
3 + k2

5)}][(ζ/k8)− {1/
√

(k2
3 + k2

5)} sin{ζ√(k2
3 + k2

5)/k8}],
(3.29b)

χ = [k5k7/{2(k2
3 + k2

5)}][(ζ/k8)− {1/
√

(k2
3 + k2

5)} sin{ζ√(k2
3 + k2

5)/k8}].
(3.29c)
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Here again ζ satisfies

ζ11 + ζ22 + ζ33 − ζ44 = 0, (3.29d)

and a particular example of ζ satisfying (3.29d) is given in [3] and is represented
by

ζ = [(sin τ)/τ ] cos t, t = x4, (3.29e)

where

τ2 = (x1)2 + (x2)2 + (x3)2, ki are constants. (3.29f)

Here also we use the same procedure as has been used in case of (3.19) for ob-
taining the graphical representations (figures 5.1–5.5 and figures 6.1–6.5) of (3.29).
Same types of solutions as in (3.28) are observable for (3.29) as well. Φ represents
a wave with pulsating (between zero and a maximum) solitary profile, while both
ψ and χ represent waves with oscillatory solitary profile. However the Φ in (3.28)
and in (3.29) seem to have a phase difference of 180◦.

4. Summary

The study reveals that eqs (2), called here as the generalized Yang equations, have
interesting physical solutions.

For ε = 1, the dependence on k′ seems to be sensitive. For ε = 1, k′ = 1 (Case I of
this paper and ref. [3]) the solutions are relatively regular. The solutions represent
spreading solitary profile (in case of Φ) and spreading wave packet (in case of ψ and
χ). These profiles of solitary wave and wave packet tend to vanish as time tends to
infinity. The situation becomes worse with ε = 1, k′ = 1/2 (Case II). Here initially
the solutions are, as usual, waves with solitary profile. But as time proceeds the
solutions become chaotic (the transition being faster for Φ).

For ε = −1, the dependence on k′ do not seem to be sensitive. The solutions are
also much more regular than that in the case of ε = 1. For Case III (ε = −1, k′ = 1)
and Case IV (ε = −1, k′ = 1/2), Φ is a wave with pulsating (between zero and a
maximum) solitary profile, while both ψ and χ represent waves with oscillatory
solitary profile. However, Φ for Case III (ε = −1, k′ = 1) and Φ for Case IV
(ε = −1, k′ = 1/2) seems to have a phase difference of 180◦.

One may note that solutions for ε = −1 are obtainable from the solutions for
ε = 1 (for the same value of k′) by performing Wick’s rotation on the variable x4, i.e.
x4 → ix4. Any kind of moving solutions in the category ‘ε = 1’ will transform into
breather-type solutions in the category ‘ε = −1’. Breathers are spatially localized
time periodic solutions [13].

It may be noted that Case I (ε = 1, k′ = 1) represents the celebrated equations
given by (1.1) which was obtained by Yang [1] while discussing the condition of
self-duality of SU(2) gauge fields on Euclidean four-dimensional space. One can
comment that the slightly variant forms of these equations and their physically
significant solutions form a class of mathematical models usable (may be in future)
in different physical situations.
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