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Abstract. We work with a formulation of Noether-symmetry analysis which uses the
properties of infinitesimal point transformations in the space-time variables to establish
the association between symmetries and conservation laws of a dynamical system. Here
symmetries are expressed in the form of generators. We have studied the variational or
Noether symmetries of the damped harmonic oscillator representing it by an explicitly
time-dependent Lagrangian and found that a five-parameter group of transformations
leaves the action integral invariant. Amongst the associated conserved quantities only two
are found to be functionally independent. These two conserved quantities determine the
solution of the problem and correspond to a two-parameter Abelian subgroup.

Keywords. Damped harmonic oscillator; explicitly time-dependent Lagrangian repre-
sentation; Noether symmetries; conservation laws.

PACS Nos 45.20.Jj; 45.20.df; 45.20.dh

1. Introduction

It is well-known that the formal description for the connection between symmetry
properties and conserved quantities of a dynamical system is provided by Noether’s
theorem [1]. This theorem asserts that if a given differential equation representing
the time evolution of some physical system follows from the variational principle,
then a continuous symmetry transformation (point, contact or higher-order) that
leaves the action functional invariant yields a conservation law. Thus studies in
symmetries and conservation laws of a physical system using this theorem require
the associated equation of motion to follow from the action principle [2].

The object of the present work is to apply Noether’s theorem on the equation

ẍ + λẋ + ω2x = 0, x = x(t) (1)

and thereby envisages a study for the connection between symmetries and conser-
vation laws of the system represented by it. Equation (1) describes the motion of a
harmonic oscillator of natural frequency ω embedded in a viscous medium charac-
terized by the frictional coefficient λ. Lanczos [3] observed that the forces of friction
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are outside the realm of variational principle although the Newtonian scheme has
no difficulty to accommodate them. This observation tend to present one of the
main difficulties in applying Noether’s theorem on the damped harmonic oscillator.

Being nonself-adjoint (1) does not satisfy the Helmholtz criterion [4] to have a
Lagrangian representation. However, multiplying (1) by eλt we can convert it to
the self-adjoint form such that

L = eλt

(
1
2
ẋ2 − 1

2
ω2x2

)
(2)

provides an admissible Lagrangian [5] for the damped harmonic oscillator.
The first derivative term in (1) can formally be eliminated changing the de-

pendent variables, by x(t) = z(t)e−
1
2 λt. Under this point transformation the

form of Lagrange’s equations is invariant [2]. We note that the relation be-
tween x and z noted here is a special instance of the transformation [6] y(x) =
z(x)exp[− 1

2

∫ x
P (t)dt] used to recast the general linear second-order ordinary dif-

ferential equation y′′ + P (x)y′ + Q(x)y = 0 into the canonical form z′′ + h(x)z = 0
with h(x) = Q(x)− 1

2P ′(x)− 1
4P 2(x). On a number of occasions, Kaushal [7] used

the transformation of ref. [6] to study Ermakov systems with particular empha-
sis on the derivation of dynamical invariants for time-dependent damped systems.
The Lagrangian in (2) is explicitly time-dependent. Recently, Chandrasekar et al
[8] used a modified Prelle-Singer approach to construct explicitly time-independent
Lagrangian for the damped harmonic oscillator employing the first integral of (1),
which are also explicitly time-independent. Although the approach followed in ref.
[8] appears to be mathematically elegant, the results obtained are not completely
new. For example, more than a decade ago, while investigating the geometrical
origin of the Lagrangian for dissipative systems in the context of global geometry
de Ritis et al [9] found a Lagrangian for (1) which is explicitly time-independent.
Relatively recently, the corresponding time-independent integral of the motion was
noted by two of us [10]. We shall, however, use the Lagrangian in (2) to study the
Noether’s symmetries and concomitant conservation laws for the damped harmonic
oscillator.

In the next section we outline our scheme for symmetry analysis using Noether’s
theorem. Here we work with the generalized coordinates written as qi(t). In §3 we
specialize ourselves to the Cartesian coordinates as used in (1) and present the main
results of this work for the relation between symmetries and conservation laws. Our
results also include the generators of the symmetry transformations together with
the algebra satisfied by them. Moreover, we present all appropriate results for the
constants of the motion. Finally, in §4, we summarize our outlook on the present
work.

2. Symmetries and conservation laws

The key element for the Noether-symmetry analysis consists of studying the in-
finitesimal criterion for the invariance of a variational problem under a group of
transformations that map ‘points’ in configuration space and time into their infin-
itesimal neighbourhood, i.e. (~q, t) → (~q ′, t′). Here ~q = {qi}, i = 1, ..., n, stands for
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the set of generalized coordinates representing the dynamical system under consid-
eration and, as usual, t is the time parameter. Formally, such point transformations
are represented as

t′ = t + δt, δt = εξ(~q, t) (3a)

and

q′i = qi + δqi, δqi = εηi(~q, t) (3b)

with ε, an infinitesimal parameter. The generator of the infinitesimal point trans-
formations in (3) is given by

U = ξ(~q, t)
∂

∂t
+

n∑

i=1

ηi(~q, t)
∂

∂qi
(4)

and represents a vector field on (~q, t) since it assigns a tangent vector to each point
within (~q, t). The first prolongation of U written as [11]

U (1) = U +
n∑

i=1

(η̇i(~q, t)− ξ̇(~q, t)q̇i)
∂

∂q̇i
(5)

is such that

δv = εU (1)v(~q, ~̇q, t) (6)

represents the variation of an arbitrary well-behaved function v(~q, ~̇q, t) in the ve-
locity phase-space.

To write the Noether’s theorem we consider, among the general set of point
transformations defined by (3), only those that leave the action Ldt invariant and
we demand that

L(~qi, ~̇qi, t)
!= L′(~q ′i, ~̇q ′i, t

′). (7)

In order to satisfy the condition in (7), we have allowed the Lagrangian to change
its functional form (L → L′). The functional relation between L′ and L may be
expressed by introducing a gauge function f(~q, t) [12] such that

L′(~q ′i, ~̇q ′i, t
′) = L(~q ′i, ~̇q ′i, t

′)− ε
df(~q, t)

dt
. (8)

From (7) and (8) we have

L(~q ′i, ~̇q
′
i, t

′)dt′ = L(~qi, ~̇qi, t)dt + ε
df(~q, t)

dt
dt. (9)

On the other hand, using L for v in (6) we have

L(~q ′i, ~̇q ′i, t
′) = L(~qi, ~̇qi, t) + εU (1)L(~qi, ~̇qi, t). (10)
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From (9) and (10) it is easy to see that

df(~q, t)
dt

= ξ̇L + ξ
∂L

∂t
+

n∑

i=1

(
ηi

∂L

∂qi
+ (η̇i − ξ̇q̇i)

∂L

∂q̇i

)
. (11)

In writing (11) we have made use of the results in (4) and (5). We, therefore, infer
that the action is invariant under those point transformations whose constituents
ξ and ηi satisfy (11). The terms of (11) can be rearranged to write

dI

dt
+

n∑

i=1

(ξq̇i − ηi)
(

∂L

∂qi
− d

dt

∂L

∂q̇i

)
= 0 (12)

with

I =
n∑

i=1

(ξq̇i − ηi)
∂L

∂q̇i
− ξL + f(~q, t). (13)

Along the trajectory of the system, the Euler–Lagrange equations hold good such
that the second term in (12) is zero. Thus I given in (13) is a conserved quantity or
a constant of the motion. The invariant given by (13) and the differential equation
for the gauge function in (11) are commonly stated as the Noether’s theorem.

In the Hamiltonian formulation of classical mechanics the Noether’s invariant can
be written as

I = ξ(~q, t)H(~q, ~p, t)−
n∑

i=1

ηi(~q, t)pi + f(~q, t). (14)

We have obtained (14) from (13) using the relation between H and L as given by
the usual Legendre transformation

L(~q, ~̇q, t) =
n∑

i=1

piq̇i −H(~q, ~p, t), pi =
∂L

∂q̇i
. (15)

In terms of the Hamiltonian the differential equation (11) for f(~q, t) now reads as

d
dt

[
ξ(~q, t)H(~q, ~p, t)−

n∑

i=1

ηi(~q, t)pi + f(~q, t)

]
= 0. (16)

Clearly, the expression inside the squared bracket in (16) stands for the conserved
quantity given in (14). Equation (16) provides a natural basis to carry out Noether-
symmetry analysis for Newtonian systems.

3. The damped harmonic oscillator

The Lagrangian in (2) is explicitly time-dependent. Usual formulation of the
Noether’s theorem runs into trouble when applied to the symmetry analysis of
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systems characterized by such Lagrangians [13]. However, we shall presently see
that the form of Noether’s theorem as given by (14) and (16) is free from this
difficulty. The Hamiltonian for the Lagrangian in (2) is given by

H =
1
2

(
p2

xe−λt + ω2x2eλt
)

(17)

with the canonical momentum

px = ẋeλt. (18)

For H in (17), (16) can be written in the form

∂f

∂t
+ pxe−λt ∂f

∂x
+

1
2

(
∂ξ

∂t
+ pxe−λt ∂ξ

∂x

) (
p2

xe−λt + ω2x2eλt
)

+
λ

2
ξ(−p2

xe−λt + ω2x2eλt)−
(

∂η

∂t
+ pxe−λt ∂η

∂x

)
px + ω2ηxeλt = 0. (19)

In writing (19) we have made use of the canonical equations

ẋ =
∂H

∂px
= pxe−λt and ṗx = −∂H

∂x
= −ω2xeλt. (20)

Equation (19) can be globally satisfied for any particular choice of the momenta pro-
vided the sum of momentum-independent terms, the coefficients of linear, quadratic
and cubic terms in px vanish separately. Following this viewpoint we write

p0
x :

∂f

∂t
+

ω2

2
x2eλt ∂ξ

∂t
+

λω2

2
x2eλtξ + ω2ηxeλt = 0, (21a)

p1
x : e−λt ∂f

∂x
+

ω2

2
x2e−2λt ∂ξ

∂x
− ∂η

∂t
= 0, (21b)

p2
x :

1
2
e−λt ∂ξ

∂t
− λ

2
e−λtξ − e−λt ∂η

∂x
= 0 (21c)

and

p3
x :

1
2
e−2λt ∂ξ

∂x
= 0. (21d)

Equation (21a) signifies that we have equated the sum of p-independent terms to
zero while (21b)–(21d) have been obtained by equating the sum of the coefficients
of p1

x, p2
x and p3

x to zero. From (21d) we see that ξ is not a function of x. Thus

ξ(x, t) ≡ ξ(t) = β(t) (say). (22)

In view of (22), we can write (21a), (21b) and (21c) as
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∂f

∂t
+

ω2

2
x2eλtβ̇ +

λω2

2
x2eλtβ + ω2ηxeλt = 0, (23a)

e−λt ∂f

∂x
− ∂η

∂t
= 0, (23b)

and

1
2
e−λtβ̇ − λ

2
e−λtβ − e−λt ∂η

∂x
= 0. (23c)

We can solve (23c) for η to write

η =
1
2
xβ̇ − λ

2
xβ + ψ(t), (24)

with ψ(t), a constant of integration. From (23b) and (24) we have

f =
(

1
4
x2β̈ − λ

4
x2β̇ + ψ̇x

)
eλt. (25)

Using the expressions for η and f from (24) and (25) in (14) we obtain the invariant
I in the form

I = Iβ + Iψ, (26)

where

Iβ =
1
4
(x2β̈ − λx2β̇)eλt − 1

2
xpxβ̇ +

1
2

(
λxpx + p2

xe−λt + ω2x2eλt
)
β

(27a)

and

Iψ = xψ̇eλt − ψpx. (27b)

In writing (27) we also used (17) and (22). Each of the I’s in (27) is expected to
form a separate constant. This can be seen as follows.

Substituting the values of η and f in (23a) we get

Jβ + Jψ = 0, (28)

where

Jβ =
1
4
x2eλt

(
...

β +
(

ω2 − λ2

4

)
β̇

)
(29a)

and

Jψ = xeλt
(
ψ̈ + λψ̇ + ω2ψ

)
. (29b)
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Using the appropriate Hamilton’s equations it is easy to verify that
∫

Jβdt = Iβ (30a)

and
∫

Jψdt = Iψ. (30b)

Equations (30a) and (30b) verify our conjecture.
The generator of the infinitesimal transformations leading to the conserved quan-

tities in (27a) and (27b) are obtained by using the values of ξ(t) and η from (22)
and (24) in (4). Thus we have

U = Uβ + Uψ, (31)

where

Uβ = β
∂

∂t
− λ

2
xβ

∂

∂x
+

1
2
xβ̇

∂

∂x
(32a)

and

Uψ = ψ
∂

∂x
. (32b)

To find the symmetries and corresponding conservation laws we first need to cal-
culate the special values of β(t) and ψ(t) from

Jβ = 0 (33a)

and

Jψ = 0. (33b)

Equations (33a) and (33b) give

β = 1 and β± = e±2iω̄t (34a)

and

ψ± = e−
λ
2±iω̄t, (34b)

where ω̄ =
√

ω2 − λ2

4 . Equations in (34) clearly show that we are interested in the
symmetries of the underdamped oscillator. From (27a) and (32a) we obtain, for
β = 1, the conserved quantity and the associated generator as

Iβ=1 =
1
2

(
ẋ2 + x2 + λxẋ

)
eλt (35)
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and

Uβ=1 =
∂

∂t
− λ

2
x

∂

∂x
. (36)

For λ = 0, Iβ=1 represents the total energy of the harmonic oscillator with Uβ=1 as
the time translation operator. For finite values of λ, however, Iβ=1 stands for the
energy function or Jacobi’s integral [2] of the system. Results similar to those in
(35), (36) for β±, ψ± are given below.

For β+ = e+2iω̄t, the invariant Iβ gives rise to two real invariants

Iβ1 = Re Iβ+=e+2iω̄t =
(

1
2
p2

xe−λt − 1
2
ω2x2eλt +

λ2

4
x2eλt +

λ

2
xpx

)
cos 2ω̄t

+ω̄

(
λ

2
x2eλt + xpx

)
sin 2ω̄t (37)

and

Iβ2 = Im Iβ+=e+2iω̄t =
(

1
2
p2

xe−λt − 1
2
ω2x2eλt +

λ2

4
x2eλt +

λ

2
xpx

)
sin 2ω̄t

−ω̄

(
λ

2
x2eλt + xpx

)
cos 2ω̄t. (38)

The generators of Iβ1 and Iβ2 as found from (32a) are given by

Uβ1 = ReUβ+=e+2iω̄t = cos 2ω̄t

(
∂

∂t
− λ

2
x

∂

∂x

)
− xω̄ sin 2ω̄t

∂

∂x
(39)

and

Uβ2 = ImUβ+=e+2iω̄t = sin 2ω̄t

(
∂

∂t
− λ

2
x

∂

∂x

)
+ xω̄ cos 2ω̄t

∂

∂x
. (40)

For β− = e−2iω̄t, we have

Iβ3 = Re Iβ−=e−2iω̄t = Iβ1 , (41)

Iβ4 = Im Iβ−=e−2iω̄t = −Iβ2 (42)

and

Uβ3 = ReUβ−=e−2iω̄t = Uβ1 , (43)

Uβ4 = ImUβ−=e−2iω̄t = −Uβ2 . (44)

The results for the invariants IΨ and generators UΨ for values of ψ given in (34b)
are obtained as
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IΨ1 = Re I
ψ+=e(−

λ
2 +iω̄)t = −

(
λ

2
xe

λ
2 t + pxe−

λ
2 t

)
cos ω̄t

−ω̄xe
λ
2 t sin ω̄t, (45)

IΨ2 = Im I
ψ+=e(−

λ
2 +iω̄)t = −

(
λ

2
xe

λ
2 t + pxe−

λ
2 t

)
sin ω̄t

+ω̄xe
λ
2 t cos ω̄t, (46)

UΨ1 = Re U
ψ+=e(−

λ
2 +iω̄)t = e−

λ
2 t cos ω̄t

∂

∂x
, (47)

UΨ2 = Im U
ψ+=e(−

λ
2 +iω̄)t = e−

λ
2 t sin ω̄t

∂

∂x
, (48)

IΨ3 = Re I
ψ−=e(−

λ
2−iω̄)t = IΨ1 , (49)

IΨ4 = Im I
ψ−=e(−

λ
2−iω̄)t = −IΨ2 , (50)

UΨ3 = Re U
ψ−=e(−

λ
2−iω̄)t = UΨ1 (51)

and

UΨ4 = Im U
ψ−=e(−

λ
2−iω̄)t = −UΨ2 . (52)

In the above the odd and even superscripts on β and ψ refer to real and imaginary
parts of the invariants and generators as the case may be. Looking closely at eqs
(37)–(52) we find that there are only five linearly independent group generators
given by

G1 = Uβ1 , G2 = Uβ2 , G3 = UΨ1 , G4 = UΨ2 and G5 = Uβ=1.

(53)

We have already seen that G5 for λ = 0 represents the time translation operator
and the corresponding conserved quantity is the total energy of the undamped
oscillator. Similarly, in the limit of no damping all the group generators in (53)
coincide with those given by Lutzky [14]. The algebra of our five-parameter Lie
group is given in table 1.

To each of the one-parameter subgroups in table 1 there corresponds a constant
of the motion (Ci). More explicitly, we write

C1 = Iβ1 , C2 = Iβ2 , C3 = IΨ1 , C4 = IΨ2 and C5 = Iβ=1. (54)

In (54) the conserved quantities that can be treated as independent are C3 and C4

because it is easy to show that
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Table 1. Commutation relations for the generators in (53), each element in
the table being represented by Gij = [Gi , Gj ].

G1 G2 G3 G4 G5

G1 0 2ω̄G5 ω̄G4 ω̄G3 2ω̄G2

G2 −2ω̄G5 0 −ω̄G3 ω̄G4 −2ω̄G1

G3 −ω̄G4 ω̄G3 0 0 ω̄G4

G4 −ω̄G3 −ω̄G4 0 0 −ω̄G3

G5 −2ω̄G2 2ω̄G1 −ω̄G4 ω̄G3 0

C1 =
1
2

(
C2

3 − C2
4

)
, (55a)

C2 =
1
2
C3C4 (55b)

and

C5 =
1
2

(
C2

3 + C2
4

)
. (55c)

Elimination of px from C3 and C4 yields

x =
e−

λ
2 t

ω̄
(C4 cos ω̄t− C3 sin ω̄t). (56)

Since x represents the general solution of the damped harmonic oscillator in (1),
the system is completely specified by the two-parameter Abelian symmetry group
generated by G3 and G4.

4. Concluding remarks

Noether’s theorem provides a one-to-one correspondence between the symmetry
properties and conserved quantities of a dynamical system. We have chosen to work
with a theoretical framework which attributes the reason for this to the properties
of some auxiliary equations which can always be written in the form of a total time
derivative.

As with the case of uncoupled oscillator [14] we found that a five-parameter group
of transformations leaves the action integral of the damped harmonic oscillator
invariant. This results in five conserved quantities. Only two of these quantities
determine the solution and correspond to a two-parameter Abelian subgroup.

The conserved quantity in (35) was noticed earlier by Lemos [15] while deriv-
ing a Hamilton–Jacobi method for the damped harmonic oscillator. The same
result for the energy function or Jacobi integral was found by Tapia [13] by adopt-
ing the Noether’s theorem to parametrized systems in which time is treated as
a configuration-space variable. Here we have shown that the direct approach of
Noether’s theorem yields Jacobi integral in a rather straightforward manner.
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