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Abstract. We solve the general problem of mixing of electromagnetic and scalar or
pseudoscalar fields coupled by axion-type interactions Lint = gφφ εµναβF µνF αβ . The
problem depends on several dimensionful scales, including the magnitude and direction
of background magnetic field, the pseudoscalar mass, plasma frequency, propagation fre-
quency, wave number, and finally the pseudoscalar coupling. We apply the results to
the first consistent calculations of the mixing of light propagating in a background mag-
netic field of varying directions, which show a great variety of fascinating resonant and
polarization effects.

Keywords. Axions; pseudoscalar–photon mixing; wave propagation in background mag-
netic field; polarization.

PACS Nos 14.80.Mz; 98.35.Eg; 94.20.Bb

0. Introduction

For about 20 years the mixing of light and pseudoscalar fields in propagation has
been studied with fascination [1–10]. The subject generated renewed attention in
the context of cosmological observables that can probe exceedingly small couplings
[11–14]. One approach proposes that the dimming of supernova light might be
explained by transition of light into unobserved pseudoscalar, or ‘axion’, modes
[15], although this effect might be limited by observations of radio galaxies [16]. It
has also been pointed out that pseudoscalar field can generate magnetic fields due to
their coupling with photons [17]. Polarization observables are even more sensitive
than intensity: for coupling constants many orders of magnitude too small to cause
dimming, the cumulative evolution of phase shifts can generate phenomena clearly
violating the Maxwell equations in plasmas [18]. Several laboratory experiments
have also sought the spontaneous resonant conversion of dark matter axions to
photons, and explored the possibilities of conversion in lab-made magnetic fields.
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There is a well-established theoretical technology of mixing light with a back-
ground magnetic field transverse to propagation. Yet despite long study, we do not
know of any complete solution to the mixing problem which depends on a possible
variables. And there is no wonder, as there are many dimensionful scales, includ-
ing the magnitude and direction of background magnetic field, the pseudoscalar
mass, plasma frequency, propagation frequency, wave number, and finally the
pseudoscalar coupling. By approaching the problem with new methods here, we
will be able to survey various limits used in the literature and also present a con-
vincing resolution of the dynamics in a slowly varying background field of arbitrary
direction.

The basic Lagrangian assumes a pseudoscalar [18a] field φ coupled to the elec-
tromagnetic field strength Fµν by the action

S =
∫

d4x
√−g

[
− 1

4
FµνFµν + gφφ εµναβFµνFαβ

+jµAµ +
1
2
∂µφ∂µφ− 1

2
m2

φφ2 − V (φ)
]
. (1)

We include a coupling to a current jµ for completeness. For the purpose of linear
propagation, the potential V (φ) can be ignored as a small perturbation, and the
metric g can be replaced by a given background form. Certain non-local plasma
effects, described by the plasma frequency, Faraday rotation, etc., may also need to
be incorporated. The limit on the coupling gφ may be obtained by considering the
cooling rates of red giants. The current limits imply gφ < 6 × 10−11 GeV−1 if we
assume negligible pseudoscalar mass mφ [19,20]. These limits can be evaded if the
pseudoscalars have sufficiently large self-coupling [21]. The applications we have in
mind are propagation of electromagnetic radiation over cosmological distances or
through the local supercluster. Here the magnetic fields are relatively small, of the
order of 10−7 to 10−9 Gauss with plasma density ne in the range 10−6 to 10−8 cm−3.
Another interesting application is propagation through the pulsar magnetosphere.
Here the magnetic fields are very strong, of the order of 1012 Gauss with the plasma
density of order 1011 cm−3.

By translational symmetry, certain eigenmodes will evolve like eikiz in propaga-
tion over a distance z, where ki are wave numbers to be determined in terms of the
frequency ω. This is simple and obvious. Yet one might claim the opposite that
k should be fixed, while frequency ω remains to be determined, as so common in
quantum mechanics and neutrino oscillations. Indeed some literatures solve for ω
eigenvalues without discussion. Physics is local, and the time dependence of the
waves is fixed by the known time dependence, e−iωt, of the source. By Huygen’s
principle, i.e. the use of causal Green functions, one may then determine the wave
numbers ki for on-shell propagation. There are no sources of fixed k, and so one
is required to solve for ki as a function of ω, just as in careful work on neutrino
oscillations [22,23]. We also give extra attention to maintaining gauge invariance,
which we have not seen before. The physics turns out to be surprisingly intricate.

We apply the revised propagation equations to the interesting problem of light
traveling in a background magnetic field of varying direction. For the parameter
values of axion masses, magnetic fields and couplings commonly assumed, the mag-
nitude of new changes is often non-negligible. This fact aside, the results themselves
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are fascinating, and full of remarkable complexity and structure, somewhat like a
generalized version of the resonant propagation of neutrinos. We think this is very
interesting: The possible existence of axions can be probed in polarization observ-
ables for parameters ranges far smaller than will cause a dimming of light by direct
conversion. Although axion-related dimming is given some credence it is usually as-
sumed that there are no exotic polarization effects to be observed. We find that the
absence of exotic polarization effects would be able to rule out the light-dimming
hypothesis. Confrontation with data on polarization, of course, needs a detailed
study of many potential backgrounds to any signal, and would go beyond the scope
of this paper. Our main task is simply to get the propagation equations resolved
once and for all.

1. Gauge invariant methods

1.1 Equations for E and φ

To eliminate difficulties of gauge invariance we first obtain the non-covariant form
of the Maxwell equations with no approximations [24]:

∇ · ~E = gφ∇φ · ( ~B + ~B) + ρ, (2)

∇× ~E +
∂( ~B + ~B)

∂t
= 0, (3)

∇× ~B − ∂ ~E

∂t
= gφ

(
~E ×∇φ− ( ~B + ~B)

∂φ

∂t

)
+~j, (4)

∇ · ( ~B + ~B) = 0. (5)

Here Bi + Bi = 1
2εijkF jk and Ei = F 0i are the usual magnetic and electric fields.

Here ~B and ~B represent the magnetic field due to the background and due to the
electromagnetic wave respectively. The background field is assumed to be indepen-
dent of time.

In anticipation we note that the revised ‘Gauss’ law’ (eq. (2)) couples the longi-
tudinal electric field to ~∇φ. This creates a qualitative change compared to light in
free space, where the longitudinal mode does not normally propagate. If φ propa-
gates we now have a propagating longitudinal light field. If there is a plasma, then
the ordinary Gauss’ law becomes ~∇·εE = ρfree, where ε is the dielectric constant (or
‘permittivity’). Since ε = ε(ω) is not local in the time domain, we will incorporate
it below in the Fourier-transformed equations.

The pseudoscalar field’s equation of motion is

∂2φ

∂t2
−∇2φ + m2

φφ = −gφ
~E · ( ~B + ~B). (6)
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Gauge invariance is explicit, and one can check current conservation directly,

~∇ ·~j +
∂ρ

∂t
= 0.

Assume that ~B solves the zeroeth-order Maxwell equations with no φ background.
The linearized equations for ~E/c ¿ ~B, ~B ¿ ~B are

∇ · ~E = gφ∇φ · ~B + ρ, (7)

∇× ~E +
∂ ~B

∂t
= 0, (8)

∇× ~B − ∂ ~E

∂t
= −gφ

~B∂φ

∂t
+~j, (9)

∇ · ~B = 0. (10)

Proceed to get a wave equation for ~E by taking the curl of Faraday’s law,

~∇× ~∇× ~E = −~∇2 ~E + ~∇~∇ · ~E = − ∂

∂t
~∇× ~B,

and substituting eqs (2) and (4), we obtain

−~∇2 ~E +
∂2 ~E

∂t2
= gφ

~B∂2φ

∂t2
− gφ

~∇(~∇φ · ~B). (11)

In this equation the longitudinal part of ~E mixes with ~∇φ. Take the transverse (sub-
T) and longitudinal parts (sub-L) of the electric wave equation, for wave number
~k, with EL = k̂ · ~E:

(k2 − ω2)ET = −gφω2BTφ, (12)

(k2 − ω2)EL = gφ(k2 − ω2)BLφ. (13)

There clearly exists no gauge in which the longitudinal electric field decouples from
the problem. If we limit the study to ~∇φ · ~B = 0, then Gauss’ law makes ~E
transverse. Everything in the literature is perfectly consistent.

1.2 Equations for D and φ

Another method is needed when ~k · ~B 6= 0. Many linearized electromagnetic theories
can be encompassed by the equations:

~∇ · ~D = 0, (14)
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∇× ~E +
∂ ~B

∂t
= 0, (15)

∇× ~H − ∂ ~D

∂t
= 0, (16)

~∇ · ~B = 0. (17)

The purpose of the ‘archaic’ representation via ~D is to have a field which is perfectly
transverse. With ~D the transverse wave operator is greatly simplified:

~∇× (~∇× ~D) → −~∇2 ~D.

This effectively reduces the freedom of the propagating gauge fields from 3 to 2:
one would have to use 4-state mixing of three ~E components and one φ if this were
not arranged.

Can we make ~D and ~H serve in eqs (7)–(10), and also include plasma effects?
We find eqs (14)–(17) consistent with the definitions:

~D = ε ~E − gφφ~B, (18)

~H = ~B. (19)

The asymmetry here comes from having a magnetic background. In our work we
will assume the contribution to ε due to the plasma frequency ωp, via

ε =

(
1− ω2

p

ω2

)
.

The plasma frequency is given by

ω2
p =

4παne

me
=

ne

10−8 cm−3

(
3.7× 10−15 eV

)2
, (20)

where ne is the plasma density, me the electron mass and α the fine structure
constant. In table 1 we list typical values of the various parameters relevant for
intergalactic propagation. Here we also correct a numerical error in ref. [18] in the
conversion of magnetic field to Mpc.

1.3 Decoupling

From Faraday’s law and the ~D equation we have

1
1− (ω2

p/ω2)
~∇× ( ~D + gφ

~Bφ) = −∂ ~B

∂t
= −∂ ~H

∂t
,
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Table 1. Typical values of dimensionful scales relevant for intergalactic prop-
agation. If not otherwise specified we use ~ = c = 1.

Quantity Typical values Alternate units

B 0.01 µG (1.95× 10−28 GeV2) 4.78× 1048 Mpc−2

gφ 10−11 GeV−1 6.4× 10−50 Mpc

ωp 3.7× 10−24 GeV

r
ne

10−8 cm−3
5.7 ×1014

r
ne

10−8 cm−3
Mpc−1

ω 10−5–1 eV 1.6 ×1024–1.6× 1029 Mpc−1

~∇× ~∇× ( ~D + gφ
~Bφ ) =

(
1− ω2

p

ω2

)
∂2 ~D

∂t2
. (21)

Together with the φ propagation from eq. (6), the equations have been simplified
as much as possible without loss of generality: the coupled system of φ,Dx, Dy, Dz

have one locally decoupled mode, no longitudinal mode, and are equivalent to
two coupled partial differential equations with no approximations other than
linearization.

We now drop terms of order ~∇B/B as negligible compared to other length scales,
including the splitting of modes, setting up the usual adiabatic limit. We seek
local plane-wave solutions with ~∇ → i~k. The component of ~D perpendicular to ~B
decouples:

(k2 + ω2
p − ω2) ~D × B̂ = 0. (22)

The other transverse projection of the ~D wave equation becomes

(k2 + ω2
p − ω2) ~D · B̂T + k2gφBTφ = 0. (23)

Notice that in using ~D the equation of motion, involving the curl of ~B, is not used:
in fact it is satisfied as an identity. Conversely, when Faraday’s law is substituted
into the ~E wave equation, then Faraday’s law is satisfied as an identity, and the
equation of motion is solved (eq. (11)). By subtracting eq. (23) from the (in prin-
ciple) independent wave eq. (11) for ~E at the compatible point, we obtain a nice
consistency check.

We turn to the coupled system:

(k2 + ω2
p − ω2) ~D · B̂T + k2gφBTφ = 0, (24)

gφBT

1− ω2
p/ω2

~D · B̂T +

(
k2 + m2

φ − ω2 +
g2

φB2

1− ω2
p/ω2

)
φ = 0. (25)

The system can be solved directly for the dispersion relation k2 = k2(ω) by setting
to zero the determinant of the corresponding matrix M , defined by

M

(
~D · B̂T

φ

)
= 0.
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However, the eigenvalues k2 needed are not on the diagonal. Moreover, M
is not symmetric, and non-symmetric matrices have eigenvectors which are not
orthogonal.

Much the same occurs in optics [25], where the corresponding equations for prop-
agation with a tensor dielectric constant εij are

(k2δT (k)ε−1 − ω2 )D = 0,

δT
ij(k) = δij − k̂ik̂j . (26)

One seldom finds δT (k)ε−1 to be symmetric. Yet since

δT (k)D = D,

multiplication on the left by δT (k) yields a symmetric eigenvalue equation:

(k2δT (k)ε−1δT (k)− ω2)D = 0. (27)

The propagation eigenstates are obtained from the 2× 2 matrix δT (k)ε−1δT (k) in
the sector transverse to ~k. This is considerably more subtle than (say) diagonalizing
εij first, and simply taking a transverse part.

This indicates that further transformations are needed for a useful solution.

1.4 Orthogonal modes

First, D̂×B̂ decouples from φ and propagates like ordinary light (including plasma
frequency) with wave number k0 =

√
ω2 − ω2

p.
We made the rest of the transformation by inspection. Define

φ̄ = k0φ,

D̄ =
D · B̂ + gBTφ√

1− (ω2
p/ω2)

. (28)

Now the propagation matrix is symmetric and eigenvalue k2 lies on the diagonal:
(

k2 + ω2
p − ω2 gφBTω

gφBTω k2 + m̃2
φ − ω2

) (
D̄
φ̄

)
(29)

with

m̃2
φ = m2

φ +
g2

φB2
L

1− (ω2
p/ω2)

. (30)

As a consequence propagation generates unitary rotations of (D̄, φ̄). Go to a new
basis

|η〉 = O|ψΛ〉; O =
(

cos θ̄ − sin θ̄
sin θ̄ cos θ̄

)
. (31)
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The mixing angle diagonalizing propagation is

tan 2θ̄ =
gφωBT

m̃2
φ − ω2

p

. (32)

The dispersion relations are

k2
1 = ω2 − 1

2
( m̃2

φ + ω2
p)− 1

2

√
Ω4, (33)

k2
2 = ω2 − 1

2
(m̃2

φ + ω2
p) +

1
2

√
Ω4, (34)

where

Ω4 = 4g2
φB2

Tω2 + (m̃2
φ − ω2

p)2. (35)

By inspection of these results, the eigenvalues and mixing are just the same as
solving the BL = 0 limit and making the replacement m2

φ → m̃2
φ = m2

φ + g2
φB2

L/[1−
(ω2

p/ω2)].

1.4.1 Plane-wave simplification

There are circumstances where neglecting ~∇B/B may not be possible. Then eqs
(21) and (6) cannot be simplified further. However, if the propagation can be
reduced to plane-wave modes with constant parameters, there is a simple way to
understand the modes.

First solve the longitudinal mode using Gauss’ law:

~k · ε ~E = gφ(~kφ) · ~B,

ε ~EL = k̂ gφk̂φ · ~B. (36)

Here k̂ = ~k/k is a non-local operator. Insert the solution where it appears in the
propagation of φ (eq. (6)):

(ω2 + k2 + m2
φ)φ = −gφ

~E · ~B,

→ −gφETBT − g2B2
Lφ

ε
. (37)

Observe that the effects on equations for φ are the same as replacing m2
φ → m̃2

φ =
m2

φ+g2
φB2

L/ε. Meanwhile the transverse projection of the electric equation (eq. (11)),
also involves only ET and φ. Since this subsystem has decoupled, they must have
modes which are linear combinations of φ and ET: finally we recover the transfor-
mation to reveal that D̄ = ET in this limit.
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1.4.2 Resonant mixing

In certain situations the mixing angle θ̄ may cross π/2. This phenomenon of res-
onant mixing was studied in detail in ref. [18]. Study was restricted to the case
where BL ∼ 0, in part to compare with previous literature which violated gauge
invariance by assuming early that modes were transverse. Here we find that the
phenomenon of resonant mixing undergoes a qualitative change if the value of gφBL

is sufficiently large. In the limit BL = 0 the resonant mixing occurs if the plasma
frequency depends on position z and at some point along the path becomes equal
to the pseudoscalar mass mφ. In this region m2

φ − ω2
p(z) ≈ 0 and tan 2θ̄ ≈ ∞.

If BL 6= 0, the resonant mixing may happen at some frequency irrespective of the
values of mφ and ωp.

The resonant mixing occurs when

m2
φ − ω2

p = − g2
φB2

L

1− ω2
p/ω2

. (38)

If ωp changes along the path then it may be possible to find some position at
which the resonant condition is satisfied for a wide range of values of the frequency
ω. Alternatively if ωp is roughly uniform, then it may be possible to find some
frequency at which the condition for resonance applies.

In the case of cosmological propagation the relevant limit is ω/ωp À 1 and
gφBL ¿ ωp. This applies even at radiofrequencies for typical values of plasma fre-
quency in intergalactic or galactic space. Let us assume that the plasma frequency
is varying along the path. Then for typical values of galactic or intergalactic mag-
netic fields and coupling gφ we find that the resonant condition is satisfied at the
position ωp ≈ mφ. The precise value of ωp of course depends on the value of the
longitudinal component of the magnetic field and the frequency ω. Hence in this
case the results do not change qualitatively with respect to the case discussed in
ref. [18] where the longitudinal component of the magnetic field is neglected.

The results change qualitatively when ω ≈ ωp or when g2
φB2

L is comparable to
the typical value of |m2

φ − ω2
p| in the medium. In this case the resonance condition

may be satisfied for some frequency even if mφ is not close to ωp anywhere along
the path. This is very different from the resonance phenomenon discussed in ref.
[18]. It may be observable in some special systems such as pulsars or magnetars.
The typical value of magnetic field in pulsars is 1012 Gauss. In current models
the plasma density is given by ne = 7 × 1010B12/P cm−3 [26], where B12 is the
magnetic field in units of 1012 Gauss and P is the period of rotation of the pulsar in
seconds. Using these values, with P = 1 and B12 = 1, we find that g2

φB2 ≈ 10−16

eV2 for gφ = 10−10 GeV−2 and ω2
p ≈ 10−10 eV2. Hence in this case we expect

resonance only for ω ≈ ωp if |ω2
p −m2

φ| À g2
φB2

L. If the astrophysical limits are not
applicable [21], then we may have much larger value of gφ and can expect resonance
to occur at larger values of ω. Physically we expect a large change in the intensity
and polarization of the wave as the frequency approaches the resonant frequency.

The resonant effect is very interesting conceptually. Qualitatively, at resonance
it appears that the longitudinal mode of a plasma oscillation becomes very strongly
mixed with the pseudoscalar field, depending on the difference of masses. As we
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mentioned earlier, φ mixes with ~EL: indeed due to the constraint of Gauss’ law, it
is the same dynamical phenomenon as the longitudinal field. Let us estimate some
magnitudes: when fully mixed, φ̄ ∼ D̄, or

φ ∼ ET

ωp
.

As mentioned earlier EL ∼ (gφφBL/ε). Together the relations predict

EL

ET
∼ gφBL

εωp
∼ gφBLωp

ω2
p − ω2

.

Thus there is always a frequency for which we may observe the formerly non-
interacting pseudoscalar electromagnetically, and as a form of longitudinally polar-
ized light: The EL being observable and affecting instruments just as much as a
longitudinal field in a plasma oscillation. Given sufficiently fine measurements the
‘invisible axion’ could in principle be ‘visible’.

We hope to explore more deeply the potential laboratory and astrophysical reper-
cussions of these phenomena in another paper. Given that most current interest
centers on cosmological propagation, we turn to studying the effects of a varying ~B
field in the next section.

2. Three-mode mixing: Varying ~B

We next consider the adiabatic propagation of light through a background magnetic
field which varies slowly in direction. This problem has not been solved before. The
results are far from trivial, and give substance to many cosmological applications
assuming some ‘fluctuating’ magnetic fields with typical coherence lengths. As we
will show, the variety of physical phenomena one can observe is very great. In some
limits, writing a transition probability and taking a statistical average may suffice,
but in other limits the polarization effects are quite spectacular. The dynamical
possibilities for the mixing of light actually exceed those for neutrino-mass mixing,
which has been studied for nearly 50 years and still appears inexhaustible.

The physically observable density matrix ρ is given by

ρ =
( 〈E||E∗

||〉 〈E||E∗
⊥〉

〈E⊥E∗
||〉 〈E⊥E∗

⊥〉
)

, (39)

where 〈 〉 denotes the statistical averages occurring in propagation [26a].
Orient the z-axis along the direction of the wave. Let angle ξ measure the

direction of the background field relative to the x-axis:

~BT = B cos ξ(z)̂i + B sin ξ(z)ĵ. (40)

For direct numerical integration we assume that ξ(z) varies linearly with z. We fix
the magnitude of the background magnetic field to identify effects arising due to
varying magnetic field direction. A changing background magnetic field magnitude
is easily included in the formalism. For the same reason we ignore the variation in
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plasma density along the path. The effects of varying plasma density for fixed field
direction has been studied in detail elsewhere [18].

The wave equation can now be written as

(ω2 + ∂2
z )

(
Ax

Ay

φ

)
−M

(
Ax

Ay

φ

)
= 0, (41)

where ~A = ~E/ω and M is the mass or mixing matrix,

M =




ω2
p 0 −gBω cos ξ

0 ω2
p −gBω sin ξ

−gBω cos ξ −gBω sin ξ m2
φ


 . (42)

We dropped g2B2
L terms as negligible for intergalactic propagation with typical

parameters. With a slowly varying background and working in the adiabatic limit,
we define transformed fields A′x, A′y and φ′ such that

(
Ax

Ay

φ

)
=

( cos β − sinβ 0
sin β cosβ 0

0 0 1

)(
A′x
A′y
φ′

)
. (43)

The wave equation reduces to

(ω2 + ∂2
z )

(
A′x
A′y
φ′

)
−




ω2
p 0 0
0 ω2

p −gBω

0 −gBω m2
φ




(
A′x
A′y
φ′

)
= 0. (44)

Here β = ξ − π/2. The equation reduces to the case of two-component mixing
which can be solved along the lines discussed in ref. [18]. Once we have obtained
all the correlators between A′x and A′y, we can express the required correlators as

〈A∗x(z)Ax(z)〉 = sin2 ξ(z)〈A′∗x (z)A′x(z)〉+ cos2 ξ(z)〈A′∗y (z)A′y(z)〉
+cos ξ(z) sin ξ(z)

(〈A′∗x (z)A′y(z)〉+ 〈A′∗y (z)A′x(z)〉)

〈A∗y(z)Ay(z)〉 = cos2 ξ(z)〈A′∗x (z)A′x(z)〉+ sin2 ξ(z)〈A′∗y (z)A′y(z)〉
− cos ξ(z) sin ξ(z)

(〈A′∗x (z)A′y(z)〉+ 〈A′∗y (z)A′x(z)〉)

〈A∗x(z)Ay(z)〉 = − cos ξ(z) sin ξ(z)
(〈A′∗x (z)A′x(z)〉 − 〈A′∗y (z)A′y(z)〉)

+sin2 ξ(z)〈A′∗x (z)A′y(z)〉
− cos2 ξ(z)〈A′∗y (z)A′x(z)〉. (45)

The correlators appearing on the right-hand side of these equations can be calcu-
lated using the results in ref. [18].

2.1 Transition probabilities

Analytic calculations in the adiabatic limit fail for small frequencies since in this
case the transition probabilities between instantaneous eigenstates are large. Even
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Figure 1. Normalized Stokes parameters (a) Q/I, (b) U/I and (c) V/I
as a function of the length parameter l for varying directions of background
magnetic field; the magnitude | ~B| and ωp are constant. Curves are generated
by direct numerical integration (solid line) and adiabatic analytic calculation
(dashed line). Parameters gB = 1.0, L = 100, m2

φ/ω2
p = 0.1, angles ξ(0) = π/2

and ξ(L) = π/2− 0.3π; initial polarization (Q/I = 0, U/I = 1.0, V/I = 0.0).

in the large frequency regime the adiabatic limit fails unless the product gBL À 1.
This can be verified explicitly by computing the transition probabilities using the
procedure discussed in ref. [18]. Using the Dirac notation we can rewrite the basic
wave equation (41) as,

(ω2 + ∂2
z )|ψ〉 −M |ψ〉 = 0. (46)

We obtain the instantaneous eigenstates |n〉 and eigenvalues µ2
n by solving the

equation

M |n〉 = µ2
n|n〉. (47)

The solution |ψ〉 can be expressed as

|ψ〉 =
∑

n

an(z)ei
R z
0 dz′ωn |n〉, (48)

where the frequency ωn can be determined by substituting this in eq. (46). We find
ωn = ω−µ2

n/(2ω). The evolution of the coefficients an(z) with z gives an estimate
of the transition among different eigenmodes. These coefficients are obtained by
solving the equation
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∂zbm ≈
∑

n,n 6=m

bn
〈m|(∂zM)|n〉

µ2
m − µ2

n

ei
R z
0 dz′(ωn−ωm) , (49)

where we have approximated ωn ≈ ω and bm is defined by the equation

am(z) = e−
1
2

R z
0 dz′(∂z′ωm)/ωmbm(z) ≈ bm(z). (50)

The matrix M given in eq. (42) can be easily diagonalized. We find the eigen-
values, ω2

p and

λ± =
ω2

p + m2
φ

2
± 1

2

√
(ω2

p −m2
φ)2 + 4(gBω)2

with the corresponding eigenvectors
( sin ξ
− cos ξ

0

)
,

1√
(gBω)2 + (ω2

p − λ±)2

(
gBω cos ξ
gBω sin ξ
ω2

p − λ±

)

respectively. The transition probability can now be computed using eq. (49). Let
us assume that the magnetic field changes appreciably over a distance scale L.
To be specific this means that the change in angle ξ(z) in eq. (40) is of order
unity over a distance scale L. Another useful length scale is the oscillation length
l = 2ω/|ω2

p − m2
φ|. In the limit of small frequencies, gBl ¿ 1, we find that the

transition probabilities are negligible as long as (gBl)(gBL) À 1. In all other cases
we find that the transitions are small as long as gBL À 1.

2.2 Results

In figure 1 we show a sample of results obtained in the case of varying direction of
background magnetic field from analytic calculation in the adiabatic limit as well as
direct numerical integration. Here angle ξ(0) = π/2 and ξ(L) = π/2−0.3π, i.e. the
transverse component of the background magnetic field is aligned along the y-axis
initially and evolves to angle 0.3π after a distance L. The parameters used in this
figure are gB = 1.0, L = 100, m2

φ/ω2
p = 0.1. The initial state of polarization has

been chosen such that Q/I = 0, U/I = 1, and V/I = 0. The analytic results in this
case are in good agreement with the numerical results, except in the limit of small
frequencies. In the large frequency limit the exponent in eq. (49) is approximately
equal to igBL/2. For the parameters chosen this phase factor is large and hence
suppresses the transition probability between different eigenstates.

In figure 2 we show a sample of results obtained in the case of varying direction
of background magnetic field for a smaller value of the product gBL. Here we
choose gB = 0.1, L = 100, and m2

φ/ω2
p = 0.1. In this case we use direct numer-

ical integration since the analytic results are not reliable. The orientation of the
background magnetic field is chosen to be same as in figure 1, i.e. ξ(0) = π/2 and
ξ(L) = π/2 − 0.3π. The initial state of polarization has been chosen such that
Q/I = 0, U/I = 1, and V/I = 0. The results obtained using this parameter choice

Pramana – J. Phys., Vol. 70, No. 3, March 2008 451



Sudeep Das et al

2ω
l = 

ω2
p − m2

φ

(V/I) 22(U/I) +
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(a)

(b)

U/I

V/I

Q/I

U/I

Q/I

V/I

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

Figure 2. (a) Normalized Stokes parameters Q/I, U/I and V/I as a function
of the length parameter l for varying background magnetic field directions;
the magnitude | ~B| and ωp are constant. Parameters gB = 0.1, L = 100,
m2

φ/ω2
p = 0.1; angles ξ(0) = π/2, ξ(L) = π/2 − 0.3π; initial state of the

polarization (Q = 0, U = 1.0, V = 0.0). Results for uniform background
magnetic field (b) are shown for comparison.

and with uniform magnetic field direction are also shown for comparison. We find
that the results obtained for the case of varying background magnetic field direction
are considerably different in comparison to what is obtained in the case of uniform
direction. As expected, the results agree in the limit of small ω. In figure 3 we
show the results for the same parameter choice used in figure 2 but with the wave
assumed to be unpolarized initially.

The degree of polarization and the normalized Stokes parameters as a function
of distance are shown in figure 4. Here the parameters are taken to be same as
for figure 2 with the length parameter l = 2ω/(ω2

p −m2
φ) = 10 and the wave is as-

sumed to be unpolarized at source. We see that all the parameters p,Q/I, U/I, V/I
oscillate with propagation distance.

In figure 5 we show the relationship between Q/I and V/I for several different
choice of parameters for the case of varying background magnetic field. The de-
pendence of Q/I and V/I follows approximately an elliptical behaviour. This is in
contrast to the case of uniform magnetic field direction, which shows such a rela-
tionship between U/I and V/I [18]. As in the case of uniform background, a simple
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l = 
ω2

p − m2
φ

2ω
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Figure 3. The degree of polarization p and the normalized Stokes parameters
Q/I, U/I and V/I as a function of the length parameter l for varying directions
of background magnetic fields; the magnitude | ~B| and ωp are constant. Para-
meters gB = 0.1, L = 100, m2

φ/ω2
p = 0.1; angles ξ(0) = π/2, ξ(L) = π/2−0.3π.

The wave is assumed to be unpolarized (Q = 0, U = V = 0) at source.
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Figure 4. The degree of polarization p and the normalized Stokes parame-
ters Q/I, U/I and V/I as a function of the distance of propagation for varying
directions of background magnetic fields; the magnitude | ~B| and ωp are con-
stant. The parameters gB = 0.1, m2

φ/ω2
p = 0.1, l = 2ω/(ω2

p − m2
φ) = 10;

angles ξ(0) = π/2, ξ(L) = π/2−0.3π. The wave is assumed to be unpolarized
(Q = 0, U = V = 0) at source.

correlation is seen only for frequencies larger than a minimum frequency. At low
frequencies the relationship becomes very complicated.

One may be able to test relationships among different Stokes parameters in future
observations. To rule out other possible mechanisms affecting data, certain tests
require observations over a sufficiently large frequency interval.
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Figure 5. A sample of results showing the correlation between the normal-
ized Stokes parameters Q/I and V/I for some randomly chosen parameters
and initial state of polarization. The results are shown for varying back-
ground magnetic field directions with the plasma frequency and the magni-
tude of the magnetic field uniform. Parameters (in arbitrary units) are (a)
gB = 2, L = 10, 0.04 < l < 20, (b) gB = 10, L = 10, 0.4 < l < 800, (c)
gB = 1, L = 50, 0.2 < l < 800 and (d) gB = 10, L = 10, 0.04 < l < 100. The
ratio m2

φ/ω2
p = 0.1; angles ξ(0) = π/2 and ξ(L) = π/2− 0.3π for all the plots.

3. Summary and conclusion

The general treatment of mixing of electromagnetic waves with pseudoscalars in
the presence of background magnetic field is a surprisingly intricate topic. The
pseudoscalar mixes with (and indeed becomes) the longitudinal mode of light, a
situation potentially generating cumulative deviation compared to treatments as-
suming the fields stay transverse. Cumulative errors do occur in principle, but
for parameters of current interest they are fortunately controlled. The contribu-
tion due to the longitudinal component can be accommodated by redefining the
pseudoscalar mass parameter m2

φ → m2
φ + g2

φBL/ε. This simplification led to ex-
ploring the problem of propagation in a magnetic field whose direction may vary
along the path. The condition of adiabaticity is found to be rather stringent: For
a wide range of parameter space the evolution cannot be assumed to be adiabatic.

Thus the general problem of mixing of light with pseudoscalars has more twists
and turns than could have been anticipated early. Stokes parameters show inter-
esting correlations with one another which are distinctively different from those
observed for fixed background field direction [18]. Such polarization effects may be
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observable with current technology, and may eventually serve either to identify new
physics, or to put new limits on the pseudoscalar–photon coupling parameters.

Acknowledgments

This work was supported in part by the Department of Energy grant number DE-
FG02-04ER41308. PJ thanks Alexandre Payez for a useful correspondence.

References

[1] J N Clarke, G Karl and P J S Watson, Can. J. Phys. 60, 1561 (1982)
[2] P Sikivie, Phys. Rev. Lett. 51, 1415 (1983); Phys. Rev. D32, 2988 (1985); Phys. Rev.

Lett. 61, 783 (1988)
[3] L Maiani, R Petronzio and E Zavattini, Phys. Lett. B175, 359 (1986)
[4] D Harari and P Sikivie, Phys. Lett. B289, 67 (1992)
[5] G Raffelt and L Stodolsky, Phys. Rev. D37, 1237 (1988)
[6] R Bradley, J Clarke, D Kinion, L J Rosenberg, K van Bibber, S Matsuki, M Mück

and P Sikivie, Rev. Mod. Phys. 75, 777 (2003)
[7] E D Carlson and W D Garretson, Phys. Lett. B336, 431 (1994)
[8] S Kar, P Majumdar, S SenGupta and A Sinha, Euro. Phys. J. C23, 357 (2002)

S Kar, P Majumdar, S SenGupta and S Sur, Class. Quant. Grav. 19, 677 (2002)
P Majumdar and S SenGupta, Class. Quant. Grav. 16, L89 (1999)
P Das, P Jain and S Mukherjee, hep-ph/0011279, Int. J. Mod. Phys. A16, 4011
(2001)

[9] N D Hari Dass and K V Shajesh, Phys. Rev. D65, 085010 (2002)
[10] A K Ganguly, Ann. Phys. 321, 1457 (2006)
[11] G G Raffelt, Ann. Rev. Nucl. Part. Sci. 49, 163 (1999), hep-ph/9903472
[12] J W Brockway, E D Carlson and G G Raffelt, Phys. Lett. B383, 439 (1996), astro-

ph/9605197
J A Grifols, E Masso and R Toldra, Phys. Rev. Lett. 77, 2372 (1996)

[13] L J Rosenberg and K A van Bibber, Phys. Rep. 325, 1 (2000)
[14] P Jain, S Panda and S Sarala, Phys. Rev. D66, 085007 (2002), hep-ph/0206046
[15] C Csaki, N Kaloper and J Terning, Phys. Rev. Lett. 88, 161302 (2002), hep-

ph/0111311
[16] B A Bassett and M Kunz, Phys. Rev. D69, 101305 (2004), astro-ph/0312443
[17] Da-Shin Lee, W Lee and Kin-Wang Ng, Phys. Lett. B542, 1 (2002)
[18] S Das, P Jain, R P Ralston and R Saha, J. Cosmol. Astropart. Phys. 0506, 002

(2005)
[18a] We may let φ also be a scalar field given parity violation
[19] W-M Yao et al, J. Phys. G33, 1 (2006)
[20] D Dicus, E Kolb, V Teplitz and R Wagoner, Phys. Rev. D18, 1829 (1978); Phys.

Rev. D22, 839 (1980)
G Raffelt and D Dearborn, Phys. Rev. D36, 2211 (1987)
D Dearborn, D Schramm and G Steigman, Phys. Rev. Lett. 56, 26 (1986)
J Ellis and K Olive, Phys. Lett. B193, 525 (1987)
G Raffelt and D Seckel, Phys. Rev. Lett. 60, 1793 (1988)
M Turner, Phys. Rev. Lett. 60, 1797 (1988)

Pramana – J. Phys., Vol. 70, No. 3, March 2008 455



Sudeep Das et al

H-T Janka, W Keil, G Raffelt and D Seckel, Phys. Rev. Lett. 76, 2621 (1996)
W Keil, H T Janka, D N Schramm, G Sigl, M S Turner and J Ellis, Phys. Rev. D56,
2419 (1997)
M I Vysotsky, Ya B Zeldovich, M Yu Khlopov and V M Chechetkin, JETP Lett. 27,
502 (1978)

[21] P Jain and S Mandal, Int. J. Mod. Phys. D15, 2095 (2006)
A K Ganguly, P Jain, S Mandal and S Stokes, Phys. Rev. D76, 025026 (2007)

[22] H J Lipkin, Phys. Lett. B579, 355 (2004), hep-ph/0304187, hep-ph/0212093
[23] L Stodolsky, Phys. Rev. D58, 036006 (1998)
[24] S Mohanty and S N Nayak, Phys. Rev. Lett. 70, 4038 (1993)
[25] M Born and E Wolf, Principles of optics (Pergamon Press, New York, 1989)
[26] P Ghosh, Rotation and accretion powered pulsars, World Scientific Series in Astron-

omy and Astrophysics, 10 (2007)
[26a] We decline to develop a 3 × 3 density matrix including the longitudinal mode, as

unlikely to be observed in these circumstances

456 Pramana – J. Phys., Vol. 70, No. 3, March 2008


