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Abstract. The Coulomb blockade (CB) in quantum dots (QDs) is by now well docu-
mented. It has been used to guide the fabrication of single electron transistors. Even the
most sophisticated techniques for synthesizing QDs (e.g. MOCVD/MBE) result in an as-
sembly in which a certain amount of disorder is inevitable. On the other hand, theoretical
approaches to CB limit themselves to an analysis of a single QD. In the present work we
consider two types of disorders: (i) size disorder; e.g. QDs have a distribution of sizes
which could be unimodal or bimodal in nature. (ii) Potential disorder with the confining
potential assuming a variety of shapes depending on growth condition and external fields.
We assume a Gaussian distribution in disorder in both size and potential and employ
a simplified mean field theory. To do this we rely on the scaling laws for the CB (also
termed as Hubbard U) obtained for an isolated QD [1]. We analyze the distribution in the
Hubbard U as a consequence of disorder and observe that Coulomb blockade is partially
suppressed by the disorder. Further, the distribution in U is a skewed Gaussian with
enhanced broadening.
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1. Introduction

Quantum dots (QDs) are structures in which charge carriers are essentially trapped
in a three-dimensional potential. They are also known as ‘artificial atoms’ [2,3] and
consist of 103–106 atoms, with system sizes in the range of 1–10 nm. They are
of fundamental and technical interest for next generation electronic devices. An
important goal of today’s technological drive towards smaller and smaller devices is
to fabricate the so-called single-electron transistor which can be operated at room
temperature [4]. They may also form the basis of new generations of lasers [5].

Our aim is to understand Coulomb blockade (CB) for a distribution of QDs
employing a minimal set of broad and plausible assumptions. As the name suggests,
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CB is the energy price paid in adding an electron to a QD. Classically, this price
is ≈e2/C, where e is the electron charge and C is the capacitance of the QD. In
many-body quantum mechanics, this price is given a name, namely Hubbard U .

The Coulomb blockade is the model led by an effective Hubbard U which in the
simplest case depends on size R of the QD in the following fashion [1]:

U =
C

Rβ
, (1)

where value of β ∈ [0.33, 1] depends on the confinement potential. As demonstrated
earlier, β ≈ 0.33 when confinement is quasi-triangular and β approaches 1 as con-
finement tends towards a quasi-square well [1]. We propose to understand CB in an
assembly of QDs by combining the single dot result (eq. (1)) with Kane’s approach
[6].

2. Size disorder

As stated in the Introduction, our aim is to understand CB for a distribution of
QDs. The growth of the QDs is a stochastic process and it appears reasonable to
assume dots with a Gaussian distribution of radius R centered around a mean R0,

PR =
1√
2πσ

exp
(
− (R−R0)2

2σ2

)
, (2)

U0 =
C

R0
β
, (3)

where we pause to define a mean Hubbard U0 related to the mean dot radius R0.
The CB line shape is determined by transforming eq. (2) to the energy axis as is

commonly done

P (U) =
1√
2πσ

∫ ∞

0

δ

(
U − C

Rβ

)
exp

(
− (R−R0)2

2σ2

)
dR. (4)

This can be solved quite easily to obtain

P (U) =
1

σ
√

2π

C1/β

βU (1+β)/β
exp


−C2/β

2σ2

(
1

U1/β
− 1

U
1/β
0

)2

 . (5)

The CB line shape is approximately Gaussian for small σ/R0 as can be seen in
figure 1. Another aspect worth noting is that the mean Hubbard U0 and the
location of the Hubbard U peak are not identical. To see this, we set derivative of
P (U) (eq. (5)) to zero and obtain

Up = U0

(
−R2

0/σ2 +
√

R4
0/σ4 + 4(β + 1)R2

0/σ2

2(β + 1)

)β

. (6)
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Figure 1. The distribution P (U) vs. U for size disorder. Horizontal arrows
indicate the downshift. The values assumed for the plot above are U0 = 0.2
eV, R0 = 5 nm and β = 1.

Figure 2. Up/U0 vs. β for size disorder. Clearly suppression of CB increases
with β and also disorder. We assumed R0 = 5 nm for the plot above.

For σ/R0 → 0, Up = U0, as expected. However, for reasonable σ the above
expression can be Taylor expanded and neglecting the third- and higher-order terms,
we obtain

U0 − Up = ∆U ≈ U0(β + β2)
σ2

R2
0

. (7)

Thus we see a clear downshift. This is shown in figure 1 by horizontal arrows.
The peak in energy plot is at P (Up). We can obtain an approximate expression

for the full-width at half-maximum (FWHM) (UFWHM) of the energy profile if the
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Figure 3. The distribution P (U) vs. U for confinement disorder. Horizontal
arrows indicate the downshift. The values assumed for the plot above are U0

= 0.4 eV and R = 5 nm.

prefactor dependence U (1+β)/β is ignored. This is calculated for reasonably small
σ/R0 as

UFWHM ≈ C

R0

β

Rβ
0

2
√

2 ln 2 σ. (8)

Note that this is an approximate result. A larger value of UFWHM is expected if
the full expression is employed.

For a better insight we analyse Up/U0 with respect to β. This has been depicted
in figure 2. It can be seen that the ratio decreases quadratically with increasing β,
i.e. the suppression of CB is more pronounced for quasi-square well confinement
as compared to quasi-harmonic confinement. Another feature worth noting is that
ratio decreases with increasing value of σ/R0, which implies that the suppression
becomes more pronounced for greater disorder.

3. Confinement disorder

In spite of the most sophisticated experimental techniques, the growth of QDs
may lead to irregular charge distribution. This, in turn, gives rise to confinement
potentials with considerable disorder. We have also seen that β (eq. (1)) depends on
confinement potential. For the sake of simplicity we model disorder in confinement
by a Gaussian distribution in β. Here we assume radius of the QDs to be fairly
constant (R) to avoid unnecessary complications. Thus we have

Pβ =
1

σ
√

2π
exp

(
− (β − β0)2

2σ2

)
(9)

and we pause once again to define U0 related to mean β0.
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U0 =
C

(R/R0)β0
. (10)

Here we have taken ratio of R and R0 to ensure that the denominator is dimen-
sionless. For the rest of the analysis, we take R0 = 1 nm. Transforming eq. (9) to
the energy axis as was done before, we obtain

P (U) =
1

U(σ ln R)
√

2π
exp

[
− (lnU − ln U0)2

2(σ ln R)2

]
. (11)

This log normal distribution in U is depicted in figure 3. Locating the peak of
the distribution obtained by the standard method of equating derivative to zero we
obtain

U0 − Up = ∆U = U0

[
1− exp{−(σ ln R)2}] . (12)

For small σ ln R, which is the case generally, the above expression can be appropri-
ately approximated to

∆U ≈ U0 (σ ln R)2. (13)

Once again we see a downshift in U . To obtain the dependence of downshift on
disorder we need to quantify the same. We reasonably treat FWHM as the amount
of disorder. For small σ, FWHM is calculated to be

UFWHM ≈ C
ln R

Rβ0
(2
√

2 ln 2σ). (14)

Hence we obtain UFWHM ∝ σ. Thus alternately we can also measure disorder in
terms of σ. Equation (13) shows that suppression of CB increases with σ. Once
again we are able to demonstrate the increase in suppression of CB with increasing
disorder.

4. Conclusion

Some workers have argued that the size distribution in an assembly of QDs is
log normal, while others have suggested bimodal distribution in the case of III–V
semiconductor QDs. We are currently examining CB for such distribution.

Even in the quantum many-body calculations, the CB of the additional electron
does not appear to depend on the number of electrons already added to the QD.
In a series of careful calculations carried out by Pandey et al [1] it was found that
exponent β has a very weak dependence on the number of electrons (N) in the QD.

β(N) ∼ Nη, η ≈ 0.05. (15)

Hence we are justified in ignoring this N dependence in our analysis.
Very interestingly we observe that both types of disorders (size and confinement

potential) shift the CB to a lower value. Thus we may expect an attenuation in
the CB. We pause to realize the physical significance of this. There is bound to
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be a disagreement between theoretically calculated values and experimental values
as the former are obtained by usually considering a single QD while experiments
are usually carried out on an assembly of QDs. This has been noticed earlier in
the context of photoluminescence spectra [7,8] and band gap discrepancies [9]. We
are currently examining the experimental consequences of the calculations reported
herein.
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