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Abstract. We summarize recent developments in the field of higher dimensional
bosonization made by Setlur and collaborators and propose a general formula for the
field operator in terms of currents and densities in one dimension using a new ingredi-
ent known as a ‘singular complex number’. Using this formalism, we compute the Green
function of the homogeneous electron gas in one spatial dimension with short-range inter-
action leading to the Luttinger liquid and also with long-range interactions that lead to a
Wigner crystal whose momentum distribution computed recently exhibits essential singu-
larities. We generalize the formalism to finite temperature by combining with the author’s
hydrodynamic approach. The one-particle Green function of this system with essential
singularities cannot be easily computed using the traditional approach to bosonization
which involves the introduction of momentum cutoffs, hence the more general approach
of the present formalism is proposed as a suitable alternative.
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1. Introduction

As the term suggests, ‘bosonization’ is an effort to recast theories involving entities
that are not bosons in terms of bosons that are typically expressed in terms of
bilinears of the original fields. Indeed it is even possible to recast theories involving
bosons in terms of other bosons. This activity is not merely a pedantic exercise, for
the end result of these efforts is a nonperturbative technique for studying the origi-
nal theory. In particular, applying this technique to fermions in one spatial dimen-
sion leads to what are known as non(Landau)-Fermi liquids where the momentum
distribution is continuous at the Fermi momentum. Thus one can bosonize fermi-
ons, spins and even complex scalar fields which are themselves bosons. Bosoniza-
tion, according to our understanding, is nothing but the polar representation of
a complex number. Bosonization of spins is accomplished by polar decomposing
the ladder operators which leads to a semiclassical theory of spins. Complex scalar
fields may be easily bosonized by polar decomposition as well. One may suspect
that a similar decomposition should be feasible for fermions too. This has proved
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harder than one might hope. In one spatial dimension, the Thirring model which
describes relativistic fermions self-interacting via a short-range repulsion was shown
to be equivalent to the so-called Sine-Gordon theory which involves scalar fields [1].
This technique has been adapted to study condensed matter problems where the
parabolic dispersion of the free fermions in Galilean invariant systems is linearized
near the Fermi points so that the fermions now have linear dispersion and are mov-
ing with the Fermi velocity. The Fermi velocity takes on the role of the speed of
light making the analogy complete. In more than one dimension, this program has
not been particularly successful. In hindsight, it appears that it is premature to
regard the framework available even in one spatial dimension as a closed subject.
The Luttinger model caricature, it seems, is unable to handle some exotic situa-
tions involving truly long-range interactions in condensed matter systems. This
was pointed out by the present author and this work is a summary and continu-
ation of earlier works [2–6]. The work of Schulz [7] on electrons interacting with
potential (V (x) ∼ 1/|x|) using standard bosonization techniques is able to study
the structure factor of the Wigner crystal quite effectively but when it comes to
the one-particle Green function, the results are very sketchy and cutoff dependent.
It is not clear whether the method of Schulz can be used to study the one-particle
Green function of a 1D Fermi system with potential V (x) ∼ −|x|, since our re-
sults show that the momentum distribution does not depend on arbitrary cutoffs,
whereas they are mandatory in such standard bosonization methods. Furthermore,
there are some technical subtleties involving the so-called Klein factors that ensure
fermion commutation rules between Fermi fields in the traditional approach that
are far from satisfactory. The purpose of the present article is to summarize re-
cent developments in the subject made by the author and his collaborators and to
present a formula for the field operator in terms of currents and densities that is
valid in a general sense. We stress that this write up is by no means a review of the
entire field of bosonization, it only highlights Setlur and collaborator’s the author’s
contributions, while not completely ignoring the work of others. We then go on
to use this formula to calculate the Green functions of interacting systems in one
spatial dimension, one with short-range repulsion leading to the Luttinger liquid
and also with a specific long-range interaction which leads to the Wigner crystal.

At this stage it is appropriate to survey some relevant literature on the sub-
ject of bosonization of fermions in general and higher-dimensional bosonization in
particular. This subject, as is well-known, started with the papers of Tomonaga
and Luttinger. Later on, Lieb and Mattis, Luther, Luther and Peschel developed
it further. All these well-known literature may be found in the reviews and texts
[8,9]. This program was taken up by Haldane [10] who coined the term ‘Luttinger
liquid’ to describe systems whose Green functions have power law singularities
rather than simple poles. The generalization of these ideas to higher dimensions
was attempted by Luther. The effort to generalize these ideas to higher dimensions
seemed phenomenologically ill-founded as one does not expect to see non-Fermi
liquids in higher dimensions except perhaps for very long-range interactions which
are un-physical. However, the phenomenon of high temperature superconductivity
suggested the need for such a ground state. In the mid-nineties starting from the
work of Haldane [11], Castro-Neto and Fradkin [12], Houghton et al [13], Kopietz
and collaborators [14] attempted to develop a theory in higher dimensions along
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the lines of the Tomonaga–Luttinger theory. The works of Kopietz and collabora-
tors deserve special mention since they have persisted with this technique over the
years. These efforts closely mimic the theory in one dimension that is valid only in
the sense of the random phase approximation (RPA) [15]. Attempts to go beyond
this approximation using the original formalism seems futile. Hence Setlur and
collaborators developed a new scheme loosely based on the work of Castro-Neto
and Fradkin [12] to overcome these difficulties. In what follows, we describe the
outcome of these efforts made by Setlur and his collaborators and go on to write
down a formula for the field operator in terms of currents and densities.

2. Review of the general formalism

In what follows we describe briefly the main results in Setlur’s earlier works. It
must be stressed that this write-up is not a substitute for a reading of those works.
Let ck and c†k be fermion annihilation and creation operators. We may define new
operators using these that are called sea-bosons. They are in general, complicated
nonlocal combination of number conserving products of Fermi fields [3]. However,
in the sense of the random phase approximation (RPA) we may write

Ak(q) ≈ nF(k − q/2)(1 − nF(k + q/2))c†k−q/2ck+q/2. (1)

Here nF(p) = θ(kF − |p|) is the momentum distribution of free fermions. This
object Ak(q) has been shown to obey the following commutation rules [3]:

[Ak(q), A†
k′(q′)] = nF(k − q/2)(1 − nF(k + q/2))δk,k′δq,q′ ;

[Ak(q), Ak′(q′)] = 0; [A†
k(q), A†

k′(q′)] = 0. (2)

The defining equation for Ak(q) may be partially inverted and a formula for the
number conserving product of two Fermi fields may be written down in terms of
these sea-bosons. Define ck,< = nF(k)ck and ck,> = (1 − nF(k))ck. At the level
of RPA we may write, c†k−q/2,<ck+q/2,> ≈ Ak(q) and c†k+q/2,<ck−q/2,< ≈ 0 and

c†k+q/2,>ck−q/2,> ≈ 0. Thus at the RPA level c†k+q/2ck−q/2 ≈ Ak(−q) +A†
k(q). In

general (beyond RPA) we may write [3] (q �= 0),

c†k+q/2ck−q/2 ≈ Ak(−q) +A†
k(q)

+
∑
q1

A†
k+q/2−q1/2(q1)Ak−q1/2(−q + q1)

−
∑
q1

A†
k−q/2+q1/2(q1)Ak+q1/2(−q + q1). (3)

The above identification together with eq. (2) can be shown to be sufficient to
reproduce the exact commutators between Fermi bilinears. The correspondence in
eq. (3) is also sufficient to reproduce all the dynamical correlation functions of the
operator c†k+q/2ck−q/2 of the free theory provided we set the kinetic energy operator
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to be K =
∑

kq

(
k·q
m

)
A†

k(q)Ak(q) (for more details, please consult our published
works). Thus any theory involving fermions that conserve their total number may
be re-expressed in terms of these bosons. The main purpose of the present article
is to fully invert the defining equation for Ak(q) and express the field operator
cp alone in terms of these bosons. To accomplish this, we first attempt to polar
decompose the field operator in real space ψ(�r ) = 1√

V

∑
p eip·�rcp.

ψ(�r ) = eiΛ([ρ];�r )e−iΠ(�r )
√
ρ(�r ). (4)

Here we have introduced a new variable Π(�r ) which is a canonical conjugate to
ρ(�r ) = ψ†(�r )ψ(�r ) [16]. This means that [Π(�r ),Π(�r ′)] = 0 and [Π(�r ), ρ(�r′)] =
iδ(�r − �r ′) and of course [ρ(�r ), ρ(�r ′)] = 0. As an operator we know that ρ is
nonnegative. It is then well-known that Π cannot be self-adjoint. In fact we may
write Π(�r ) = X0 + Π̃(�r ) where Π̃(�r ) is strictly self-adjoint and X0 is conjugate to
the total number [X0, N̂ ] = i. In what follows we regard the number operator to
be equal to infinity (thermodynamic limit) in which case X0 should be arbitrarily
small in order for it to be a conjugate to the number operator. Hence we shall not
be too careful and we shall treat X0 as a real c-number and ignore it altogether.

We now divert our attention and examine the property of the fermion current
(density) operator J(�r ) = Im[ψ†(�r )∇ψ(�r )]. In two and three dimensions, we may
construct the operator W = ρ(∇ × J) − ∇ρ × J. We first represent currents and
densities in real space ρ(�r ) =

∑
i δ(�r−�ri) and J(�r ) =

∑
i
−i∇i

2 δ(�r−�ri)+
∑

i δ(�r−
�ri)−i∇i

2 . By acting this on fermionic wave functions in real space we conclude that
W ≡ 0. This means that W = ρ2∇× 1

ρJ = 0. In other words, there exists a scalar
Π such that J = −ρ∇Π. Independently we may argue that a more general ansatz
J = −ρ∇Π + C([ρ];�r ) fails to reproduce the current–current commutator unless
C ≡ 0. It appears then, that the function Λ in eq. (4) should be independent of
�r. This Λ is crucial since it determines the statistics of the field ψ. In particular,
setting Λ = 0 describes bosons rather than fermions. In our earlier work [6], we
argued that the ansatz in eq. (4) may be used to derive an action in terms of Π and
ρ. In the Lagrangian formalism, there are no operators. We denote the operators Π
and ρ to the status of real numbers and use eq. (4) in the action for free fermions,
S =

∫ −iβ

0
dt
∫

ddxψ†(i∂t + ∇2

2m )ψ. This led to the following action for free fermions:

S =
∫ −iβ

0

dt
∫

ddx

⎛
⎝ρ∂tΠ − VF([ρ];x) −

ρ(∇Π)2 + (∇ρ)2

4ρ

2m

⎞
⎠ . (5)

Here VF is a functional of the density that has to be fixed by making contact
with the properties of the free theory. We have shown that the RPA limit of
the above action may be rigorously derived using sea-bosons [6]. We have also
shown [6] that this leads to the following expression for the generating function
of density correlations of a homogeneous electron gas in terms of the correspond-
ing quantity for the free theory. If Z([U ]) is the function that generates den-
sity correlations of the homogeneous electron gas where the electrons interact
with a potential vq and Z0([U ]) is the corresponding quantity of the free the-
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ory (for example
(

δ2Z([U ])
δUq,nδU−q,−n

)
U≡0

≡ 〈ρq,nρ−q,−n〉 and 〈Tρ(q, t)ρ(−q, t′)〉 =∑
n e−wn(t−t′)〈ρq,nρ−q,−n〉 and wn = 2πn/β is the Matsubara frequency) then

Z([U ]) =
∫
D[U ′]e

�
qn

V
2βvq

(Uqn−U ′
qn)(U−q,−n−U ′

−q,−n)
Z0([U ′]). (6)

It appears that we have to judiciously combine the Hamiltonian or the operator
version and the Lagrangian version in order to obtain useful results. Thus we wish
to now revert to the operator description to try and express the field operator
explicitly in terms of currents and densities. We observed that current–current
commutator implies that Λ is independent of �r. Unfortunately, this conflicts with
the requirement that ψ obey fermion commutation rules. Indeed, imposing these
rules on ψ in eq. (4) leads to the following constraint on Λ:

eiΛ([ρ];�r )eiΛ([{ρ(�x)+δ(�x−�r )}];�r ′) = −eiΛ([ρ];�r ′)eiΛ([{ρ(�x)+δ(�x−�r ′)}];�r ). (7)

If Λ is independent of �r this is impossible. Hence we seem to have reached an
impasse. There is a way out of this difficulty using the notion of what may be called
‘singular complex numbers’. We describe this concept in the following section.

3. Field operator using singular complex numbers

In our earlier work [6] we argued that the field operator in momentum space may
be expressed directly in terms of the sea-bosons provided we invoke the concept of
a singular complex number: wp = e−iN0ξp , where N0 → ∞ and ξp is arbitrary.
Therefore, wpw̄p′ = w̄p′wp = δp,p′ . This rather unusual quantity may be motivated
using the following argument. Consider the number operator nk. We may introduce
formally a conjugate Pk namely an operator that obeys [Pk, Pk′ ] = 0 and [Pk, nk′ ] =
iδk,k′ . If we are going to treat nk as a c-number namely, nk = nF(k)1, then we
have to ensure that Pk is a formally infinite c-number in order that it is a conjugate
to nk. Thus wk = e−iPk has the properties that we have just described. We argue
that the term eiΛ may be rewritten using these complex numbers. Let us invoke
the following ansatz that is inspired from our early work [2]:

ψ(�r ) =

(
1√
N0

∑
p

eiEp([ρ];�r )wpeikFp̂·�rnF(p)

)
e−iΠ(�r )

√
ρ(�r ), (8)

ψ†(�r ) =
√
ρ(�r )eiΠ(�r )

(
1√
N0

∑
p

e−iEp([ρ];�r )w̄pe−ikFp̂·�rnF(p)

)
. (9)

Here Ep([ρ];�r ) is real. The idea is that the rapidly varying part is written separately
as a multiplying exponent e±ikFp̂·�r. The slowly varying portion is in the density
and phase variables. Notice that the theory presented here is very general and
there are no momentum cutoffs at the outset. Therefore, the terms ‘slow’ and
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‘fast’ are merely suggestive of approximations that will have to be used in the
practical computations where such a distinction acquires concrete meaning. If we
postulate that ∇Ep([ρ];�r ) = −∇E−p([ρ];�r ) then we find that, ρ(�r ) = ψ†(�r )ψ(�r )
and J(�r ) = Im[ψ†(�r )(∇ψ(�r ))] = −ρ(�r )∇Π(�r ). Therefore, current algebra – the
mutual commutation rules between currents and densities is then trivially obeyed.
In other words, eiΛ([ρ];�r ) = 1√

N0

∑
p eiEp([ρ];�r )wpeikFp̂·�rnF(p) is unitary. Now we

have to apply fermion commutation rules. We expect to derive a recursion relation
similar to eq. (7). Indeed we find that both the requirement {ψ(�r ), ψ(�r ′)} = 0
and {ψ(�r ), ψ†(�r ′)} = δ(�r−�r ′) are obeyed if we ensure that the following recursion
holds:

e−iEp([{ρ(�x)+δ(�x−�r ′)];�r )eiEp([ρ];�r ) = −e−iEp′ ([{ρ(�x)+δ(�r−�x)}];�r ′)eiEp′ ([ρ];�r ′).

(10)

In one dimension, we try the following ansatz. Note that p̂ = ±1 in one di-
mension. Ep′([ρ]; r′) =

∫∞
−∞ dxρ(x)Dp̂′(x, r′). The recursion relation implies,

e−iDp̂(r′,r) = −e−iDp̂′ (r,r′) whereas the unitarity condition forces us to choose,
Dp̂′(x, r′) = −p̂′Dred(x, r′). Both these are satisfied by the choice Dp̂′(x, r′) =
−πp̂′θ(x − r′), where θ(x) is the Heaviside step function (θ(x ≤ 0) = 0 and
θ(x > 0) = 1). We have to verify that this choice reproduces the Green func-
tion of the noninteracting theory. This is shown later on. In higher dimensions we
similarly try, Ep([ρ];�r ) =

∫
ddxρ(�x)Dp̂(�x,�r ). The recursion condition in higher

dimensions: e−iDp̂(�r ′,�r ) = −e−iDp̂′ (�r,�r ′) seems rather hard to satisfy since p̂ and
p̂′ can be parallel to each other, antiparallel, or anything in between. If we are
willing to require that only {ψ(�r ), ψ†(�r ′)} = δ(�r − �r ′) be obeyed then a simple
choice might be sufficient. In any event it is the propagator that we are interested
in and for this it is this rule that is important. In this case p̂ = p̂′ and we may
choose Dp̂(�r, �r ′) = πθ(p̂ · (�r − �r ′)). This choice obeys both the unitarity condition
∇Dp̂(�r, �r ′) = −∇D−p̂(�r, �r ′) and the recursion. The recursion breaks down when
p̂ · (�r − �r ′) = 0 but these are a set of points of measure zero. Unfortunately, it
can be shown that this choice fails to reproduce the free propagator. This sug-
gests that the function Ep may be a nonlinear function of the density in higher
dimensions. Therefore, in higher dimensions it is better to try and express the
field variable directly in terms of sea-bosons. A partially correct formula has been
provided in an earlier work [6]. It appears that more work is needed to make that
agenda practically useful. For now we use the expression for the field in terms of
the hydrodynamic variables to calculate the Green function in one dimension, first
of the Luttinger liquid. In the case of the Wigner crystal we find that a reinterpre-
tation is needed that essentially involves re-expressing the field directly in terms of
sea-bosons. For example, we may rewrite the field in one dimension as follows:

ψ(r, t) ≈
(

e−iεFt

√
L

∑
p

e
�

q e−iqr[− p̂π
qL ρq(t)−iX−q(t)]wpeikFp̂rnF(p)

)
. (11)

The rapidly varying e−iεFt has to be put in by hand, however it may be motivated
by realizing that the Xq=0 term is conjugate to the total number of particles and
this picks up a contribution similar to the one suggested upon time evolution with
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respect to the Hamiltonian of the system since, for example, the Hamiltonian of
the free Fermi theory may be written as H = Nε0 +

∑
k,q

k·q
m A†

k(q)Ak(q). If we set
ε0 = εF then we recover the factor suggested. We write ρq =

∑
k[Ak(−q)+A†

k(q)] =
ρR(q)+ ρL(q), where ρR(q) =

∑
k>0[Ak(−q)+A†

k(q)] and ρL(q) =
∑

k<0[Ak(−q)+
A†

k(q)] and Xq = ikFq
Nq2 (ρR(−q) − ρL(−q)). If p̂ = +1, then [− π

qLρq − iX−q] =
− 2π

qLρR(q). If p̂ = −1, we have [ π
qLρq − iX−q] = 2π

qLρL(q). Thus we have the
familiar result for right and left movers. We may write ψ(r, t) = ψR(r, t) + ψL(r, t)
or,

ψ(r) ≈
(

1√
L

∑
p>0

e−
�

q e−iqr 2π
qL ρR(q)wpeikFrnF(p)

)

+

(
1√
L

∑
p<0

e
�

q e−iqr 2π
qL ρL(q)wpe−ikFrnF(p)

)
. (12)

As usual we have [ρR(q), ρR(−q)] =
∑

k>0[Ak(−q), A†
k(−q)]+∑k>0[A

†
k(q), Ak(q)] =

−qL/2π and [ρL(q), ρL(−q)] = qL/2π. This expression is well-known to the tra-
ditional bosonizing community and is known to reproduce the exponents of the
Luttinger liquid correctly. In passing, we note that the present formalism does not
allow terms such as ψ†

R(x)ψL(x′), this being identically zero due to the singular
complex number wp. Thus in our formalism, the terms responsible for backward
scattering come from the quadratic corrections on the right-hand side of eq. (3).
Backward scattering is synonymous with large momentum transfer, which in turn
means corrections to RPA, which then translates to quadratic corrections in eq. (3).
Now we wish to compute the Green function of the Wigner crystal whose momen-
tum distribution has been computed in an earlier work [5]. There we considered
electrons on a circle interacting via a long-range interaction V (x) = −(e2/a2)|x|,
where |x| is the chord length. The ground state of this system was shown to be
crystalline with lattice spacing lc = π/kF. It was shown that the momentum dis-
tribution of the Wigner crystal at zero temperature is given by

n̄p =
1
2

(
1 + e

− mω0
k2
F−p2

)
nF(p) +

1
2

(
1 + e

− mω0
p2−k2

F

)
(1 − nF(p)), (13)

where ω0 =
√

2e2kF
πma2 . This was derived using the general formula for the momentum

distribution in terms of sea-bosons,

n̄p = nF(p)
1
2
(1 + e−2

�
q〈A†

p+q/2(q)Ap+q/2(q)〉)

+(1 − nF(p))
1
2
(1 − e−2

�
q〈A†

p−q/2(q)Ap−q/2(q)〉). (14)

First we wish to generalize eq. (14) to a finite temperature. This is important
since we know that even for a noninteracting system, the momentum distribution
at absolute zero is discontinuous at k = kF but is continuous at finite temperature.
A naive approach that just performs thermodynamic averaging over the sea-boson
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occupation fails. We have to adopt a more subtle approach. One possibility is to
express the sea-bosons in terms of the hydrodynamic variables and use the action in
eq. (5). This can possibly be made to work out but is really not worth the effort. It
is better to gain some intuition from this effort to guess the proper generalization.
We propose the following generalization:

n̄p = nF(p)
1
2
(1 + λ(p)e−2

�
q〈〈A†

p+q/2(q)Ap+q/2(q)〉〉)

+(1 − nF(p))
1
2
(1 − λ(p)e−2

�
q〈〈A†

p−q/2(q)Ap−q/2(q)〉〉). (15)

Here λ(p) contains the temperature information of the free theory only. The boson
occupation in the exponent is defined as follows: 〈〈· · ·〉〉 = 〈· · ·〉β −〈· · ·〉β,0. That is,
the difference between the interacting theory at finite temperature and free theory
at finite temperature. To calculate the finite temperature sea-boson occupation we
have to invoke the hydrodynamic description. We first express the sea-bosons in
terms of hydrodynamic variables, namely the velocity potential and density. It is
given as follows: Ak(q) = [Ak(q), A†

k(q)]( kF
N |q|ρ−q − iXq). Here we have to make

sure that only the s-wave contributes, in other words we ignore complications caused
by the dot product k · q and replace it by its extremum value. This correspondence
automatically reproduces the RPA level identities also valid only in the s-wave
sense:

∑
k(Ak(q) + A†

k(−q)) = ρ−q and
∑

k
ikF
N |q| (Ak(q) − A†

k(−q)) = Xq. We

may also re-express these directly in terms of Fermi fields, ρq =
∑

k c
†
k+q/2ck−q/2

and Xq =
∑

k
ikF
N |q|sgn(k · q)c†k−q/2ck+q/2. This is beneficial since we may now

easily compute the correlation functions of these operators at finite temperature.
In general, 〈A†

k(q)Ak(q)〉 = [Ak(q), A†
k(q)]( π2

q2L2 〈ρqρ−q〉+ 〈X−qXq〉 − π
|q|L ). For a

Luttinger liquid the zero temperature theory is

H =
∑
k,q

k · q
m

A†
k(q)Ak(q) +

∑
q

v0
L

[A(−q)A(q) +A†(q)A†(−q)]

=
∑

q

v|q|d†c(q)dc(q), (16)

where

dc(q) =

√
2π
|q|L

(
vF + v

2v

)1/2

A(q) +

√
2π
|q|L

(
vF − v

2v

)1/2

A†(−q), (17)

d†c(−q) =

√
2π
|q|L

(
vF + v

2v

)1/2

A†(−q) +

√
2π
|q|L

(
vF − v

2v

)1/2

A(q),

(18)

where v =
√
v2
F − v2

0
π2 and [dc(q), d†c(q)] = 1 and ρ−q = A(q) + A†(−q) and

Xq = iπ
|q|L (A(q) − A†(−q)) and A(q) =

∑
k Ak(q) and [A(q), A†(q)] = |q|L

2π , ρ−q =
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(dc(q)+d†c(−q))ca and Xq = (dc(q)−d†c(−q))cb, ca =
√

|q|L
2π ((vF+v

2v )1/2−(vF−v
2v )1/2)

and cb =
√

|q|L
2π ((vF+v

2v )1/2 + (vF−v
2v )1/2) iπ

|q|L . In other words, 〈A†
k(q)Ak(q)〉 =

[Ak(q), A†
k(q)](vF

v − 1) π
|q|L . Substituting this into eq. (14) leads to a momentum

distribution that has power-law singularities with anomalous exponent γ = vF
v − 1.

In general, we have to use the RPA-level action in eq. (5) to calculate the fi-
nite temperature expectation values namely, 〈ρqρ−q〉 and 〈XqX−q〉. Let us now
use this method to find the proper generalization of eq. (13) to finite tempera-
ture. First, we have to find λ(p). By making contact with the free theory we find
λ(p) = [sgn(kF − |p|)]−1tanh[β

2 (μ− εp)]. When this procedure is implemented we
obtain

n̄p =
1
2

(
1 + λ(p)e

− mω0
k2
F−p2 coth(

βω0
2 )
)
nF(p)

+
1
2

(
1 − λ(p)e

− mω0
p2−k2

F
coth(

βω0
2 )
)

(1 − nF(p)). (19)

Therefore the essential singularity remains even at finite temperature. Finally we
wish to calculate the dynamical propagator of the Wigner crystal. It seems that
in this case even eq. (8) is not sufficient. We have to express the field operator in
momentum space directly in terms of the sea-bosons. A partially correct formula
was proposed in an earlier work [6]. Instead of searching for a rigorous approach,
we directly make the following surmise for the propagators that is motivated by
comparing with limiting cases. Define cp,< = nF(p)cp and cp,> = (1 − nF(p))cp.
Then

〈c†p,>(t′)cp,>(t)〉 = (1 − nF(p))
1
2
(1 − λ(p)

×e−2
�

q〈〈A†
p−q/2(q,t)Ap−q/2(q,t)〉〉)

×e−iεF(t−t′)E(|p| − kF, t− t′), (20)

〈c†p,<(t′)cp,<(t)〉 = nF(p)
1
2
(1 + λ(p)

×e−2
�

q〈〈A†
p+q/2(q,t)Ap+q/2(q,t)〉〉)

×e−iεF(t−t′)E(|p| − kF, t
′ − t). (21)

Here the envelope function has to be chosen with care. We make the following
definition which we justify a posteriori.

E(q, t− t′) =

∫∞
0

dωW (q, ω)e−iω(t−t′)∫∞
0

dωW (q, ω)
, (22)

where W (q, ω) is the spectral weight,

W (q, ω) = Im
(

1
ε(q, ω − iδ)

)
. (23)
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In one dimension, the spectral weight is a delta function at the collective mode.
Hence in one dimension,

E(q, t− t′) = e−iωc(q)(t−t′). (24)

In more than one dimension we have both the particle–hole mode and collective
mode. For example in the case of the jellium, the collective mode contribution
occurs at the plasma frequency and this leads to a rapidly oscillating contribution
which may be ignored. The important contribution comes from the particle–hole
mode, which even though is not infinitely long-lived, makes a significant contribu-
tion. For the noninteracting theory in any number of dimensions this prescription
gives us

Efree(q, t− t′) = e−ivF|q|(t−t′). (25)

One may then use the Kubo–Martin–Schwinger (KMS) boundary conditions to
evaluate 〈cp(t)c†p(t′)〉 from these propagators. First we observe that this prescrip-
tion reproduces the dynamical Green function of the free theory in any number of
dimensions both at finite temperature and at zero temperature. We may use these
to compute the dynamical propagator of the Luttinger liquid and see if these results
agree with those of the more traditional approaches. Using the traditional method,

〈ψ†
R(x′, t′)ψR(0, t)〉 = e−iεF(t−t′) e−ikFx′

2πi[x′ − v(t′ − t)]

[
1

Λ|x′ − v(t′ − t)|
]γ

.

(26)

Taking the Fourier transform with respect to x′ we obtain,

〈c†p(t′)cp(t)〉 = e−iεF(t−t′)e−i(|p|−kF)v(t−t′)

×1
2

[
1 + sgn(kF − |p|)

( |kF − |p||
Λ

)γ]
. (27)

This is completely identical to the result using eqs (20) and (21) since ω(q) = v|q|.
This approach may seem quite ad-hoc but it would be very surprising indeed if
a theory that reproduces all dynamical aspects of the free theory both at finite
temperature and zero temperature correctly in any number of dimensions and also
able to reproduce the very nontrivial dynamical propagator of the Luttinger liquid
correctly in one dimension is not valid in general. Besides, for the jellium, the clever
choice of the envelope function ensures that one-particle Green function is gapless
even though the collective mode is gapped. Assuming that this is valid in general
we may write down the dynamical propagator of the Wigner crystal as follows:

〈c†p(t′)cp(t)〉 =
1
2

(
1 + λ(p)e

− mω0
k2
F−p2 coth(

βω0
2 )
)
nF(p)e−iεF(t−t′)eiω0(t−t′)

+
1
2

(
1 − λ(p)e

− mω0
p2−k2

F
coth(

βω0
2 )
)

×(1 − nF(p))e−iεF(t−t′)e−iω0(t−t′), (28)
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〈cp(t)c†p(t′)〉 =
1
2

(
1 − λ(p)e

− mω0
k2
F−p2 coth(

βω0
2 )
)
nF(p)e−iεF(t−t′)eiω0(t−t′)

+
1
2

(
1 + λ(p)e

− mω0
p2−k2

F
coth(

βω0
2 )
)

×(1 − nF(p))e−iεF(t−t′)e−iω0(t−t′). (29)

Note that the above formulas are independent of arbitrarily chosen momentum
cutoffs and depend only on the microscopic parameters present in the original
Hamiltonian with parabolic dispersion. This is in contrast with the conventional
approaches to bosonization [7] where such cutoffs are mandated by the formalism.
In this work, Schulz remarks that the time-dependent and temperature-dependent
formulas for the propagators are complicated in his formalism and hence not too
illuminating. This is in contrast with our ‘momentum space bosonization’ approach
where the above general formulas are not only simple but also illuminating.

4. Conclusions

To conclude, we have computed the dynamical Green function of the Wigner crystal
in one dimension whose momentum distribution exhibits essential singularities in
momentum space. We have generalized the momentum distribution to finite tem-
perature. We have written down a general formula for the field operator without
any Klein factors in one dimension in terms of currents and densities that does not
involve momentum cutoffs and applies directly to the Fermi gas with a parabolic
dispersion rather than to its caricature namely the Luttinger model. Lastly, we
have summarized all the developments in the subject made by the author and his
collaborators in order to facilitate further developments.
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