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Abstract. A numerical study of ultra-short self-soliton switching along with the corre-
sponding analysis of coupler parameters is carried out for a Kerr coupler with intermodal
dispersion. The influence of perturbations like third-order dispersion, self-steepening and
intrapulse Raman scattering, on switching characteristics is also studied.
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1. Introduction

Fiber couplers, generally known as directional couplers, have become an essential
component of optical fiber technology. They have been used for a multitude of
fiber-optic devices which require splitting of an optical field into two coherent but
physically separated parts.

After the pioneering work of Jensen [1], Maier [2] and Trillo et al [3], nonlin-
ear directional couplers (NLDCs) have been studied extensively [4–20,22–24] in the
context of all-optical soliton switching. Jensen showed that one can switch a contin-
uous signal from one core to the other by varying the input power of the signal. The
idea when applied to pulse switching led to pulse distortion and break-up, resulting
in inefficient switching. Since the nonlinear phase modulation is proportional to the
instantaneous intensity, different portions of the pulse envelope switch differently,
i.e. not simultaneously, leading to pulse distortion and pulse break-up. The pulse
break-up during switching is undesirable because it results in inefficient switching
and causes cross-talk of the signals. Trillo et al showed that pulse break-up could
be avoided, if one used soliton pulse as a signal. The physics behind it can be un-
derstood from the fact that the nonlinear phase modulation is constant across the
entire soliton pulse, owing to which the pulse switches as a whole, i.e., as a single
unit and no pulse break-up takes place. Since the work of Trillo et al [3], there
has been a great deal of activity in studying various aspects of soliton switching in
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NLDCs. In this connection the effect of intermodal dispersion on soliton switching
dynamics [5–9,13], multistability of switching behavior [22,23], switching between
bistable states of a soliton [24], effect of higher order perturbative terms in the non-
linear Schrödinger equation on soliton switching dynamics [14–20] etc. have also
been considered and studied. But rarely in these works the practical aspects of an
NLDC are considered and studied properly. Keeping this in mind, in the present
work we are interested in the realization of a practical nonlinear fiber coupler in
the context of an all-optical soliton switching. It is well-known in the context of
coupled mode theory that the coupling length of a coupler depends on the coupling
coefficient C, which in turn depends on the core radius r and core-to-core separa-
tion a [21]. Couplers maintaining a constant, precise separation between the cores
cannot be fabricated with very long lengths. Therefore, we need to have a coupler
with very small coupling length. In §3 we have presented our calculations regard-
ing the design of such couplers. We observe that the coupling length is extremely
sensitive to the choice of coupler parameters such as core-to-core separation, linear
coupling coefficient and the pulse width of the signal applied. Our calculation of
the coupler length, which takes into account the above-mentioned dependencies,
shows that short coupler length requires femtosecond pulse signals [17,18].

The requirement of femtosecond pulses, in turn, necessitates the inclusion of
higher-order perturbative terms, like, the third-order dispersion (TOD), Raman
term and the self-steepening term. Apart from these, as established by Chiang [5],
intermodal dispersion (IMD) must also be accounted for. Intermodal dispersion
results in wavelength dependency of the coupling coefficient, i.e. in coupling coef-
ficient dispersion. We know that a twin-core fiber coupler is a bimodal waveguide
structure which supports two supermodes, the even mode with a symmetric field
distribution and the odd supermode with an anti-symmetric field distribution. It
was argued by Chiang [5] that since there is a dispersion mismatch between the
two supermodes one should not disregard the IMD effect as it can significantly alter
the switching characteristics of a NLDC. Intermodal dispersion was first observed
in 1997 [6], by launching short optical pulses (width of about 1 ps) in one of the
cores of a dual-core fiber with center-to-center spacing a = 4r. Our calculations in
§3 show that IMD is strictly dependent on the coupling coefficient and on the pulse
width of the signal applied.

In this work, we have presented numerical analysis of an appropriate mathe-
matical model based on the coupled-mode theory [21]. We have considered all the
relevant perturbative effects discussed above. In §2 we present a detailed discussion
on the mathematical model. The design parameters of the coupler and some typical
calculations are presented in §3. The split-step Fourier method is used to solve the
set of coupled partial differential equations, which govern the switching dynamics
in the coupler as discussed in §2. Numerical results and discussions are presented
in §4.

2. The model

We consider a homogeneous and isotropic nonlinear directional coupler with Kerr
nonlinearity, made of two identical single-mode fibers with circular cross-sections.
The pulse evolution equation inside the coupler is derived in the framework of
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the coupled mode formalism [25], using the standard slowly varying envelope ap-
proximation. In doing so, along with the expansion of the frequency-dependent
propagation constant β(ω) into a Taylor series around the carrier frequency ω0,

β(ω) = β0 + (ω − ω0)β1 +
1
2
(ω − ω0)2β2 +

1
6
(ω − ω0)3β3 + ..., (1)

where

β0 = β(ω0), βn =
(

∂nβ

∂ωm

)
ω=ω0

, n = 1, 2, 3, ... . (2)

For taking into account fiber dispersion, one also has to expand the frequency-
dependent coupling coefficient C(ω) into a Taylor series around ω0,

C(ω) = C0 + (ω − ω0)C1 +
1
2
(ω − ω0)2C2 + ..., (3)

where

C0 ≡ C(ω0), Cn =
(

dnC

dωn

)
ω=ω0

, n = 1, 2, 3, ..., (4)

to incorporate the influence of IMD on pulse evolution [5]. Since the dominant
contribution comes from the first-order coupling constant dispersion [5,7], we con-
sider the first and the second terms only in the expansion (3). As a result, taking
into account fiber dispersion up to third-order, we obtain the following perturbed
system of coupled nonlinear Schrödinger equation (CNLSE) [25,26]

i
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∂A1
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+ β1

∂A1
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+ C1

∂A2
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)
− β2

2
∂2A1
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β3

6
∂3A1

∂T 3

+γ|A1|2A1 +
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ω0

∂

∂T
(|A1|2A1) − TRA1

∂|A1|2
∂T

+ C0A2 = 0, (5)

i

(
∂A2

∂z
+ β1

∂A2

∂T
+ C1

∂A1

∂T

)
− β2

2
∂2A2

∂T 2
− i

β3

6
∂3A2

∂T 3

+γ|A2|2A2 +
i

ω0

∂

∂T
(|A2|2A2) − TRA2

∂|A2|2
∂T

+ C0A1 = 0, (6)

where A1and A2 are the slowly varying pulse envelopes in core 1 and core 2, respec-
tively. Here, γ = n2ω0/cAeff is the nonlinear parameter, where n2 is the nonlinear
Kerr coefficient (which has a typical value of 2.6 × 10−20 m2/W for standard sil-
ica fiber), c is the speed of light in free space and Aeff is the effective core area.
Here β1, β2 and β3 are the first-, second- and third-order dispersion coefficients,
respectively, and ω0 = 2πc/λ is the carrier frequency. The parameter β1 is related
to the group velocity vg of the pulse by vg = 1/β1, while β2 governs the effect of
group velocity dispersion (GVD). β3 governs the effects of third-order dispersion
and becomes important for ultra-short pulses because of their wide bandwidth. The
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term proportional to 1/ω0 is responsible for self-steepening. The intrapulse Raman
scattering resulting from the delayed Raman response, is given by the term pro-
portional to TR. Here, TR is the Raman response time which we have taken to be
3 fs [25]. Note that for a dual core coupler the overlap between the two individual
modes is small and hence we have omitted the nonlinear coupling via cross-phase
modulation.

Introducing the usual normalization [25]

U1 =
A1√
P0

, U2 =
A2√
P0

, ξ =
z

LD
, τ =

T − β1z

T0
, (7)

where LD = T 2
0 /|β2|, P0 is the pulse peak power and T0 is the pulse width of the

incident pulse, eqs (1) and (2) can be written in the form

i
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The parameters N , κ1, δ3, s, τR and κ0 are defined as [25]

N2 =
LD

LNL
=

γP0T
2
0

|β2| , where LNL =
1

γP0
,

κ1 =
C1LD

T0
, δ3 =

β3

6|β2|T0
, s =

1
ω0T0

, τR =
TR

T0
, κ0 = C0LD. (10)

Thus, κ0, κ1, δ3, s and τR are respectively the linear coupling constant, the IMD,
the TOD, the self-steepening and the Raman coefficients in the normalized unit.
The parameter N is called the order of the soliton. N can be eliminated from eqs
(8) and (9) by introducing u1 = NU1 and u2 = NU2. Thus, the nondimensional
system of CNLSE, for the case of anomalous dispersion (β2 < 0) is given by
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The above system of CNLSE is the basic system of equations in this work.
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3. Design parameters of the coupler

It is well-known that the coupling coefficient, apart from the geometry of the
waveguides of the coupler, also depends on the core-to-core separation of the cou-
pler. The coupling coefficient C in units of inverse meters is given by [21]

C =
√

2Δ
r

U2

V 3

K0

(
a
r W

)
K2

1 (W )
, (13)

where r is the core radius, Δ is the refractive index difference between the fiber
core and the cladding, and a is the center-to-center separation between the cores of
the coupler. K0 and K1 are the modified Bessel functions. The core and cladding
parameters V,U and W are given by

V =
2π

λ
r
√

2n1Δ, U =
√

1 + 2 ln V and W =
√

V 2 − U2,

where n1 is the refractive index of the core. In order to obtain C1 we need to
calculate dC/dω|ω=ω0 . Introducing the auxiliary function
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we may write

C1 =
√

2Δ
ω0r

U2

V 3

K0(a
r W )

K2
1 (W )

G. (15)

We have assumed the values of κ0. Now, using (10), (13) and (15), we can calculate
the normalized coefficient κ1. It can clearly be seen that these parameters depend
on the core radius, core-to-core separation and the pulse width. Using the following
typical fiber parameters β2 = −20 ps2/km, r = 5 μm, n1 = 1.45,Δ = 0.004, V =
2.18 and λ = 1.55 μm, we have calculated both κ1 and the coupling length LC,
which is defined as

LC =
π

2κ0

T 2
0

|β2| , (16)

for different pulse widths T0 and core-to-core separation a. It is worthwhile to men-
tion that the above definition of coupling length is strictly in the context of a π/2
linear coupler. It basically represents the length ξ at which the power completely
transfers from the input fiber to the other fiber. Some typical values are provided
in table 1. We have also provided the values of the normalized coefficient, τR, δ3

and s using eq. (10).
It can clearly be seen from table 1 that the coupling length is extremely sensitive

to the choice of the coupler parameters. Also, as mentioned in the Introduction,
table 1 shows that short coupler length does require ultra-short femtosecond pulses.
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Table 1. Values of coupler parameters.

κ0 T0 (fs) a (μm) Lc (m) κ1 τR δ3 s

0.1 1000 53.75 786.00 −0.0014 0.003 0.0009 0.0008
50 34.30 1.9571 −0.0162 0.060 0.0180 0.0164
30 31.00 0.6993 −0.0240 0.100 0.0300 0.0273
20 28.45 0.3145 −0.0318 0.150 0.0450 0.0410
10 24.05 0.0785 −0.0508 0.300 0.0900 0.0820

0.5 1000 48.50 157.20 −0.0061 0.003 0.0009 0.0008
50 29.16 0.3930 −0.0657 0.060 0.0180 0.0164
30 25.91 0.1414 −0.0937 0.100 0.0300 0.0273
20 23.35 0.0629 −0.1218 0.150 0.0450 0.0410
10 19.00 0.0156 −0.1809 0.300 0.0900 0.0820

1.0 1000 46.25 78.74 −0.0115 0.003 0.0009 0.0008
50 26.95 0.1962 −0.1186 0.060 0.0180 0.0164
30 23.50 0.0659 −0.1758 0.100 0.0300 0.0273
20 21.15 0.0312 −0.2131 0.150 0.0450 0.0410
10 16.85 0.0078 −0.2994 0.300 0.0900 0.0820

4. Numerical results and discussions

As the set of coupled equations (11) and (12) is not analytically solvable, we solve
them numerically by the so-called split-step Fourier method. The linear dispersive
part is solved by the fast Fourier transform method and the nonlinear part is solved
by the fourth-order Runge–Kutta method with auto-control of the step size for a
given accuracy of the results. For a detailed discussion on the split-step Fourier
method the readers are referred to chap. 2 of [25].

We calculate the transmission coefficient T , representing the fractional output
energy in core 1, according to the formula

T =

∫ ∞
−∞ |u1(ξ, τ)|2dτ∫ ∞

−∞(|u1(ξ, τ)|2 + |u2(ξ, τ)|2)dτ
. (17)

In this work we have calculated the transmission coefficient T at end of one coupling
length of the coupler as defined in §3. Some typical calculations are provided in
table 2.

To analyse the switching process we consider the following initial conditions:

u1(0, τ) =
√

p0 sec h(τ), u2(0, τ) = 0, (18)

as suggested in [7].
In this work the results are presented for κ0 equal to 0.1, 0.5 and 1.0. They

correspond to weak coupling, moderate coupling and strong coupling, respectively
in our convention. The corresponding coupler parameters are taken from table 1.

To study how IMD may affect the switching characteristics, in figure 1 we have
plotted the transmission coefficient as a function of the normalized input peak
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Table 2. Values of switching power and coupling length.

κ0 T0 (fs) p0 T (%) P0 (kW) Lc (cm)

0.1 10 2.0 71 76.00 7.85
20 1.125 93 10.67 31.45
30 1.06 95 4.47 69.93

0.5 20 4.25 70 40.00 6.29
30 3.25 85 13.70 14.14
50 2.60 88 3.94 39.30

1.0 30 6.0 68 25.00 6.590
50 5.0 85 7.60 19.62

power, p0, for a soliton of pulse width 10 fs and κ0 = 0.1. The solid curve (a) shows
T as a function of p0 for the case when no perturbative effects (including IMD) are
present, while the dotted curve (b) shows the same for the case when only IMD is
taken into account. It is clearly seen that IMD essentially modifies the lower part of
the transmission curve. We observe that the transmission coefficient T starts at zero
for curve (a), while T starts at a nonzero value for curve (b). In fact, this result has
already been reported in [7] and agrees well with what we have obtained. But they
have not provided any physical explanation of their results. It may be interpreted as
follows: In the absence of IMD the phase-matching condition is completely achieved
even at low input peak powers, and as a result, all the soliton energy is coupled
to the cross state of the coupler after propagation over one coupling length. On
the contrary, the presence of IMD destroys the phase-matching condition even at
low peak powers and a small fraction of soliton energy remain in the parallel state
after one coupling length. As we increase the input peak power p0 of the soliton,
at a certain value of p0 an equal energy sharing between the parallel and the cross
states is observed. The corresponding value pc of p0 is called the critical power for
switching. If the input peak power of the soliton is increased beyond pc, more and
more of the soliton energy appears in the parallel state, implying T → 1 and, we
say that soliton is getting switched (please see [23], ch. 2 of [7]). As seen in figure
1, the critical power for switching is not affected by IMD.

In figures 2–4, we plot the transmission coefficient as a function of the normalized
input peak power for solitons of various pulse widths T0 and for κ0 = 0.1, 0.5 and
1.0 respectively. It should be noted that the pulse duration is actually varied via
the nondimensionalization (7). Changing T0 changes the nondimensional reduced
time τ , so that pulses of different durations are considered via systems (11) and
(12) through a reduced different time scale τ . Here we consider the simultaneous
presence of all the perturbative effects. We note from these transmission curves that
for a given κ0, the critical power of switching increases with decrease in the pulse
width T0 of the input soliton. It may be understood from the fact that for a given κ0

as the pulse width decreases IMD coefficient increases (see table 1) and this results
in increase in the coupling coefficient C(ω). As the critical power of switching is
given by Pc = 4C/γ in real units [26], it is quite evident that increase in C results
in increase in Pc. In addition, it is clear from the transmission curves that the
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Figure 1. Plot of the transmission coefficient as a function of the normalized
input peak power for soliton of pulse width 10 fs with κ0 = 0.1. Curve (a)
corresponds to the case without any perturbative effects including IMD and
curve (b) corresponds to the case when only IMD is taken into account.

Figure 2. Plot of the transmission coefficient as a function of the normalized
input peak power for solitons of various pulse widths T0. Here the coupling
coefficient κ0 = 0.1.

effect of the perturbative terms get more pronounced with the decrease in the pulse
width. It is quite obvious from eq. (10) in §2 that the corresponding intensities
of the perturbative terms like TOD, Raman effect and self-steepening, increase
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Figure 3. Plot of the transmission coefficient as a function of the normalized
input peak power for solitons of various pulse widths T0. Here the coupling
coefficient κ0 = 0.5.

Figure 4. Plot of the transmission coefficient as a function of the normalized
input peak power for solitons of various pulse widths T0. Here the coupling
coefficient κ0 = 1.0.

with decrease in the input pulse width. Also, we observe that as the coupling
coefficient κ0 increases the influence of the perturbative terms also increases. These
perturbative effects adversely affect the switching characteristics of the coupler.
These effects become progressively dominant for increasing κ0 and we observe that
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Figure 5. Plot of the transmission coefficient as a function of the normalized
input peak power for soliton of pulse width 30 fs with κ0 = 0.1. Curve
(a) corresponds to the case without any perturbative effects including IMD.
Curves (b), (c) and (d) represent respectively the cases when only the TOD,
the Raman and the self-steepening effects are taken into account.

for κ0 = 0.5 and 1.0 it is not possible to switch a 10 fs soliton pulse. With κ0 = 1.0 it
is not possible to switch even a 20 fs soliton pulse. It may be expected because with
increase in κ0 the core-to-core separation a decreases and the absolute value of the
first-order coupling constant dispersion, κ1, increases. In other words, IMD does not
allow the phase-matching condition to be fulfilled at the input powers considered
here. In order to get an idea as to which perturbation plays a major role in the
switching performance, we have included the perturbation terms separately and
compared their respective transmission coefficients. As an example, in figure 5, we
plot the transmission coefficient as a function of the normalized input peak power
for T0 = 30 fs and κ0 = 0.1. Curve (a) represents the transmission characteristics
without any perturbative effects. The curves (b), (c) and (d) correspond to the
TOD, the Raman effect and the self-steepening effect only. It can be seen that
out of all the perturbative effects, the Raman effect is the most dominant one. As
regards the TOD effect is concerned, it is completely negligible in the context of
switching. It is because of the very small length scale involved. In fact, we observe
that it is mainly due to the Raman effect, that the upper part of the transmission
curve is modified [15,16].

Before going further, let us see the order of magnitudes of physical parameters
that are required for practical implementation of a soliton switch based on our
study. In table 2 we have presented some typical values based on our study of
switching characteristics. We see from table 2 that, depending on what we need
for a particular application, a trade-off between various parameters of the coupler
and the switching characteristics has to be reached. For example, (1) if we take
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Figure 6. (a) Evolution of a 20 fs soliton pulse inside the coupler in core 1
(parallel state of the coupler) with κ0 = 0.1. (b) Evolution of a small soliton
with some radiation leaked into core 2 (crossed state of the coupler) with
κ0 = 0.1.

κ0 = 0.1 and T0 = 20 fs, the required coupler length will be Lc = 31.45 cm and
for a core radius of 5 μm the core-to-core separation turns out to be a = 28.45
μm. For this case we conclude from figure 2 that around 95% switching is possible
for p0 = 1.125 which, in real units, corresponds to 10 kW of switching power [20].
On the other hand, (2) if we take κ0 = 1.0 and T0 = 50 fs, we can have a lesser
switching power (≈7.6 kW) and a smaller coupler length (≈19.62 cm) but then the
transmittivity also reduces to about 85%. Therefore the choice, as stated above,
depends on a particular requirement, as the case may be.
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Finally, in order to have an idea about the behavior and stability of a soliton
pulse during propagation inside the coupler, in figure 6, we have depicted the spatio-
temporal evolution of the 20 fs soliton pulse of example 1 above. Figure 6a shows
soliton evolution in core 1 while figure 6b shows the evolution of a small soliton,
with some radiation attached leaking into the second core. It can clearly be seen
that the soliton is preserved during evolution inside core 1. However, it gets shifted
in the temporal domain along the positive time axis. This is a typical behavior,
characteristics of soliton evolution under higher-order perturbations, mainly due to
the intrapulse Raman scattering effect [15].

5. Conclusions

We have carried out a detailed numerical study of femtosecond soliton switching in
a Kerr coupler by taking into account the intermodal dispersion and perturbative
effects like the TOD, self-steepening and intrapulse Raman scattering. To the best
of our knowledge we are the first ones to carry out a detailed numerical analysis
of the effect of the simultaneous presence of all the perturbative effects on soliton
switching in a twin-core fiber coupler. In this connection we have determined the
coupler parameters, namely, the coupling length and core-to-core separation as well
as the first-order coupling constant dispersion coefficient. Our calculations show
that for useful switching characteristics, it is preferable to use shorter pulses and, a
compromise between switching power and coupling length can be made depending
on our requirement, as shown in table 2. As discussed, with judicious choice of the
pulse and coupler parameters one can have transmission up to 95%.
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