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Damage spreading on networks: Clustering effects
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Abstract. The damage spreading of the Ising model on three kinds of networks is studied
with Glauber dynamics. One of the networks is generated by evolving the hexagonal
lattice with the star-triangle transformation. Another kind of network is constructed
by connecting the midpoints of the edges of the topological hexagonal lattice. With
the evolution of these structures, damage spreading transition temperature increases and
a general explanation for this phenomenon is presented from the view of the network.
The relationship between the transition temperature and the network measure-clustering
coefficient is set up and it is shown that the increase of damage spreading transition
temperature is the result of more and more clustering of the network. We construct
the third kind of network-random graphs with Poisson degree distributions by changing
the average degree of the network. We show that the increase in the average degree is
equivalent to the clustering of nodes and this leads to the increase in damage spreading
transition temperature.
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1. Introduction

Damage spreading (DS) technique [1] has been proved to be a useful technique in
the study of dynamical properties of statistical models, especially magnetic models,
like Ising, Clock, Potts, spin glass, etc. With the DS technique, one can learn how
a perturbation spreads throughout a cooperative system composed of interacting
subunits [2,3]. The most important advantage of this technique is that it is less
sensitive to statistical fluctuations compared to conventional Monte Carlo methods
[2]. Till now, many elements which characterize the DS process have been consid-
ered in literatures [4], including the interactions (ferromagnetic, antiferromagnetic,
spin glass, etc.), the Monte Carlo rules (heat bath, Glauber, Kawasaki, etc.). As for
the lattice geometry, various kinds of networks have been discussed [4–8], including
the simple regular lattices, such as two-dimensional square and 3-12 lattice; the
two-dimensional random structures, such as the soap froth and Voronoi structures;
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and the so-called complex networks, which have attracted much attention in recent
years. The importance of DS has also been stressed in its application in economic
[9] and social phenomena [10,11].

On the other hand, though much work has been done on DS, better under-
standing of the DS behaviors need to be presented. For example, DS on a set
of hierarchical trivalent cellular structures was studied in refs [4,5]. It was found
that, by increasing the number of the smallest polygons, the DS transition be-
comes more and more difficult. Similar property was also found in another set of
two-dimensional structures [6]. Now a problem arises: whether simple or complex,
regular or random, all these structures are networks. How can we give a general
explanation for these phenomena from the view of the network? During the last
ten years, the study on complex networks has made great advance [12–15]. Many
measures are put forward to describe the properties of complex networks. Among
theses measures, degree distribution and cluster coefficient are the most important
ones [15]. How can we relate the topological properties or the structure-dependent
properties of the DS with the two network measures? These are the main con-
siderations of this paper. For the lattices mentioned above, we will construct the
relationship between the DS transition temperature and the cluster coefficient. We
will demonstrate that the increase in DS transition temperature in the process of
network evolution studied in refs [4,6] is the result of more and more clustering of
the network. We will also study the DS on the random graphs with Poisson degree
distributions by changing the average degree of the network. We will show that the
increase in the average degree 〈k〉 equivalents to the clustering of the nodes leads
to the increase of DS transition temperature Td.

2. Theory

We deal with the DS problem on networks based on Ising model with Glauber
dynamics and by using Monte Carlo method [4–7]. We consider the Hamiltonian
of nearest-neighbor Ising model to be of the form

H = −
∑

〈i,j〉
Jijsisj , (1)

where Jij > 0 is the ferromagnetic exchange interaction coefficient between the
nearest-neighbor sites i and j, i.e., the interaction between the nearest-neighbor
polygons (nodes).

First, let the system A evolves for a long time to reach equilibrium, then a replica
B of the system is made. At t = 0, the spin in the center cell of the lattice B is flipped
(damaged) and fixed all the time. Note that many kinds of perturbation sources
are introduced in literatures, and one of them is the case of constant perturbation
source, which is modeled by fixing the initially flipped spin all the time. In this
paper we only discuss this special case and we choose the perturbation source at
the center of the network. The Hamming distance (or damage) in phase space for
the trivalent structures is calculated by
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D(t) =
1
N

N∑

i=1

(1− δsA
i (t),sB

i (t)), (2)

where {sA
i (t)} and {sB

i (t)} are the two spin configurations of the system which is
subjected to the same thermal noise and the same set of random numbers, N is
the number of total spins on the lattice studied. In order to make a configuration
s = {si(t)} evolve in time, we use Glauber dynamics, the transition probability of
flipping spin i is

wi(s) = min
[
1, exp

(
−∆Ei

kBT

)]
, (3)

where ∆Ei is the change in energy when spin i is flipped.

3. A set of two-dimensional trivalent hierarchical lattices

A set of hierarchical trivalent cellular structures are introduced in ref. [4], based on
the star-triangle transformation operating on the vertices of the hexagons, including
the pure hexagonal lattice, the 3-12 lattice, the 3-6-24 lattice and the 3-6-12-48
lattice. The star-triangle transformation can be described as follows. On each
vertex of the simplest trivalent regular lattice – the pure hexagonal lattice (figure
1a), replace the star (Y) by a triangle (O), so that we have a triangle on each vertex
of the original hexagon. The result is a crystal made with 12-gons and triangles.
In doing the star-triangle transformation, the side length of the 12-gon is so chosen
that the 12-gon is a regular polygon. As Liebmann [16] did for the 4-8 lattice, we
call this crystal the 3-12 lattice (figure 1b). By repeating the application of star-
triangle transformation on the trivalent vertex, we get the 3-6-24 lattice made with
24-gon, 6-gon and triangles (after the second-order star-triangle transformation)
and the 3-6-12-48 lattice made with 48-gon, 12-gon, 6-gon and triangles (after the
third-order star-triangle transformation), etc. (Formation and evolution of patterns
on the Euclidean plane have been reviewed by some authors, and readers can find
them in literatures, for example, in ref. [17].)

We put the spins in the centers of the polygons. Connecting the centers of the
polygons forms the network. Obvious frozen-chaotic phase transition occurs in
these structures and if Td(6), Td(3-12), Td(3-6-24) and Td(3-6-12-48) stand for the
critical temperatures corresponding to the pure hexagonal, the 3-12, the 3-6-24,
and the 3-6-12-48 lattices, we have Td(6) < Td(3-12) < Td(3-6-24) < Td(3-6-12-48).
Thus, the more complicated the lattice is, the higher the critical temperature for
damage spreading. This trend can be understood by considering the role of the
polygons with the smallest side number [4].

In order to get better understanding of the structures, we introduce two lattice
parameters: Np(i) and Nt. For a given lattice size N (the number of the main
polygons along one direction), let Np(i) be the number of i-gons (cells with edge
number of i) and Nt the total number of polygons (cells). Thus, Np(6) = Nt = N2

for the pure hexagonal lattice; Np(3) = 2N2, Np(12) = N2 and Nt(3-12) = 3N2 for
the 3-12 lattice; Np(3) = 6N2, Np(6) = 2N2, Np(24) = N2 and Nt(3-6-24) = 9N2
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Figure 1. Hierarchical trivalent structures generated by the star-triangle
transformation. (a) The pure hexagonal lattice, (b) the 3-12 lattice generated
by the first-order star-triangle transformation, (c) the primary cell of the 3-12
lattice, (d) the primary cell of the 3-6-24 lattice and (e) the primary cell of
the 3-6-12-48 lattice.

for the 3-6-24 lattice; Np(3) = 18N2, Np(6) = 6N2, Np(12) = 2N2, Np(48) = N2

and Nt(3-6-12-48) = 27N2 for the 3-6-12-48 lattice.
Next, we define

p(i) =
Np(i)
Nt

, (4)

which is the fraction of i-gons in the lattices or the probability distribution of edge
number in the cells. We calculate the fractions of i-gons in the lattices as follows:
p(6) = 1 for the pure hexagonal lattice; p(3) = 2/3 and p(12) = 1/3 for the 3-12
lattice; p(3) = 2/3, p(6) = 2/9 and p(24) = 1/9 for the 3-6-24 lattice; p(3) = 2/3,
p(6) = 2/9, p(12) = 2/27 and p(48) = 1/27 for the 3-6-12-48 lattice. Note that the
fractions of triangles in these structures are the same.

Since we put the spins in the centers of the polygons, if we consider the place of
spins as the nodes of the network, this network is a lattice dual to the original one.
For example, connecting the nodes locating on the centers of the pure hexagonal
lattice forms the triangle lattice, which is dual to the pure hexagonal lattice. So,
the side number of the polygons corresponds to the node degree. The 3-12 lattice
is constructed by triangles and the 12-gons, so it’s dual lattice is constructed by
connecting nodes with degree 3 and degree 12 (see figure 2).

The averaged degrees of the above lattices can be calculated as follows:

〈k〉 =
∑

i

p(i)k(i), (5)
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Figure 2. The dual lattice of the 3-12 lattice.

in which k(i) is the degree of node i. For the pure hexagonal lattice, 〈k〉 = k(6)×
p(6) = 6 × 1 = 6; for the 3-12 lattice 〈k〉 = k(3) × p(3) + k(12) × p(12) = 3 ×
2/3 + 12× 1/3 = 6; for the 3-6-24 lattice and the 3-6-12-48 lattice the same results
〈k〉 = 6 are obtained. So the damage properties cannot be explained by degree
difference among the lattices and so, we have to turn to another quantity: the
cluster coefficient. The key topological difference among the above structures may
be their clustering properties, which may greatly affect the evolution of damage
spreading in the above networks. According to Newman [15], two measures can be
defined to describe the clustering of a network (called the clustering coefficients):

C1 =
3×Number of triangles

Number of connected triples
(6)

and

C2 =
1
n

n∑

i=1

ci, (7)

where n is the number of nodes and ci is the ratio of the number of triangles
connected to vertex i over the number of triples centered on vertex i. Often C2 is
referred to as the average ‘network density’ [15] and it is the average of the ratio,
while C1 is the ratio of the average. In the following discussion on the relation
between clustering effect and damage spreading, we focus on C2 since the dynamics
of damage spreading is affected mainly by the local clustering, and the calculation
of the average of ratio is relatively easy to be performed on each given vertex i. For
the networks connected by nodes with only limited kinds of degrees, the network
density C2 can be calculated in a straightforward way, using the following formula:

C2 =
∑

i

p(i)
i

i(i− 1)/2
=

∑

i

p(i)
2

i− 1
. (8)

Thus, C2(6) =
∑

i=6 p(i)[2/(i−1)] = 0.4; C2(3-12) =
∑

i=3,12 p(i)[2/(i−1)] = 0.727;
and in the same way we get C2(3-6-24) = 0.765; C2(3-6-12-48) = 0.7706. The
transition temperatures are shown in figure 3 as a function of C2 for the pure
hexagonal lattice, the 3-12, the 3-6-24 and the 3-6-12-48 lattices and we can see
that network clustering causes difficulty of DS.
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Figure 3. Transition temperatures as a function of C2 for the pure hexagonal
lattice, the 3-12, the 3-6-24 and the 3-6-12-48 lattices.

Figure 4. (a) The topological hexagonal lattice, (b) the star-triangle trans-
formation (Ni = 10) made at the vertices randomly, (c) the 3-9 lattice and
(d) the 3-12 lattice.

In the above examples, network clustering is caused by increasing the number of
the smallest polygons. This process can be simulated by inserting triangles con-
tinuously onto the topological hexagonal lattice [5]. Since only the topology of the
structures is emphasized, we consider the simplest star-triangle transformation in
a hexagonal lattice. We do the transformation on the vertices of the topological
hexagonal lattice with the dimension of N×N (figures 4a and 4b). The transforma-
tion is made at the vertices at random. But if we do the transformation regularly
at each of the other row or at each row, we get the 3-9 lattice (figure 4c) and the
3-12 lattice (figure 4d). Notice that we generate Ni random points for inserting the
triangles. But the real number of triangles may be less than Ni since the randomly
generated points may be coincided. For example, we want to generate 10 triangles
but we may get only 9 at last (see figure 4b). On the other hand, the real number
of the triangles varies among configurations and our results are averaged for 100
configurations.

We denote the inserting triangle number as Ni and we can show that as Ni

increases both Td and C2 increase (figure 5). So we know that the DS transition
temperature is related to the clustering of the networks. In order to see if this
conclusion is of generality, next we will turn to other networks.
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(a) (b)

Figure 5. (a) The clustering coefficients of the network in figure 4b vs. the
number of inserted triangles (N = 40); (b) The DS transition temperatures
of the network in figure 4b as a function of C2.

Figure 6. A set of hierarchical trivalent structures. (a) The topological
hexagonal lattice, (b) the 4-6-7 lattice, (c) the 4-8 lattice, (d) the 4-10 lattice
and (e) the random lattice with Ni = 18.

4. Examples of other two-dimensional regular lattice

Guo et al [6] studied the DS on another set of hierarchical trivalent structures. By
connecting the midpoints of the edges of the topological hexagonal lattice, we insert
the rectangles into the topological hexagonal lattice (figure 6a) and form the 4-6-7
lattice (figure 6b, inserting at each of the other row), the 4-8 lattice (figure 6c,
inserting at each row) and the 4-10 lattice (figure 6d, inserting twice at each row).
Some workers have paid their attention to the 4-8 lattice [16,18] and this lattice is
often referred to as the (4,82) Archimedean lattice [19]. But our 4-8 lattice (figure
6c) is generated from the topological hexagonal lattice (figure 6a), so it is slightly
different from that studied in refs [16,18].

As in the above section, we put the spins in the centers of the polygons, so our
networks are in fact the dual ones of those of figure 6. We plot some of the networks
in figures 7 and 8.
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Figure 7. The dual lattice of

the 4-8 lattice.

Figure 8. The dual lattice of

the 4-10 lattice.

For the Glauber dynamics, we have Td(6) < Td(4-6-7) < Td(4-8) < Td(4-10) [6].
Here Td(6), Td(4-6-7), Td(4-8) and Td(4-10) stand for the DS transition temper-
atures corresponding to the topological hexagonal lattice, the 4-6-7, the 4-8, and
the 4-10 lattices. This phenomenon is similar to the DS on the set of 3-12,3-6-24,3-
6-12-48 lattices studied in ref. [4]. We can understand this trend by considering
the effects of the polygons with the smallest side number, the rectangles here, as
pointed out in ref. [6].

For a given N , the number of sites for the topological hexagonal, the 4-6-7, the
4-8, the 4-10 lattices is N2, 5N2/4, 2N2 and 3N2, respectively, while the number
of the rectangles in the corresponding 4-6-7, 4-8 and 4-10 lattices is N2/4, N2 and
2N2, respectively. The increase of the lattice sites is equivalent to the increase of
spin density. But we can also show that this result is due to the clustering of the
networks.

Table 1 presents the main parameters related to the topological structures, in
which 〈k〉 and C2 are obtained from eqs (5) and (6). The relation between the
transition temperature and the clustering coefficient C2 is plotted in figure 9, which
also tells us that the increase in Td is due to the network clustering.

Table 1. Structural parameters of the topological hexagonal, the 4-6-7, 4-8
and 4-10 lattices.

Lattice Polygon type Polygon number p(i) 〈k〉 C2

6 6 N2 1 6 0.4

4 N2/4 1/5
4-6-7 6 2N2/4 2/5 6 0.424

7 2N2/4 2/5

4-8 4 N2 1/2 6 0.47
8 N2 1/2

4-10 4 2N2 2/3 6 0.5
10 N2 1/3
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Figure 9. Transition temperatures as a function of C2 for the topological
hexagonal lattice, the 4-6-7, the 4-8 and the 4-10 lattices.

Of course, we can check our idea by inserting rectangles continuously onto the
topological hexagonal lattice, as done in ref. [6], and we can get similar conclu-
sions [6].

Studies have shown that the critical temperatures of the Voronoi and soap froth
structures are nearly equal to that of the pure hexagonal lattices [4]. In order to
understand that, we calculate the network densities for the Voronoi and soap froth
structures, which are respectively C2=0.425 for Voronoi and C2=0.427 for soap
froth structures. We notice that these values are similar to the pure hexagonal
lattice, implying that the clustering degree among Voronoi, soap froth and the pure
hexagonal lattice is similar, so that DS behaves in the same way on these structures.

5. DS on random graphs with Poisson distributions

In the above calculations, the networks have constant average degree distribution
〈k〉 = 6. It seems that when 〈k〉 is fixed, the phase transition is determined mainly
by the clustering. Now, the problem is, if we change (increase) 〈k〉, does it result in
the increase in phase transition critical temperature? The answer is yes. In order to
show this, we investigate the DS problem on a random graph with Poisson degree
distribution.

Our network model consists of N nodes parametrized by a Poisson degree dis-
tribution P (k) = e−〈k〉(〈k〉k/k!), with degree lying between dmin and dmax. Our
model parameters are N = 5000, dmin = 1 and dmax = 100.

Averaged damage spreading as a function of temperature T is shown in figure
10 for the random graph with Poisson distribution. As expected, Td(〈k〉) increases
with 〈k〉. From figure 11, we know that increasing 〈k〉 is equivalent to increasing
the cluster coefficient C2. This shows the same effect of network clustering as in the
above two sections. Figure 11 also shows us a very interesting phenomenon that
the relationship between C2 and 〈k〉 is linear.
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Figure 10. Averaged damage spreading as a function of temperature for the
random graph with Poisson degree distribution. T is in units of J/kB.

Figure 11. Clustering coefficient vs. 〈k〉 for the random graph with Poisson
degree distribution.

6. Summary

The damage spreading of the Ising model on three kinds of networks is studied with
Glauber dynamics. In §3, a set of hierarchical trivalent cellular structures are gen-
erated by evolving the hexagonal lattice with the star-triangle transformation. In
§4, another set of hierarchical trivalent structures are constructed by connecting the
midpoints of the edges of the topological hexagonal lattice. With the evolution of
these structures, DS transition temperature Td increases and a general explanation
for this phenomenon is presented from the view of the network. The relationship
between the transition temperature and the network measure-clustering coefficient
is set up and it is shown that the increase of DS transition temperature is the result
of more and more clustering of the network. In §5, we construct the third set of
network structures-random graphs with Poisson degree distributions by changing
the average degree of the network. We show that the increase in the average de-
gree 〈k〉 is equivalent to the clustering of the nodes, leading to the increase of DS
transition temperature Td.
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