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Abstract. Application of inertia-induced acoustic excitation theory offers a new reso-
nant excitation source channel of acoustic turbulence in the transonic domain of plasma
flow. In bi-ion plasmas like colloidal plasma, two well-defined transonic points exist cor-
responding to the parent ion and the dust grain-associated acoustic modes. As usual, the
modified ion acoustic mode (also known as dust ion-acoustic (DIA) wave) dynamics asso-
ciated with parent ion inertia is excitable for both nanoscale- and micronscale-sized dust
grains. It is found that the so-called (ion) acoustic mode (also known as dust-acoustic
(DA) wave) associated with nanoscale dust grain inertia is indeed resonantly excitable
through the active role of weak but finite parent ion inertia. It is interestingly conjectured
that the same excitation physics, as in the case of normal plasma sound mode, oper-
ates through the active inertial role of plasma thermal species. Details of the nonlinear
acoustic mode analyses of current interest in transonic domains of such impure plasmas
in hydrodynamic flow are presented.
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1. Introduction

Acoustic mode in plasmas is actually a pressure-driven longitudinal wave like the
ordinary sound mode in neutral gas. In normal two-component plasmas, the elec-
tron thermal pressure drives the collective ion oscillations to propagate as the ion
sound (acoustic) wave. Here the electron thermal pressure provides the restoring
force to allow the collective ion dynamics in the form of ionic compression and rar-
efaction to move in the plasma background. Thermal plasma species (like electrons)
are free to carry out screening of the potential. In the absence of any dissipative
mechanism, the ion sound wave moves with constant amplitude. For mathematical
description of the ion sound kinetics, the electrons are normally treated inertialess
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and the ions with full inertial dynamics. However, recent discovery of ion sound
wave excitation in transonic plasma condition [1,2] of hydrodynamic equilibrium
offers a new physical scope of acoustic turbulence due to weak but finite electron
inertial delay effect. Qualitative and quantitative modifications are introduced into
its nonlinear counterpart [3] as well.

The transonic transition of the plasma flow motion occurs quite naturally in
the neighborhood of the boundary wall surface of laboratory plasmas, self-similar
expansion of plasmas into vacuum, in solar wind plasmas, astrophysical plasmas,
etc. The self-similar expansion plasma model predicts supersonic motion of plasma
flow into vacuum. This model is widely used to describe the motion of intense ion
plasma jets produced by short time pulse laser interaction with solid target ([4] and
references therein). Recently, self-similar plasma expansion into vacuum is modeled
by the appropriate consideration of space charge separation effect on the expanding
front [4].

If there is multispecies ionic composition in a plasma system, varieties of plasma
sound waves are likely to exist depending on, in principle, the number of ion species.
In plasmas containing dust or fine suspended particles, two distinct kinds of nat-
ural plasma sound modes are possible [5,6]. Such plasmas, termed as the colloidal
plasmas [7], have become the subject of intensive study in various fields of physics
and engineering such as space, astrophysics [8,9], plasma physics [10], plasma-aided
manufacturing [11,12] and lastly, fusion technology [13,14]. The dust grains or the
solid fine particles suspended in low-temperature gaseous plasmas are usually neg-
atively charged. It is also observed that plasmas including microscale sized and
nanoscale sized suspended particles exist in many natural conditions of techno-
logical values. Such plasmas have been generated in laboratories with a view to
investigate the dust grain charging physics, plasma wave physics as well as insta-
bility phenomena.

The two distinct sound modes, however, in colloidal plasma are well-separated in
space and time-scales due to a wide range of variations of mass scaling of the normal
ions and the charged dust grains and free electrons’ populations. The charged
dust grains are termed as the dust grain-like impurity ions [6] to distinguish from
the normal impurity ions. The present contribution applies the inertia-induced
acoustic excitation theory to nonlinear description of plasma sound modes [1-3] in
colloidal plasma. Two separate cases of ion flow motion and dust grain motions
are considered. It is indeed found that the modified ion acoustic wave (m-IAW)
[5,6] or dust ion-acoustic (DIA) wave [15,16] and the so-called (ion) acoustic wave
(s-IAW) [5,6] or dust acoustic (DA) wave [15,16] both become nonlinearly unstable
due to the active role of weak but finite inertial correction of the respective plasma
thermal species. Proper mass domain of the dust grains for instability to occur is
estimated.

By these calculations, a generalized statement is reported that all possible sound
modes in multi-species plasmas with drift motions could be destabilized by the
inertial delay effect of the corresponding plasma thermal species that carry out
thermal screening of acoustic potential. Of course, threshold values may differ
depending on the choice of the plasma sound mode under consideration. Section 2
includes general physical discussions of the plasma model and equilibrium. Section
3 considers the nonlinear wave propagation behavior of the m-IAW. Similarly, §4
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includes the nonlinear wave propagation dynamics of the s-TAW. Section 5 contains
results and discussions. Distinctive features of our acoustic excitation mechanism
are presented in §6. Lastly, conclusions are presented in §7.

2. Plasma model
A. General physical outlook

A simplified field-free model of a dust grain laden gaseous mixture of free ions,
electrons and dust grain-like impurity ions is considered. This is a classical system
of solid phase distribution of dust grains in the gaseous phase of plasma background
and is popularly known as the colloidal plasma [7]. This is also called by different
nomenclatures like, dusty or complex plasma [15,16]. However, ‘colloidal plasma’
is believed to be the more suitable nomenclature over the others because of the
intermixed state of solid—gas phases. The unique quality of colloidal plasma is
associated with the dust grain charge as an additional physical variable of relevance.
We use constant dust grain charge model under the spherical symmetry of individual
dust grain charging. Thus a simple normal bi-ion plasma model could be applied
to study the bulk acoustic mode behaviors in colloidal plasma system.

Traditionally, the role of weak but finite inertia of respective plasma thermal
species is ignored under the asymptotic mass limits of m./m; — 0 and m;/m; — 0.
This, in fact, is inadequate and impractical for a proper discussion of the acoustic
modes in transonic plasma flow condition of the corresponding inertial species. This
is to note that the basic set of dynamical equations of the plasma particles’ fluid
will depend on the choice of the acoustic mode under consideration.

Interestingly, for dust grain-associated acoustic mode, the electrodynamical role
of thermal electrons in perturbations could be ignored if Ap > Ap;. This is again
justified under the background that the collisional process of thermal loss of plasma
electrons charges dust grains negatively and hence, electron density is reduced. In
this limit, a scope exists for ion inertia-induced excitation of the so-called (ion)
acoustic mode (also known as dust acoustic wave) in the presence of nanoscale
sized particles. The following estimation of m./m; ~ 2 and m;/m; ~ me/m; = ¢
for nanosize particles justifies this. For micron size particles m./m; ~ ® and
m;i/my ~ e* and hence, only modified ion acoustic wave (also known as dust ion-
acoustic (DIA) wave) is excitable for both micro and nanosize particles.

B. Equilibrium description

A simplified situation is considered where the electrons, ions and dust grains have
acquired thermodynamic equilibrium. Now there are two kinds of collective scale
equilibrium states of plasmas: exact hydrostatic type and quasi-hydrostatic (hydro-
dynamic) type. The latter has a global flow motion with Bernoulli kind of equilib-
rium condition such that the total energy is an integral of motion. Mathematically,
the hydrostatic kind of equilibrium is described by an exact balancing of the global
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forces acting on the plasma. But even this simple equilibrium has produced a quite
rich scope of basic understanding of the wave dynamics in plasmas.

However, in reality, the plasmas in space as well as in laboratory conditions are
always associated with finite global flow motions. Here for clarity, let us define the
global scale as any scale length much larger than the plasma electron Debye length
(Ape). A simple form of this kind of equilibrium is mathematically describable
by the Bernoulli-type of equation. Here the exact force balancing does not exist
between the mean flow kinetic energy and potential energy and hence, sustains the
desired steady state of the global flow motion of the plasma. Now the question
arises whether the quasi-neutral plasma flow motions will carry any current or not.
For this, one would have to look into the following form of the current equation:

0
V-J+=(V-E)=0. 1
+ (V- E) (1)
The net conduction current density in our defined colloidal plasma system is defined
and given by J = J. + J; + J; = —en v, + q;n;v; — qrnyvr. In one-dimensional case
of electrostatic field approximation, eq. (1) can be rewritten as

52 (74 5E) =o. @

This implies that J + %E = constant or a solenoidal vector field (divergence-free)
and hence, space-invariant conduction current is supposed to flow in hydrodynamic
equilibrium. The notations used are generic in nature. Here F represents electric
field vector. To ensure exact quasi-neutral equilibrium flow (V- E = 0), divergence-
free current (V-J = 0) has to be sustained. Now the expression for the total conduc-
tion current density (Jy) for quasi-neutral colloidal plasma flow in hydrodynamic
equilibrium can be written as

Jo = —eneo (Veo — v10) + qimio (Vio — vr10) - (3)

Now two different current regimes of flow motions will be considered. In one regime
of colloidal plasma flow motions as defined by (vg ~ veg ~ Vig ~ Com > Vi ~ Css)s
Jo &= —eneo(Veon) + ¢inio(vip). This may be termed as the parent plasma current
dominated flow regime. In this regime of plasma flow motion, the modified ion
acoustic wave (m-TAW) is more likely to be excited by electron inertia-induced
acoustic excitation theory. In this regime, it looks as if the parent plasma as a
whole is moving through an approximately static background of dust grains with
supersonic speed with respect to m-IAW speed.

In the second regime of colloidal plasma flow motions as defined by
(vo ~ vig & Css), it is seen that Jy &~ —qrno(vio). In this regime of dust grain
dominated current, the so-called (ion) acoustic wave (s-IAW) is more likely to be
excited by parent ion inertia-induced excitation physics. Such physical situations
are practically realizable in laboratory conditions [17]. For uniform plasma den-
sity and flow motions, the divergence-free current approximation could be justified.
Under these simplified situations of equilibrium colloidal plasma flow motion, lin-
ear behaviors of two distinct eigenmodes of acoustic spectrum in transonic plasma
conditions of ion and dust grain flow motions will be investigated and discussed.
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3. Modified ion acoustic wave

In the presence of any additional heavier ion inertial species like dust grain-like
impurity ions, the given background (parent) plasma system may become highly
deficient of free electrons and hence the parent plasma becomes electrically non-
neutral. The loss of free electrons appears in the form of negative charging of the
dust grains and hence, the overall quasi-neutrality of the global colloidal plasma
volume holds well. Both frequency and phase speed of the normal ion acoustic wave
of the parent plasma system are scaled up in the presence of dust grains. These two
become the function of the charge state and charge density ratio of parent plasma
ions with respect to plasma electrons.

For parent ion inertial time-scale, the dust grain dynamics could be ignored.
This may be justified for micron size and the nanosize colloidal particles as well, as
discussed in §2.

A. Basic equations

As discussed earlier, a more suitable form of electron continuity equation for the
description of m-IAW in colloidal plasma with drifting ions in the immobile dust
grain background is given as

06 99 . T.ov.

E+Ue%+e ax:O' (4)

Here ¢ is the electrostatic potential due to local charge imbalance, v, is the electron
velocity and T is the electron temperature in energy units. This is to remind the
readers that eq. (4) has been obtained by using the zeroth order electron density
expression of n, = ne exp(ed/T,) in the usual form of electron continuity equation.
Electron momentum equation is given as usual.

0v, Ov, e %7 T. One

ot | or Me 0T  MeNe O

()

A few comments deserve the attention of readers: (i) The particular set of electron
dynamic equations (4) and (5) is justifiably useful only for low-frequency plasma
sound mode excitation in transonic plasma equilibrium as clarified earlier [1-3],
(ii) it is well-known that for low-frequency wave fluctuations, electron continuity
equation becomes redundant under the asymptotic mass limit of m./m; — 0. In
this limit, the zeroth order solution of eq. (5) yields Boltzmann electron density
distribution to describe the dynamics of ion sound wave motion, and lastly, (iii) a
weak but finite inertial correction is made in the dynamics of parent plasma thermal
electrons by incorporating leading order solution (in the absence of inertia) of eq.
(5) onto an inertially perturbed solution (in the presence of weak inertia). The
same set of electron dynamic equations will be used for the m-IAW description in
transonic-like equilibrium of colloidal plasma hydrodynamic flow motion.

The usual form of ion continuity equation and ion momentum equation as given
below describes ion dynamics by eqs (6) and (7) respectively.
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on; on; ov;

o Ty gy =0 (©)
81}1‘ avi - &%
ot T+ or  m;0x (™)

Since the dust grain dynamics is negligible according to the defined colloidal plasma
model, the Poisson’s equation (8) as given below closes the required set of basic
dynamical equations for m-IAW description. It thus couples the dynamics of all
the ionic species in the colloidal plasma system together.

0%

ok dm(ene + qrnr — qin;). (8)

B. Nonlinear wave dynamics of m-IAW

For nonlinear normal mode description of the m-IAW, we first normalize the basic
set of dynamical equations (4)-(8). The plasma potential (¢) is normalized by
the plasma electron thermal potential (T /e), ion fluid speed by the modified ion
acoustic speed (cgp, ), density of the parent electrons and ions by the equilibrium
bulk plasma ion density (n;0), time by the parent ion plasma oscillation time-
scale (w;lvl) and distance by plasma electron Debye screening length (Ape). The
normalized forms of eqs (4) and (5) electron electrodynamic description are given
as follows:
op v, 0¢

ot T ow T =0 )

Ove Qe em [0 1 One
ot —H}eax . {&n_ne ax]' (10)
The normalized forms of eqs (5) and (6) are given as follows:
81}1‘ 8vi Zi 8¢
o 2P 12
ot t Ui Ox £n Ox (12)

The normalized form of Poisson’s equation (8) for finite electrostatic potential dis-
tribution due to local charge imbalance is given by

¢ n;
5 = n—zo(ne +zing — zing), (13)
e0
where €, = n,0¢?/nc0e?, €m = mi/me, 21 = qr/e and z; = ¢;/e. Now, under

reductive perturbation method, we expand the physical variables around the defined
equilibrium of colloidal plasma system as follows:
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n
ne:—cto—ksnél)—i—gng)—k-“,

140
n; = 1+En§1) +€2n1(-2) +
ny = nio +o0,

0
Ve = svél) + 62022) + -,

(

1
vi = vio +evl) + -
3

Using the standard procedure of the well-known reductive perturbation technique,
we carry out order-by-order analysis of eqs (9)—(13) in a stretched coordinate system
defined by & = 51/2(x — Mt) and 7 = £3/2t. We arrive at the following linear order
solution of the m-IAW in the form of dispersion relation as given below:

(1 + Z;MQ) - m (14)

Without going into lengthy course of the higher-order calculations, the required
Korteweg—de Vries (KdV) equation for the m-IAW can be derived and written as

£ 1 oo 1 3 e
cn 2 (14 (€0)
[EmM+(M—Ui0)3] or 2 [(M—Ui0)4 < T2, )]¢

I 193 7
o€ T2 o O (15)

By eq. (15), it is obvious that the Mach number (M) is a complex quantity that
makes the coefficients of the KdV equation complex. Now following the proce-
dure as laid down in our earlier publication [3], we can transform the complex
coefficients into real ones by global phase transformation method (GPTM) into a
circular geometry. It leads thereby to the following form of a source-driven KdV
(d-KdV) equation:

¢ 99 19%°¢
KOma + JMOm(ZSa*5 + 58753 = VmK0m¢~ (16)

The complex response coefficients (CRC) Koy, Mo, are defined as given below:

K()m =V Ayzn+872n7

where
A Mpen | (Mp)® — 3Mp, M7
Toem (M3, + M?)°
B _ Min N (M;)? — 3M3, M,
Toem (MR + M2
and
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MOm =V 07271 + D%w

where

(M, + M)*

{2 - MR-

€

C. = 1 |:3{(M]%r B M2)2 B 4M]?)er2}
m=3

)

)

(M3, + M?)* €

| [12 (MB, — M) My M, {4 (M — M?) M M} <
)

MDr = |’Ui0|7 Mr =1- |’Ui0| and

n

£
Mp;i = M; = /2 (;) (1 = Jvio]) /).

Here +/, is the normalized (by parent ion plasma oscillation time-scale) growth rate
of the m-IAW as given below:

=12 ("”)(kADenu ~ viofeam)| 2. an

Me

Equation (17) defines the coefficient of the self-consistent driving source-term ap-
pearing due to inertia of the parent plasma thermal electrons in the d-KdV equation
(16) that describes the nonlinear wave kinetics of m-TAW. Again transforming the
dispersion relation (14) into the corresponding unnormalized form and applying
the hydrodynamical condition of ion fluid acoustic mode, one can deduce the phase
speed (cgpm,) of the m-TAW as follows:

2\ 11/2
ni04q;
Csm = |:<7’Le()€2>:| Cs. (18)

Let us consider that dust grains-like impurity ions are embedded into a background
parent quasi-neutral hydrogen plasma with density n ~ 102° m~3. Charge state
of such micron size dust grains (r ~ 1 ym) can be estimated to yield z; ~ 10 for
electron temperature T, ~ 1 eV. Again, a nanoscale sized particle (r ~ 1 nm) under
the same parent plasma environment will carry a charge state z; ~ 1. Similarly,
the charge states corresponding to 10 nm and 100 nm particles can be estimated to
be z; ~ 6 and z; ~ 64 respectively at the cost of collisional loss of parent plasma
electrons. Thus, it can arbitrarily be assumed that e, = (n;q?/neoe?) ~ 10°.
Then the phase speed of m-IAW can be quantitatively determined from eq. (18) as
Csm = 9.78 x 10% m/s.
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4. So-called (ion) acoustic wave

Let us consider this in isolation of the m-IAW description so as to clarify the
nature of used basic governing equations. Otherwise, confusion may arise with
those used for m-IAW descriptions. The s-IAW is the normal acoustic mode on dust
grain inertial time scale that can be distinguished by collective electrodynamical
behaviors of the parent plasma particles [18]. There are experimental situations,
wherein the background flows in the parent plasma particles are minimized to ensure
the directed motion of dust grains to be measurable [17]. This is to further clarify
that the abbreviation ‘s’ already used stands for the term ‘so-called’. In addition,
the word ‘ion’ has been added ahead of the ‘acoustic’ to tailor the nomenclature of
this sound mode to make its abbreviation (s-IAW) in symmetry with m-TAW.

A. Basic equations

Now for the s-IAW description in transonic flow regime of dust drift motion, the
role of electrons in acoustic perturbations is ignored if Ape > Ap;. This can be
justified for the non-isothermal parent plasma system containing cold dust grains.
The ions are then supposed to perform the job of potential screening created by
dust grain associated acoustic perturbations termed as the s-TAW [15-18]. The ion
continuity equation reads as

06, 06 Tiou
ot “Ox  q; O

(19)

The modified form of ion continuity equation (19) is derived by substituting the
zeroth order ion density distribution n; = n;gexp(—q;¢/T;). This is obtainable
from the ion momentum equation (20) in the asymptotic mass limit of m;/m; — 0.
Ton momentum equation reads as follows:

ov; _3%‘ 4 ¢ T; On;

v = )
ot + i ox m; Or  m;n; 0T

(20)

Physical justification of the use of ion dynamic eqs (19) and (20) for s-IAW de-
scription is based on the basic logic discussed earlier [3] for the case of electron
dynamic eqs (4) and (5) for IAW description. The distinctive roles of ion dynamics
for m-TAW (eqs (6) and (7)) and s-TAW (eqs (19) and (20)) arise due to separate
treatment of both the plasma sound waves in mutual isolation to one another. This
is justifiable because the two distinct plasma sound wave space and time-scales
differ by orders of magnitude. A weak but finite inertial correction is made to the
dynamics of parent plasma thermal ions by incorporating leading order solution
(in the absence of inertia) of eq. (20) onto an inertially perturbed solution (in the
presence of weak inertia). Of course, a coupled mode analysis of m-IAW and s-IAW
may be more appropriate and interesting for a unified description of plasma sound
waves in transonic colloidal plasma equilibrium. It can form an interesting and
challenging problem of future research work.
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Moreover, the full inertial dynamics of dust grain-like impurity ions is described
by the following equations of continuity (21) and momentum (22) as given below:

ong ong vy _
WJFU]%JFHI%—O, (21)

8’1)1 81)1 qr 8¢

bl =27 22

ot v ox my Ox (22)
As usual, Poisson’s equation (23) given below closes the basic set of dynamical
equations for s-IAW description thereby coupling all the dynamics of the plasma
ionic species together.

32

a—;s = 4dm(ene + qnr — qin;). (23)

B. Nonlinear wave dynamics of s-IAW

To derive the nonlinear wave equation of the s-IAW, we first normalize the relevant
physical variables. The plasma potential (¢) is normalized by the parent ion ther-
mal potential (7;/g;), all velocities by the s-TAW speed (css), all densities by the
equilibrium parent ion bulk plasma density (n;p) and time coordinate by the dust
grain oscillation time-scale (wp_ll) and space coordinate by the parent ion Debye
length (Ap;). The normalized forms of the basic eqs (19)—(23) are given below:

96 _ovi 9 _
ot or @ Vor

0, (24)

o TV T, [ o ax} (25)

0 0

% + 5 (nrvr) =0, (26)

81}] 61)[ - ZJ %

o e T mey 02 (27)
2

% = Zi_l (ne + zrmny —n;z) (28)

where €, = nsoq?/ni0q?, en = my/m;. Let us now expand the physical variables
around the pre-defined equilibrium according to the standard reductive perturba-
tion method.
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ne =2 4,
nio
n; = 1+entt +2n? + e

7 %

ny = @ —‘rE’I’Ll(-l) +€2U§2) +,
40

vy = vyo + 6v§1) + 62111(,2) +

v; = Evfl) + 20 + -y

¢:0+5¢(1)+52¢(2)+....

Applying the standard procedure of the reductive perturbation technique and car-
rying out order-by-order analysis of eqs (24)—(28) under the stretched coordinate
system defined by & = ¢'/2 (xt—Mt)and 7 = £3/2¢, we get the linear order dispersion
relation of the s-TAW as given below:

<1 + 5”M2) = m (29)

Without going into lengthy calculations, higher-order perturbation equations ob-
tained from eqs (24)—(28) can be solved to yield the following form of KdV equation
for the s-TAW dynamical description:

5 1 (1) 1 2
S+ 3 00 | 1 34<1+€2”M4)
EM (M*’U]o) or 2 (M*’U]Q) EMr

1 3 (1
NPOLL AR ik
0¢ 2 983
It is again obvious from eq. (29) that the Mach number (M) is complex under
the resonant excitation condition of the s-IAW, which makes the coeflicients of eq.
(30) complex. Again, following the procedure as laid down earlier [3], one can
transform the complex coefficients of KdV equation (30) into real ones by global
phase transformation method (GPTM) into a circular geometry. As a result, the
following form of d-KdV equation can be derived and written as
0¢ ¢ 193 ,
Kos7— + Mosp— + === = 7, K0s0- 31
087+ O¢3§+25§3 v O(b ( )
The complex response coefficients (CRC) for s-IAW description denoted by Ko
and My are defined below:

Kos = /A2 + B2,

(30)

where

o MTEV (MDr)B - 3MDrM12
&M (M3, + MZ)3

As

Mg, N (M;)? — 3M3_M,;

B, 2 2\3
2 (MDr + MZ )
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MOS =V C? +D§7

where
o 1 {3{(M%r — MP)? — AME ME}Y  {(MP— M?)® — AM2MZ}e) 1}
) (M3, + M?)* e, ’
D.— 1 [12(M]%]r — M?)Mp,M,;  {4M? — ME)M,«MZ}E?,}
o2 (MR + M) e ’

9
Moo = fonl, My =1 Jono] and My =M = 2 (£) (1~ oro) /2,

v

Here +. is the normalized (by dust grain plasma oscillation time-scale) growth rate
of the s-IAW as given below:

=2 (2 () w0 = wmofean 2 (32)
m; v

Again, eq. (32) defines the coefficient of the self-consistent linear driving source-
term appearing due to inertia of the parent plasma thermal ions in the d-KdV
equation (31) that describes the nonlinear wave kinetics of s-TAW. Again, trans-
forming the dispersion relation (29) into the corresponding unnormalized form and
applying the hydrodynamical condition of dust fluid acoustic mode, one can deduce
the phase speed (css) of s-TAW as follows:

2 1/2
RSO AWEIAYAL
= |G (2) ()] 6

For given parameters [17] of 7 (size of the spherical silica dust grain) = 2 pm and
mass density p = 2.239 g/cm3, m; ~ 64 x 10712 g. Charge state of such micron
size dust grains can be estimated to yield z; ~ 103 for electron temperature T, ~ 1
eV. If we counsider gynro/q;nio ~ 1 and T; ~ 0.01 eV, the phase speed of the s-TAW
from equation (33) could be estimated as ¢ss ~ 1 cm/s under hydrogenic parent
ion plasma. The measured values of dust grain flow speed (vyg) in experimental
condition [17] comes out to be 12 mm/s at ¢ = 1.4 s and 10 mm/s at ¢t = 1.8 s
after the dust grains are displaced from outside. Efforts are made to minimize the
background parent plasma flow. Such situations are quite realistic, practical and
useful for our hydrodynamic equilibrium flow consideration of dust grain dynamics
as assumed to carry out the nonlinear wave dynamics of the s-IAW.

5. Results and discussions

The point (static) charge approximation of the dust grains has been applied through
entire calculations. This demands that the electron and ion Debye lengths must be
quite larger than the dust grain size. This ensures the collective behavior of the
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dust grains. Furthermore, the long wavelength conditions demand that \,, > Ape
for modified ion acoustic wavelength and Ag > Ape(Api/Ape) for the so-called (ion)
acoustic wavelength. This is to note that even the case of Ay &~ Ap. satisfies the
long wavelength approximation provided that the electron and ion Debye lengths
are quite separated, i.e., (Ap;j/Ape) < 1. Fluid mode approximation of the m-TAW
demands the following inequalities to hold good:

(T;)Te.) <€ Ven(1 —vig/csm) < v/ (mi/me). (34)
Similar condition is demanded for the s-TAW.

V(T /Ti) < /e (1 = vio/ess) < v/ (ma/mi), /(Te/T))(mr/me).
(35)

This is to note that €, = ((e, — 2;)/en)zr provides the relation of dust-plasma
parameters derivable from equilibrium quasi-neutrality condition. Let us now com-
pare the growth rates of the acoustic waves due to inertia-induced excitation process
("Ym,7s) of the current concern and parametric process (7,) [6], with respect t0 Ymost
of the most unstable [19] acoustic wave. Expressions for the parametric growth rate
(7p) and the most unstable acoustic growth rate (ymost) in the present notations

are given below:
A
1- 2
16wg

- (%)
o 5
for wes < wp/4, where wy denotes the dust charge oscillator frequency [6] and
Wes = kCss.

1/2
me /
Ymost = Wpi
my

For the ordering of the resonant terms as defined below,

(1= w2, /16w3) %] ~ |(1 = vio/csm) /| ~ (1 = vro/css) /| = . (36)

We finally compare the growth rates of all the modes under consideration as follows:

Yp P Ym Vs ' Ymost \/Eu(Ti/Te)(mi/mI) : 2\/2(7711'/777,5);1,2
S20/2(Ty )T )2 2 28/ (me/mi) i/ (EApe). (37)

For very close values of resonance p ~ ¢, the fluid condition may be satisfied for
asymptotic limit of T; and T7 — 0. In this case, Y05t €merges as the largest growth.
However, for p ~ 1, one may find that the fluid conditions are well-satisfied even
for finite values of T; and T7; and 7, emerges as the largest growth rate. This is to
clarify that same notations are used for Mach number values in both the cases of
m-IAW and s-IAW. But they differ in the sense that the flow velocities of respective
inertial species are normalized by the respective plasma sound speeds.
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6. Distinction of the applied excitation mechanism

The unique distinct quality of the present excitation mechanism is the weak but
active inertial role of plasma thermal species against thermal screening of wave-
induced potential. It may, however, seem that the parent plasma electrons for
m-TAW analysis and ions for s-TAW analysis are treated as inertialess or to have
inertia in an ad hoc manner. This, in fact, is not so. The physics behind this, as
already properly discussed in [1-3], is as follows. The role of weak but finite inertia
of thermal species is introduced by the physical justification [1-3] of weak inertial
perturbations (dictated by eqs (19) and (20)) over leading order non-inertial dy-
namics (dictated by egs (4) and (14)) of the respective thermal species in plasmas.
It is noteworthy that if weak but finite inertial corrections are made, the thermal
species are neither inertialess nor fully inertial in electrodynamical responses. This
mathematical technique [1-3] must be applied to describe acoustic wave propa-
gations through transonic plasma: an unstable zone of hydrodynamic equilibrium
of quasineutral plasma gas flow motion and rich in wide range acoustic spectral
components of ion acoustic wave fluctuations. The most important point behind
this is that the traditional concept [1-3] of Boltzmann approximation of thermal
species density distributions alone becomes deficient, inadequate and impractical
to describe the acoustic wave dynamics in transonic plasma condition. The main
deficiency is that it hides the physics of resonantly unstable behaviors of acoustic
signals through transonic equilibria.

It is observed that in the hot plasma regime of the injected electron beam velocity,
the monoergic electron beam can directly couple with the ions in plasma [20]. For
a very weak electron beam, the ion sound wave becomes unstable when the sound
wave phase speed is comparable to the electron beam velocity. Physically, a weak
beam means that the beam plasma oscillation frequency is much smaller than the
ion plasma oscillation frequency. In this limit of weak beam, the excitation physics
is discussed in terms of the negative dielectric constant mechanism [20] based on the
assumed frozen charge density perturbations on the electron beam. It is termed
as the beam-charge density bunching which is valid only for weak beam. There
are other cases of plasma-sound wave excitation like cross field current-driven ion
sound wave instability [21], hot electron/ion streams-driven plasma sound wave
instabilities in dusty plasma under Vlasov plasma model approach [22]. In Vlasov
model, the basic process of the driving mechanism is governed by the wave-particle
kinetic interactions under drifted Maxwellian velocity distributions [23].

Physical description of our proposed inertia-induced excitation mechanism of ion
sound wave [1] operates through hydrodynamic tailoring of the thermal electron
density distribution due to the mathematical consideration of weak but finite elec-
tron inertia in electron fluid response term. This eventually creates the active role
of weak but finite perturbed electron fluid compressibility to allow for the plasma
sound mode to couple with ion beam mode and grow in the presence of ion flow mo-
tion. This is basically a mode—-mode coupled linear resonant instability and arises
through an intermixed coupling of the positive and negative energy modes [2]. This
differs from other known excitation mechanisms [24-28] of plasma sound wave, like
bunching mechanism [20], wave-particle resonant interaction mechanism [22], etc.
These mechanisms are ruled out to operate in our study of plasma sound wave
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excitation in colloidal plasma with drifting inertial species. Bunching mechanism
is ruled out because the condition of weak beam is not obeyed and the question of
resonant wave-particle interaction mechanism does not arise.

Let us have a glimpse of how the weak but finite role of electron inertia can
arise under Vlasov model of kinetic approach [22,23]. For example, the appropriate
approximation to the velocity integral for Maxwellian electrons for ion sound mode
description is considered as [23]

Ofec/Ov | 7{1
j{;wr/k—vdv_ o v 1+kv+k22

()52 () ()

- (38)

:| afeO

Q

\-/QJ

Real part of linear dispersion relation of ion sound wave for Maxwellian electrons
is usually derived by retaining only leading order term in the asymptotic expansion
(38). For Maxwellian ions, under appropriate approximation of power series, ex-
pansion of ion integral term leads to the following form of real part of the dispersion
function.

1 2 wpi
Dy K) = 14 g 1+k2 TR I (39)

It is obvious that the second term introduces the role of electron inertia as a per-
turbative correction through Vlasov model treatment of the problem. This term
originates from the binomial expansion of the electron inertial term in fluid disper-
sion relation of ion sound mode expressed as

w2 w2 -1 w2
pe pi
L+ k2v2 (1 k202 ) B =0 (40)

As discussed earlier [1], in the presence of ion streaming, the weak but finite electron
inertial effect in eq. (40) appears in the form of a resonantly unstable ion acoustic
wave perturbation at down-shifted Doppler frequency. Moreover, the growth rate
in our case is proportional to the square root of the relative motion between the
ion stream and the ion sound wave perturbation. Contrary to this, the growth rate
of the instability of plasma sound modes reported to occur in dusty plasmas [22] is
directly proportional to relative motion between the hot electron/ion stream and
plasma sound wave under consideration.

7. Conclusions

The conclusion derived from the above nonlinear calculations is that the inertia-
induced acoustic excitation physics [1-3] can drive both m-IAW and s-IAW reso-
nantly unstable in transonic domain. These two cases of instabilities, as described
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in the text are for isolated cases of directed motions of parent ions and dust grains
respectively. The s-IAW is excitable by parent ion inertia-induced excitation theory
for nanoparticles. The m-TAW is excitable for both nano- and micronsize particles
due to weak but finite electron inertia dynamics. Nonlinear analyses of these two
modes are also performed that produce the d-KdV equations as expected. As per
our earlier numerical results [3], it is argued that the derived d-KdV equations
(16) and (31) are expected to generate the usual soliton solutions as well as the
oscillatory shock-like solutions. It is found that our own derived d-KdV equation
[3] is a completely integrable classical dynamical evolutionary conservative system,
the analytical solutions with suitable graphical discussions of which have already
appeared elsewhere [26].

The basic dust grain charging physics of isolated dust grain is modeled as the
formation of a non-neutral space charge layer over the Debye sheath scale (~ Ape)
around each dust grain. The capacitor model of spherical symmetry is generally
used in the dust grain charge estimation. Floating condition (J. = J;) determines
the surface potential of the dust grain. Usual Bohm current models the ion current.
As a result, the surface potential (¢s) is given by ¢, = (T./e) log(y/m./m;) which
is used to calculate the dust grain charge under spherical capacitor model. This
is to note that plane sheath approximation is used to derive the expression of the
dust grain surface potential.

The following remarks may be worth mentioning for basic understanding of
dust grain charging. In reality, in the presence of dust grains, the sound ve-
locity is increased and hence if one replaces the Bohm current by modified
sound speed, the dust grain surface potential is rederived into the form as ¢s =
(T../e)log(/(me/m;)(niogi/neo€)z;). It dramatizes the accuracy of charge estima-
tion of charged colloidal particles under plain sheath approximation! It necessitates
arguing that every dust grain is surrounded by a non-neutral space charge cloud
of ion domination sustained by localized region of radially in ion flow motion with
transonic termination towards the bulk plasma. Could one then discuss the dust—
dust interaction physics in terms of the mutual exchange of the m-IAW in the parent
plasma background?

In technological application, one can argue that the proposed theoretical model
for inertia-induced acoustic instability may be utilized to make a plasma device
for acoustic amplifier. The amplified acoustic signals could be detected, received
and analyzed for the diagnosis and characterization of hydrodynamic flow of plas-
mas with embedded dust contaminations. Study of the ambient acoustic spectrum
associated with plasma flow motion can be termed as ‘acoustic spectroscopy’ of
equilibrium plasma flows. This may be useful for expanding background plasmas,
stellar wind plasmas and also in space plasmas through which aerodynamic and
space vehicles’ motions occur. Basic principles of the acoustic spectroscopy have
concern to the ion acoustic wave turbulence theory and properties of the transonic
plasma equilibrium.

Lastly, it is summarily concluded that the plasma sound modes in general, are
excitable by the inertia-induced ion acoustic excitation theory in colloidal plasmas
with uniformly directed supersonic motion of inertial species that undergo com-
pression and rarefaction to produce acoustic perturbations. Of course, the required
excitation threshold value must be fulfilled. These calculations may be useful to
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understand the plasma flow-driven acoustic turbulence in transonic equilibrium of
the colloidal plasma flow motion. As illustrated in the text, the inertia-induced
acoustic excitation physics by virtue of its distinctness and uniqueness, is a new
addition to the list of known mechanisms of plasma sound wave excitation.
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