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Abstract. Group-theoretical methods have been accepted as exact and reliable tools
in studying the physical properties of crystals and quasicrystalline materials. By group
representation theory, the maximum number of non-vanishing and independent second-
order piezoelectric coefficients required by the seven pentagonal and two icosahedral point
groups – that describe the quasicrystal symmetry groups in two and three dimensions –
is determined. The schemes of non-vanishing and independent second-order piezoelectric
tensor components needed by the nine point groups with five-fold rotations are identified
and tabulated employing a compact notation. The results of this group-theoretical study
are briefly discussed.
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1. Introduction

Ever since the discovery of quasicrystals, there has been a tremendous burst of
theoretical and experimental research activity on the structure determination and
physical property studies of these quasiperiodic materials. With the discovery of
aluminum–copper–lithium (Al6CuLi3) icosahedral phase [1] forming an equilibrium
compound with single grain approaching 1 mm size, followed by Al–Fe–Cu and Al–
Pd–Mn systems [2,3] forming stable phases of perfect (phason-less) quasicrystals,
the experimental situation was significantly improved. Thermodynamically sta-
ble, perfect quasicrystals such as Al–Cu–Li, Al–Cu–Ru [4] and Al–Pd–Cr–Fe [5]
identified during this period, provided much information about the structural and
physical property studies. These new materials posses a high degree of structural
perfection – compared to that found in the periodic alloys – and provide better
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understanding of the microstructure of quasicrystals. They also provide an op-
portunity for studying the dislocations, hydrodynamic theory, elasticity [6–8] and
electronic properties such as resistivity, magnetoresistance and Hall effect [9].

The discovery of optically active and transparent quasicrystals such as rare earth
pyrogerminate (RPG) quasicrystal (R2Ge2O7) and thulium pyrogerminate (TmPG)
one with a unique crystal field potential of 10m2 (D5h) site symmetry [8] have
opened new avenues for group-theoretical physicists to study some magnetic and
physical properties and derive schemes of non-vanishing and independent tensor
components for the seven pentagonal and two icosahedral point groups. In analogy
with the case of crystals, the classical group-theoretical methods were extended to
quasicrystals by several investigators to unravel various physical properties. For
instance, Brandmuller and Claus [10,11] have calculated the irreducible tensors of
rank 1–4 (without intrinsic symmetries) for all the irreducible representations (IRs)
of the pentagonal and icosahedral point groups which are useful for evaluating the
property tensor components and interpreting Raman and hyper-Raman scattering.
Jiang-Yi-Jian et al [12] derived the first-order photoelastic, piezoelectric and Bril-
louin tensor coefficients and second-order elastic tensor coefficients. Motivated by
these findings, Rama Mohana Rao and Hemagiri Rao obtained the non-vanishing
and independent piezomagnetic, pyromagnetic and magnetoelectric polarizability
tensor coefficients [13]; third-order elastic coefficients and second-order piezomag-
netic tensor coefficients [14] and later the second-order photoelastic coefficients [15]
for these nine point groups with five-fold rotations. Following these studies, Wenge
Yang et al [16] studied the thermodynamics of equilibrium properties and obtained
the pyroelectric, electrocaloric and first-order piezoelectric coefficients and showed
that the results obtained by them were in agreement with those of the earlier in-
vestigators [10,12] in respect of the first-order piezoelectric coefficients. Recently,
Xiang Zhou et al [17] investigated the piezoresistance properties of quasicrystals
due to phonon and phason stresses and derived the number of independent compo-
nents of the piezoresistivity tensor for the three-dimensional icosahedral and two-
dimensional quasicrystals. The references cited here indicate the spurt of recent
activity in this area of research.

The present paper is concerned with the group-theoretical study of second-
order piezoelectricity in quasicrystals. In §2, the enumeration of the number of
non-vanishing and independent second-order piezoelectric coefficients needed for
the nine quasicrystalline classes with five-fold rotations, 5(C5), 5(S10), 10(C5h),
10m2(D5h), 52(D5), 5m(C5v), 5m2(D5d); 235(I), 2

m35(Ih) is carried out with the
help of one-dimensional irreducible representation (IR) of the factor groups Gi/Gi+1

contained in the composition series, that exist among these nine-point groups [13].
In the section that follows, the non-vanishing and independent components of
second-order piezoelectric tensor are evaluated and listed, employing a compact
notation. The paper ends with a brief discussion of the results and a few conclud-
ing remarks.

2. Enumeration of second-order piezoelectric coefficients

It is well-known that piezoelectricity is a physical property that connects two phys-
ical quantities, namely, stress and electric polarization. If Pi, i = 1, 2, 3 denote the
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components of electric polarization moment per unit volume and τjk stand for the
components of a symmetric second-rank stress tensor, then we may write

Pi = dijkτjk; i, j, k,= 1, 2, 3. (2.1)

Here dijk are 18 in number and constitute a tensor of rank 3. The independent
components of the first-order piezoelectric tensor for each of the nine aforesaid point
groups were derived by Jiang Yi-Jain et al [12] and Wenge Yang et al [16].

The physical property of second-order piezoelectricity on the other hand repre-
sents the relation between the axial vector and fourth-order symmetric stress tensor.
Hence, the second-order piezoelectric tensor dipqrs can be expressed as a product of
vector and square of a symmetric tensor. As such it is a fifth rank tensor invariant
with respect to an interchange of p with q or r with s as also with the pairs pq
and rs. When these tensor components are written in three suffix notation, the
independent components are those dijk whose suffixes take values 1 ≤ i ≤ 3 and
1 ≤ j, k ≤ 6 with j ≤ k. Hence, its compound character χΓ(R) can be written [18]
as

χΓ(Rφ) = (2c± 1)(16c4 ± 8c3 − 4c2 + 1). (2.2)

In eq. (2.2), c stands for the cosine of the angle of rotation φ represented by the
symmetry operation R of the point group under consideration. The positive or
negative sign is to be taken according to whether the symmetry operation R under
consideration is a pure rotation or rotation reflection through an angle φ.

The maximum number (ni) of non-vanishing and independent second-order piezo-
electric coefficients of the property tensor under consideration are determined here
with respect to each of the nine quasicrystalline classes with five-fold rotations by
considering (i) the total symmetric IR of the factor groups Gi/Gi+1 contained in
the composition series, G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gi ⊃ Gi+1 ⊃ · · · ⊃ 1 that
exist among the seven pentagonal and two icosahedral point groups, (ii) the defini-
tion of the character of the coset for any physical property [13], (iii) the computed
character χΓ(Rφ) corresponding to the symmetry operation Rφ in the representa-
tion provided by the second-order piezoelectric property and (iv) the well-known
formula [19]:

ni =
1
N

∑
ρ

hρχ
(Γi)
ρ χ(Γ)

ρ (2.3)

with the usual notation. The results obtained are presented in table 1.

3. Evaluation of the second-order piezoelectric tensor coefficients

The non-vanishing and independent second-order piezoelectric tensor components
are evaluated with respect to each of the nine quasicrystalline classes in this section
using the tensor transformation law:

d1
ijklm = aipajqakralsamtdpqrst, i, j, k, l,m = 1, 2, 3 (3.1)
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Table 1. Number (ni) of independent constants required

to describe the second-order piezoelectricity by the seven

pentagonal and two icosahedral point groups.

Pentagonal/ Number of independent
icosahedral constants required to describe
point groups second-order piezoelectricity

5 13
5 0
10 2
10m2 1
52 4
5m 9
52m 0
235 0
2
m

35 0

and solving the equations that arise when imposing the condition that the tensors
are invariant under the symmetry transformations of the point group. The com-
plexity in computation is reduced by considering the composition series that exists
among the nine point groups and evaluating the non-vanishing components of the
group Gi in the series, from those of the independent non-vanishing components of
the maximal normal subgroup Gi+1 by the application of the appropriate genera-
tor(s) gi that generate Gi from Gi+1. The simplified procedure is illustrated here
by considering the series:

10m2 ⊃ 10 ⊃ 5 ⊃ 1 (i)
and

2
m35 ⊃ 235 ⊃ 1. (ii)

Point group 1 requires 63 independent second-order piezoelectric coefficients. The
coefficients needed by point group 5 are obtained from those of point group 1 (C1)
by the application of the generating symmetry operation C5z. Upon solving the ob-
tained transformation equations we find a scheme with 13 independent coefficients
for point group 5 (C5). Application of the generating symmetry operation σh on
the scheme of 5 in conjuction with eq. (3.1) gives the two independent coefficients
required by point group 10(C5h). Similarly, by operating C2 on the coefficients ob-
tained for the point group 10, we find that one independent coefficient is necessary
for point group 10m2 (D5h).

By identifying the appropriate generators and adopting the same procedure for
series (ii), we find that both the icosahedral point groups 235(I) and 2

m35(Ih) require
zero second-order piezoelectric coefficients. The non-vanishing and independent
schemes of second-order piezoelectric coefficients derived for all the nine considered
point groups are listed in table 2 employing the compact notation [15,20]. To avoid
the excessive use of symbols, the letter d is omitted in all the entries of this table.
For example, an entry 1 1 1 in the table stands for d1 1 1.
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Table 2. Second-order piezoelectric coefficients required for the seven pen-
tagonal and two icosahedral point groups.

Quasicrystal class/ 5 52 5m 5, 52m 10 10m2 I, Ih
constants (13) (4) (9) (0) (2) (1) (0)

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0
1 1 2 −1 1 1 −1 1 1 −1 1 1 0 −1 1 1 −1 1 1 0
1 1 3 0 0 0 0 0 0 0
1 1 4 1 1 4 1 1 4 0 0 0 0 0
1 1 5 1 1 5 0 1 1 5 0 0 0 0
1 1 6 1 1 6 0 0 0 1 1 6 0 0
1 2 2 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0
1 2 3 0 0 0 0 0 0 0
1 2 4 1 2 4 1 2 4 0 0 0 0 0
1 2 5 1 2 5 0 1 2 5 0 0 0 0
1 2 6 −1 1 6 0 0 0 −1 1 6 0 0
1 3 3 0 0 0 0 0 0 0
1 3 4 1 3 4 1 3 4 0 0 0 0 0
1 3 5 1 3 5 0 1 3 5 0 0 0 0
1 3 6 0 0 0 0 0 0 0
1 4 4 0 0 0 0 0 0 0
1 4 5 0 0 0 0 0 0 0
1 4 6 a 0 a 0 0 0 0
1 5 5 0 0 0 0 0 0 0
1 5 6 b b 0 0 0 0 0
1 6 6 −1 1 1 −1 1 1 −1 1 1 0 −1 1 1 −1 1 1 0
2 1 1 1 1 6 0 0 0 1 1 6 0 0
2 1 2 −1 1 6 0 0 0 −1 1 6 0 0
2 1 3 0 0 0 0 0 0 0
2 1 4 1 2 5 0 1 2 5 0 0 0 0
2 1 5 −1 2 4 −1 2 4 0 0 0 0 0
2 1 6 −1 1 1 −1 1 1 −1 1 1 0 −1 1 1 −1 1 1 0
2 2 2 1 1 6 0 0 0 1 1 6 0 0
2 2 3 0 0 0 0 0 0 0
2 2 4 1 1 5 0 1 1 5 0 0 0 0
2 2 5 −1 1 4 −1 1 4 0 0 0 0 0
2 2 6 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0
2 3 3 0 0 0 0 0 0 0
2 3 4 1 3 5 0 1 3 5 0 0 0 0
2 3 5 −1 3 4 −1 3 4 0 0 0 0 0
2 3 6 0 0 0 0 0 0 0
2 4 4 0 0 0 0 0 0 0
2 4 5 0 0 0 0 0 0 0
2 4 6 −b −b 0 0 0 0 0
2 5 5 0 0 0 0 0 0 0
2 5 6 a 0 a 0 0 0 0
2 6 6 −1 1 6 0 0 0 −1 1 6 0 0
3 1 1 3 1 1 0 3 1 1 0 0 0 0
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Table 2. Contd...

Quasicrystal class/ 5 52 5m 5, 52m 10 10m2 I, Ih
constants (13) (4) (9) (0) (2) (1) (0)

3 1 2 3 1 2 0 3 1 2 0 0 0 0
3 1 3 3 1 3 0 3 1 3 0 0 0 0
3 1 4 0 0 0 0 0 0 0
3 1 5 0 0 0 0 0 0 0
3 1 6 0 0 0 0 0 0 0
3 2 2 3 1 1 0 3 1 1 0 0 0 0
3 2 3 3 1 3 0 3 1 3 0 0 0 0
3 2 4 0 0 0 0 0 0 0
3 2 5 0 0 0 0 0 0 0
3 2 6 0 0 0 0 0 0 0
3 3 3 3 3 3 0 3 3 3 0 0 0 0
3 3 4 0 0 0 0 0 0 0
3 3 5 0 0 0 0 0 0 0
3 3 6 0 0 0 0 0 0 0
3 4 4 3 4 4 0 3 4 4 0 0 0 0
3 4 5 0 0 0 0 0 0 0
3 4 6 0 0 0 0 0 0 0
3 5 5 3 4 4 0 3 4 4 0 0 0 0
3 5 6 0 0 0 0 0 0 0
3 6 6 c 0 c 0 0 0 0

a = 1/2(d1 1 5 − d1 2 5); b = 1/2(d1 2 4 − d1 1 4); c = 1/2(d3 1 1 − d3 1 2).

4. Conclusions

The simple and elegant group-theoretical method adopted in this paper for enumer-
ating and evaluating the non-vanishing and independent second-order piezoelectric
coefficients avoids considering each one of the nine quasicrystalline classes sepa-
rately. The tensor components of a quasicrystalline class Gi are obtained from
those of the components of a maximal normal subgroup Gi+1 in the considered se-
ries by just applying the appropriate generator(s) gi that generates Gi from Gi+1.

It can be seen that the maximum number of independent piezoelectric coefficients
needed by the quasicrystalline classes increase with the increasing order of the effect.
It was found that for the first-order effect the maximum number was only four [12]
whereas for the second-order effect we find that it is thirteen, for the nine-point
groups under consideration.

The number of independent first-order piezoelectric coefficients for the icosahe-
dral classes was found to be zero [12]. It is interesting to note here that for the
icosahedral classes, this number for the second-order effect is also zero – indicating
that the icosahedral classes 235 and 2

m35 do not exhibit piezoelectric behavior of
known order.

Most scientists working in this area are unanimous in their opinion that qua-
sicrystalline materials with icosahedral and other quasiperiodic symmetries repre-
sent a new phase of matter with possibly unique physical properties which one has
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to identify and understand. These materials are generally hard (Hυ > 500) but
ductile in certain conditions. They are good conductors of heat, are thermally sta-
ble and can be chemically adjusted to meet corrosion problems. Accordingly they
are mild ware applications, ranging from non-stick frying pans to a self-lubricated
combustion chamber in heat engines [21]. Since quasicrystalline nature is observed
and identified in several composite materials, experimental evaluation/verification
of the theoretical results is naturally expected in these materials. But to-date only
a limited experimental work in the study of physical properties has been carried
out. As Cheng Zheng Hu et al [22] observed, ‘some preliminary investigations have
been made in this field’ (and) ‘most of the physical properties predicted in QCs
still remain to be confirmed experimentally’.
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