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Abstract. We investigate the energy transfer between various Fourier modes in a low-
dimensional model for thermal convection. We have used the formalism of mode-to-mode
energy transfer rate in our calculation. The evolution equations derived using this scheme
is the same as those derived using the hydrodynamical equations for thermal convection
in Boussinesq fluids. Numerical and analytical studies of this model show that convective
rolls appear as the Rayleigh number R is raised above its critical value Rc. Further
increase of Rayleigh number generates rolls in the perpendicular directions as well, and
we obtain a dynamic asymmetric square pattern. This pattern is due to Hopf bifurcation.
There are two sets of limit cycles corresponding to the two competing asymmetric square
patterns. When the Rayleigh number is increased further, the limit cycles become unstable
simultaneously, and chaotic motion sets in. The onset of chaos is via intermittent route.
The trajectories wander for quite a long time almost periodically before jumping irregularly
to one of the two ghost limit cycles.
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1. Introduction

Modal energy transfer [1–9] in fluids governs the nature of dynamics among small
or large scale structures in fluids. The interactions of various possible structures
and the resulting dynamics are controlled by the mechanism of energy transfer
among these structures. In the case of cellular instability in fluids, more than one
structure may be possible. The competition among these patterns involves exchange
of energy between various structures. Many of the interesting dissipative structures
in fluid either at primary or secondary instability involve triad interaction among
critical modes and modes generated due to nonlinearity. We apply this idea to
investigate mode-to-mode energy transfer in competing convective structures in a
model of thermal convection at the onset of secondary instability. We also study
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the possibility of chaos in the model of competing rolls and asymmetric square
structures. The chaos sets in through intermittency.

2. Hydrodynamical equations

The hydrodynamics of thermal convection in a thin layer of thickness d of a Boussi-
nesq fluid confined between two conducting horizontal plates, and subjected to
adverse temperature gradient β is governed by

∂u
∂t

+ (u · ∇)u = −1
ρ
∇σ + gαθẑ + ν∇2u, (1)

∂θ

∂t
+ (u · ∇)θ = βu · ẑ + κ∇2θ, (2)

∇ · u = 0, (3)

where u is the velocity field, θ and σ are the deviations in the temperature and
pressure fields from their values in the conduction state. The thermal expansion
coefficient α, the kinematic viscosity ν, the thermal diffusivity κ, and a reference
density ρ are assumed to have uniform values in the fluid, which is compatible with
Boussinesq approximation. The conducting plate requires the deviations in the
temperature field to vanish (θ = 0) at the horizontal plates. We assume the plates
to be stress-free, which is an idealized condition on velocity fields. This assumption
requires the vertical velocity (u3) and the vertical gradients of horizontal velocities
to vanish (∂zu1 = ∂zu2 = 0) at the bounding surfaces.

The nondimensionalization of all length scales by the fluid depth d, time scales
by the thermal diffusive time d2/κ, and the temperature field by the temperature
difference βd across the fluid, yield the following nondimensional equations:

∂u
∂t

+ (u · ∇)u = −∇σ + RPθẑ + P∇2u,

∂θ

∂t
+ u · ∇)θ = u3 +∇2θ,

where the nondimensional parameters R = αgβd4/νκ and P = ν/κ are Rayleigh
and Prandtl numbers respectively. The form of continuity equation remains the
same in the dimensionless form.

3. Model and formalism of mode-to-mode energy transfer

Writing the above hydrodynamical equations in Fourier space, we get

∂ui(k)
∂t

= −ikiσ(k)− ikj

∑

p+q=k

uj(q)ui(p)

+RPθ(k)δi3 − k2ui(k), (4)
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∂θ(k)
∂t

= u3(k)− ikj

∑

p+q=k

uj(q)θ(p)− k2θ(k),

kiui(k) = 0, (5)

where k = p + q. We can derive interesting results by focussing on a single triad
(k′,p,q) such that k′ + p + q = 0. Clearly k′ = −k. This is equivalent to truncat-
ing the expansion of the field to a single triad. We can easily derive the following
energy equations:

∂

∂t

|u(k′)|2
2

= Suu(k′|p|q) + Suu(k′|q|p)

+RP< [θ(k)u∗3(k)]− 2νk2 |u(k′)|2
2

, (6)

∂

∂t

|θ(k′)|2
2

= Sθθ(k′|p|q) + Sθθ(k′|p|q)

+< [θ(k)u∗3(k)]− 2κk2 |θ(k′)|2
2

, (7)

where

Suu(k′|p|q) = −= ([k′ · u(q)] [u(k′) · u(p)]) , (8)
Sθθ(k′|p|q) = −= ([k′ · u(q)] [θ(k′) · θ(p)]) . (9)

Here < and = represent the real and imaginary part of the argument. The quantity
Suu(k′|p|q) [Sθθ(k′|p|q)] represents the energy transfer from the mode u(p) [θ(p)]
(the field variable with the second argument) to the mode u(k′) [θ(k′)] (the field
variable with the first argument) with the help of the mode u(q) [θ(q)] (the field
variable with the third argument) acting as a mediator. The above formalism
is called ‘mode-to-mode’ formalism for energy transfer [2,9], and it differs from
Kraichnan’s ‘combined energy transfer ’ formalism [6,7]. For details refer to Dar et
al [2] and the review paper by Verma [9]. The energy equation can be interpreted
as follows: The field variables with wave number k′ [u(k′), θ(k′)] receives energy
from the modes p and q through mode-to-mode energy transfer terms, and it also
receives energy from the interaction term θ(k)u∗3(k).

It is important to keep in mind that |θ(k)|2/2 is not real energy. However, it has
structure of energy, and we can apply the energy transfer formalism here as well.
This idea has been exploited heavily in the past to infer the direction of flux of
passive scalar etc. [5]. Dar et al [2] and Verma [9] have shown that the sum of all
energy transfer rates along u–u and θ–θ channels are zero, i.e.,

SXX(k′|p|q) + SXX(k′|q|p) + SXX(p|k′|q)
+ SXX(p|q|k′) + SXX(q|k′|p) + SXX(q|p|k′) = 0,

where XX could be uu or θθ.
Using this identity we can easily show that in the absence of viscous and thermal

diffusivity
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∂

∂t
[|u(k′)|2 + |u(p)|2 + |u(q)|2] = 2RP<[θ(k′)u∗3(k

′)

+θ(p)u∗3(p)] + θ(q)u∗3(q)],

and

∂

∂t
[|θ(k′)|2 + |θ(p)|2 + |θ(q)|2] = <[θ(k′)u∗3(k

′)

+θ(p)u∗3(p)] + θ(q)u∗3(q)].

The interpretation of the above equations is that the triad [u(k′),u(p),u(q)] and
the triad [θ(k′), θ(p), θ(q)] exchange energy between each other via θ(k)u∗3(k) inter-
action terms. The mode-to-mode interaction SXX(k′|p|q) conserves energy within
a triad. The viscous and diffusive terms dissipate kinetic energy and θ energy
respectively.

Equations (1)–(3) support heat flow through conduction (no motion) below crit-
ical Rayleigh number Rc. Just above Rc, convection sets in. For Boussinesq fluids
confined between conductive plates, the convection appear in the form of stationary
two-dimensional (2D) rolls at the onset of the convection. At higher Rayleigh num-
ber, this structure becomes unstable and new structures appear. We consider the
model of Das et al [10], which allows competition between two mutually perpendic-
ular sets of rolls. This study explores the possibility of convective cells in the form
of asymmetric squares. Convective square structures are studied in pure fluids [11]
as well as in binary mixtures [12,13]. Since the hydrodynamical equations for the
thermal convection has two quadratic non-linearities, modes with higher wave num-
bers are generated that interact with each other and with the critical modes. These
triadic interactions generate convective structures, which have been studied widely
(for instance, see [14,15]). In the present paper, we study the interacting convective
rolls using the mode-to-mode energy transfer formalism. Following Das et al [10]
we consider the following truncated mode expansion of the relevant fields:

u1 = −π

k
w101 sin kx cosπz − π

k
w112 sin kx cos ky cos 2πz,

u2 = −π

k
w011 sin ky cosπz − π

k
w112 cos kx sin ky cos 2πz,

u3 = [w101 cos kx + w011 cos ky] sin πz

+w112 cos kx cos ky cos 2πz,

θ = [θ101 cos kx + θ011 cos ky] sin πz

+θ112 cos kx cos ky sin 2πz + θ002 sin 2πz.

The selection of these modes were motivated to investigate the possibility of
symmetric and asymmetric squares cellular structures in convecting fluids following
the experimental observations of Assenheimer and Steinberg [16] and numerical
observations of Busse and Clever [11] (also refer to Sanchez-Alvarez et al [17]).
An inspection of the chosen fields indicates that we have the following six sets of
triads:
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Mode I II III IV V VI

k′ (1,0,1) (1,0,1) (−1,0,1) (−1,0,1) (1,0,1) (0,1,1)

p (0,1,1) (0,−1,1) (0,1,1) (0,−1,1) (−1,0,1) (0,−1,1)

q (−1,−1,−2) (−1,1,−2) (1,−1,−2) (1,1,−2) (0,0,−2) (0,0,−2)

The numbers in the brackets represent the components along the x, y and z
directions. The amplitudes of fields are given below:

Modes u1 u2 u3 θ

(1,0,1) − π
4kiw101 0 1

4iw101
1
4iθ101

(−1,0,1) π
4kiw101 0 1

4iw101
1
4iθ101

(0,1,1) 0 − π
4kiw011

1
4iw011

1
4iθ011

(0,−1,1) 0 π
4kiw011

1
4iw011

1
4iθ011

(−1,−1,−2) π
8kiw112

π
8kiw112 − 1

8iw112 − 1
8iθ112

(−1,1,−2) π
8kiw112 − π

8kiw112 − 1
8iw112 − 1

8iθ112

(1,−1,−2) − π
8kiw112

π
8kiw112 − 1

8iw112 − 1
8iθ112

(1,1,−2) − π
8kiw112 − π

8kiw112 − 1
8iw112 − 1

8iθ112

(0,0,−2) 0 0 0 − 1
2iθ002

Using eq. (7) we write the equation for |θ(101)|2. The mode θ(101) receives
energy from the modes θ(p) and θ(q) of triads I: k′ = (1, 0, 1); p = (0, 1, 1); q =
(−1,−1,−2), II: k′ = (1, 0, 1); p = (0,−1, 1); q = (−1, 1,−2), V: k′ = (1, 0, 1); p =
(−1, 0, 1); q = (0, 0,−2). It also receives energy from interaction with the u3(101)
mode. Hence

∂

∂t

|θ(101)|2
2

= Sθθ
I (k′|p|q) + Sθθ

I (k′|q|p) + < [θ(k)u∗3(k)]

+Sθθ
II (k′|p|q) + Sθθ

II (k′|q|p)
+Sθθ

V (k′|p|q) + Sθθ
V (k′|q|p)

−(π2 + k2)θ(101).

Using the mode-to-mode energy transfer formulas (eqs (8) and (9)) it is easy to
show that

SI(k′|p|q) = SII(k′|p|q) =
π

128
w101θ101θ112,

SI(k′|q|p) = SII(k′|q|p) = 0,

SV(k′|p|q) = 0,

SV(k′|q|p) = SV(k′|q|p).

Using these, we get the evolution equation for the Fourier mode θ101 as
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θ̇101 =
π

4
w011θ112 + w101 + πw101θ002 − (π2 + k2)θ101. (10)

Using similar analysis we derive the following evolution equations for the other
Fourier modes:

θ̇011 =
π

4
w101θ112 + w011 + πw011θ002 − (π2 + k2)θ011, (11)

θ̇112 = −π

2
[w101θ011 + w011θ101] + w112 − 2(2π2 + k2)θ101, (12)

θ̇002 = −π

2
[w101θ101 + w011θ011]− 4π2θ002, (13)

ẇ101 =
π

4
w011w112 +

R ∗ P ∗ k2

π2 + k2
θ101 − P (π2 + k2)w101, (14)

ẇ011 =
π

4
w101w112 +

R ∗ P ∗ k2

π2 + k2
θ011 − P (π2 + k2)w011, (15)

ẇ112 = − π2 + k2

2π2 + k2
πw101w011 +

R ∗ P ∗ k2

2π2 + k2
θ112 − P ∗ 2(2π2 + k2)w112.

(16)

Note that eqs (10)–(16) contain two sets of Lorenz model [18] coupled with non-
linear modes w112 and θ112. Since there are seven equations in the above model,
we call it a seven-mode model. If we keep only θ002, θ101, w101 (or θ002, θ011, w011)
modes, we obtain the famous Lorenz equations. Since two Lorenz equations are
embedded in the above set, it is also called double-Lorenz model.

We have three free parameters (R, P, k) in the above set of equations. For the
results presented in this paper, k is taken be its critical value (i.e., k = kc = π/

√
2).

Lorenz equation is not valid for small Prandtl number. In this paper we have taken
P = 10. Note however that the qualitative features remain the same as long as
P > 1.

We solve the above set of equations numerically by the given initial conditions.
The results are described in the next section.

4. Results

The model (10)–(16) is solved numerically using fourth-order Runge–Kutta scheme.
The parameters P and k are set to constant values of 10 and π/

√
2 respectively. We

vary r = R/Rc, where Rc = 27π4/4 is the critical Rayleigh number. As expected,
all the variables are zero for r < 1. This region corresponds to conduction state.
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Just above r > 1, we observe four different steady-state solutions:

(A1) w011 = X0; θ011 = Y0; θ002 = Z0,
(A2) w011 = −X0; θ011 = −Y0; θ002 = Z0,
(B1) w101 = X0; θ101 = Y0; θ002 = Z0,
(B1) w101 = −X0; θ101 = −Y0; θ002 = Z0,

where

X0 =
4
3π

√
R−Rc; Y0 =

6π

R

√
R−Rc; Z0 =

1
π

(
Rc

R
− 1

)
, (17)

and the rest of the modes are zero. The above values are the fixed point values of
Lorenz model, but with different normalization.

The pairs (A1), (A2) and (B1), (B2) are the Lorenz fixed points. Physically they
are the stationary straight (i.e., 2D) rolls along the x and y directions respectively.
As we will describe below, these two fixed points play a very important role in the
dynamics. The choice of the solution depends on the initial condition; the initial
conditions lying in the basin of attraction of the fixed points (A1, A2, B1, B2)
approach the respective fixed points in the steady state.

The above rolls are steady-state solutions till r ≈ 14.3. Near r = 14.3, the above-
mentioned Lorenz fixed points become unstable, and a Hopf bifurcation takes place.
In the state space we obtain limit cycles around the fixed points (A1), (A2) and
(B1), (B2).

Let us focus on the fixed point (A2). When the fixed point is stable, θ011, w011,
θ002 are constants, and the rest are zeros. After Hopf bifurcation, θ011, w011, θ002

oscillate around the fixed point values, and the other modes w101, w112, θ101, θ112

start oscillating around zero as shown in figure 1. Hence two limit cycles are born;
one of them is illustrated in figure 2 where we plot the projection of state space on
the w101–θ101 plane.

The physical interpretation of the above solution is quite interesting. Since the
modes θ011, w011, θ002 are still dominant, there are strong rolls with axes along the
x direction. The small and oscillatory values of w101 and θ101 indicate an emergence
of rolls with axes along the y direction; these rolls appear and disappear. Hence,
near the bifurcation around the fixed point (A2), we obtain asymmetric square
pattern in the convection. These solutions were first obtained by Das et al [10].

Note that there are other stable limit cycle around the fixed points (A1), (B1),
(B2). The state-space trajectories are attracted to one of the limit cycles depending
on the initial conditions. The amplitudes of the limit cycle can be estimated in the
following manner.

Let us consider Hopf bifurcation around the fixed point (A2). The mean values
of the Fourier modes are

w011 = − 4
3π

√
R−Rc; θ011 = −6π

R

√
R−Rc; θ011 = −6π

R

√
R−Rc

and the mean values of the other modes are zero. By keeping only the leading-order
terms of eqs (10)–(16) we obtain

θ̇101 ≈ π

4
w011θ112,
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Figure 1. Time series plot of w101, w011, and w112 for r = R/Rc = 15,
P = 10. W101 and W011 are represented by solid and dashed line with average
around 0 and −40 respectively. W112 is the chained line oscillating around 0
with smaller amplitude.

Figure 2. Projection of state space on w101–θ101 plane for r = R/Rc = 15,
P = 10. The trajectory is a limit cycle.

θ̇112 ≈ −π

2
w011θ101,

ẇ101 ≈ π

4
w011w112,
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Figure 3. Plot of w101(t) vs. t for r = R/Rc = 15.22, P = 10. The system
oscillates around a fixed point in a quasi-periodic manner, then it jumps to
the other fixed point abruptly. The trajectory is chaotic.

ẇ112 ≈ −3π

5
w011w101.

The solution of the above equations imply that θ101 and θ112 oscillate with fre-
quency πw011/(2

√
2), while w101 and w112 oscillate with frequency πw011

√
3/20.

The analytical solution also indicates that 101 and 112 modes have a phase differ-
ence of π/2. The frequencies from our numerical simulation of eqs (10)–(16) match
quite well with the above estimates. However, the phases are quite different from
π/2. The difference is due to the neglect of other terms. Thus this simple analysis
gives the frequency of Hopf bifurcation quite well. Note that the bifurcation around
other fixed points have has identical nature.

When we increase r further, we obtain limit cycle up to r = 15.22. At r = 15.22
the state-space trajectories are not closed. We find that a point moves around a
fixed point, and then it jumps toward the other fixed point, and it revolves around
that. Then it again comes back to the first fixed point. This behaviour is illustrated
in the time series plot shown in figure 3, and it is reminiscent of Lorenz equation.
The time series shows a large region of regular behaviour (oscillations around the
fixed points), and a small region of turbulent behaviour (jumps). These properties
are signatures of emergence of chaos by intermittency route.

The time series plot indicates another important behaviour. We observe that
sometimes w101 oscillates around a mean value, and sometimes it oscillates around
zero. These two cases are complementary asymmetric square patterns (A,B, i.e.,
strong rolls along y and x directions respectively). Hence, the system switches from
a configuration of asymmetric square to the other configuration. Figure 4 shows
the projection of the state space on the w101–θ101 plane, which again indicates a
chaotic behaviour. The largest Lyapunov exponent is approximately 0.047.

The power spectrum of the signal w101 is shown in figure 5. This spectrum shows
one dominant frequency with a small broadening near it. The peak in the power
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Figure 4. Projection of state space on w101–θ101 plane for r = R/Rc = 15.22,
P = 10. The trajectory is chaotic.

spectrum corresponds to the oscillations around the fixed points, and the power in
the other frequencies corresponds to the jumps from one fixed point to the other.
Note that period-doubling route to chaos exhibit peaks at subharmonics (f/2, f/4
etc.), and quasi-periodic route to chaos also exhibits peaks in the power spectrum
at different frequencies (e.g., sum and differences of two dominant frequencies) [19].
Due to these reasons, emergence of chaos by period-doubling and quasi-periodic is
ruled out for the 7-mode model presented in our paper.

When we increase r beyond 15.22, the laminar region keeps shrinking. For r near
30, we do not observe any laminar region, and the state space is completely chaotic.
Since, these features are known very well in the literature, we are not presenting
details for r beyond 15.22. The results presented here are in agreement with earlier
numerical results of Das et al [10].

5. Conclusions

We have presented in this paper a novel method for using mode-to-mode energy
transfer to investigate interacting dissipative structures in a model of thermal con-
vection. The dynamical system presented here provides a toy model to investigate
chaotic dynamics of competing patterns in thermal convection. In addition, we
have presented an analytical model for the limit cycle which emerges in the system.

In the present paper we have provided an analytic argument for the emergence
of competing asymmetric square pattern in convection. Our theoretical reasoning
provide justification for the asymmetric square patterns observed experimentally
by Assenheimer and Steinberg [16], and numerically by Busse and Clever [11] and
Sanchez-Alvarez et al [17]. These arguments are in continuation of those provided
by Das et al [10].
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Figure 5. Power spectrum of the signal w101 for r = R/Rc = 15.22, P = 10.
The spectrum shows a narrow band of frequencies around the dominant fre-
quency.

The energy transfers among Fourier modes could provide interesting insights into
dynamics of various patterns observed in convective flows. We are in the process
of studying convective systems like zero-Prandtl number flows, dynamo model etc.
in this light.
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