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Abstract. We present the explicit form of the symplectic structure of anti-self-dual
Yang–Mills (ASDYM) equations in Yang’s J- and K-gauges in order to establish the bi-
Hamiltonian structure of this completely integrable system. Dirac’s theory of constraints is
applied to the degenerate Lagrangians that yield the ASDYM equations. The constraints
are second class as in the case of all completely integrable systems which stands in sharp
contrast to the situation in full Yang–Mills theory. We construct the Dirac brackets and
the symplectic 2-forms for both J- and K-gauges. The covariant symplectic structure of
ASDYM equations is obtained using the Witten–Zuckerman formalism. We show that
the appropriate component of the Witten–Zuckerman closed and conserved 2-form vector
density reduces to the symplectic 2-form obtained from Dirac’s theory. Finally, we present
the Bäcklund transformation between the J- and K-gauges in order to apply Magri’s
theorem to the respective two Hamiltonian structures.
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1. Introduction

Self-dual gauge fields were originally investigated as instanton solutions of the
Yang–Mills field equations which provide dominant contribution to the Euclidean
path integral in the quantization of Yang–Mills fields [1]. However, the interest in
ASDYM equations has now shifted to a study of its remarkable mathematical prop-
erties as a completely integrable system. Most of the completely integrable non-
linear partial differential equations that we know can be obtained as reductions of
ASDYM equations and the general expectation is that the ASDYM system itself is
the framework for integrable equations, which is first conjectured by Ward [2]. We
refer to Mason and Woodhouse [3] and Ablowitz and Clarkson [4] for a complete
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account of these considerations and related topics. There is, however, an exception
to this folk-lemma which is provided by Monge–Ampère equations [5].

There is no precise definition of complete integrability but one of the properties
we expect from such a system is the bi-Hamiltonian structure. This enables us to
obtain an infinite set of conserved quantities which are in involution with respect
to Poisson brackets defined by both Hamiltonian structures through the theorem
of Magri [6]. Schiff [7] has considered the bi-Hamiltonian structure of ASDYM
system. The approach we shall follow here differs from that of Schiff.

In this paper we shall discuss the symplectic structure of ASDYM equations in
Yang’s two formulations [8]. We shall apply Dirac’s theory of constraints [9] to
the degenerate Lagrangians that yield the ASDYM equations. We find that the
constraints are second class as in the case of all integrable systems [5]. This is
in marked contrast to the full Yang–Mills theory where the constraints are first
class. Nevertheless, it is expected because in the first place Yang’s equations for
self-duality are obtained for two particular choices of gauge. The constraint analysis
yields the Dirac brackets, or the Hamiltonian operators in the language of integrable
systems. The symplectic 2-form is obtained by evaluating the Poisson bracket of
Dirac’s constraints. It is also the inverse of the Hamiltonian operator.

The usual approach to Hamiltonian structure starts with a choice of time vari-
able and is necessarily non-covariant. For Euclideanized ASDYM equations, the
definition of the independent variable with respect to which ASDYM equations
can be formulated as a Hamiltonian system becomes a critical matter as physi-
cally there cannot be a distinguished independent variable that can be regarded
as ‘time’ coordinate. However, in Dirac’s theory the analysis of the constraints
can be carried out formally by choosing an arbitrary independent variable to play
the role of time and this variable can even be complex. Furthermore, we have the
covariant formulation of symplectic structure due to Witten [10] and Zuckerman
[11] where the symplectic 2-form is a closed and conserved vector density. We shall
construct the Witten–Zuckerman symplectic 2-forms for ASDYM equations. The
results we find for both Dirac and Witten–Zuckerman approaches coincide, i.e., the
‘time’-component of the Witten–Zuckerman symplectic 2-form is the same as the
symplectic 2-form obtained from Dirac’s theory.

The formulation of ASDYM equations as an integrable system follows the work of
Yang [8] who pointed out that by introducing complex coordinates z, w on Euclid-
eanized space–time the requirement of self-duality reduces to the simple conditions

Fzw = 0, Fz̄w̄ = 0, Fzz̄ + Fww̄ = 0 (1)

on the components of the field tensor. He further pointed out two choices of gauge,
the J- and K-gauges, whereby eq. (1) assumes a particularly simple form. In the K-
gauge, Yang proposed the Ansatz for the components of the Yang–Mills connection
1-form

Az̄ = Kw, Aw̄ = −Kz, (2)

where K is a matrix which is an element of the structure group of the Yang–Mills
equations and its subscripts denote partial derivatives. Yang’s equations (1) reduce
to
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Kzz̄ + Kww̄ + [Kw,Kz] = 0 (3)

for this choice of gauge. In the J-gauge, components of the connection 1-form are
given by

Az̄ = J−1 Jz̄, Aw̄ = J−1 Jw̄ (4)

and eq. (1) becomes

(J−1Jz̄)z + (J−1Jw̄)w = 0, (5)

where J is another matrix which is an element of the structure group. We note
that there is an asymmetry between independent variables z, w and their complex
conjugates z̄, w̄ in both eqs (3) and (5). In the J-gauge this asymmetry is responsible
for the deviation of eq. (5) from the standard structure of a harmonic map, or non-
linear sigma model. The difference is a Wess–Zumino term. This asymmetry, which
is essential in the identification of the ASDYM equations as a multi-dimensional
completely integrable system, will appear in everything that follows.

2. K-gauge

It is well-known [12] that the Lagrangian

LK2 = 1
2KzKz̄ + 1

2KwKw̄ + 2
3K[Kw,Kz] (6)

yields the ASDYM equation (3). Here and in the following the trace operation will
be understood in all Lagrangians where the variables to be varied independently are
matrices. We shall take the independent variable z to act as the ‘time’ variable and
for purposes of Hamiltonian analysis we need to start with a first-order Lagrangian.
This is given by

LK = 1
2MM̃ − 1

2KwKw̄ − 1
2M̃Kz − 1

2MKz̄ + 1
3M [K, Kw] (7)

because it can be verified that we obtain the Euler–Lagrange equations

Kz = M,

M̃ = Kz̄ + 2
3 [Kw,K]

M̃z = −Mz̄ − 2Kw̄w + 2
3 [Mw,K]− 4

3 [Kw,M ] (8)

which together result in eq. (3). In this first-order formulation we have introduced
M, M̃ as new variables which is double the number required. This is due to the
asymmetry, already noted above, between independent variables and their complex
conjugates in the K-gauge equation (3) itself. If eq. (3) had possessed such a
symmetry then M̃ would simply have been its complex conjugate M̃ . The first-
order ASDYM field equations can be written as

XA
z = XK (XA) (9)
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with the vector field defining the flow

XK =
(
− 2Kw̄w −Mz̄ +

2
3
[Mw,K] +

4
3
[M, Kw]

) δ

δM̃
+ M

δ

δK
(10)

for the K-gauge equations (8). We note that the basis vector field δ/δM is missing
above because its coefficient vanishes identically due to the absence of Mz in eq.
(8). This is a consequence of the asymmetry and we only need to take

X1 ≡ M̄, X2 ≡ K

in eq. (9). Only the variables M̄, K play a significant role in phase-space and the
symplectic structure of ASDYM equations in the K-gauge can be discussed without
reference to M .

The Lagrangian (7) is degenerate because its Hessian

det
∣∣∣∣

∂2L
∂XA

z ∂XB
z

∣∣∣∣ = 0 (11)

vanishes identically. Hence, it is a system subject to constraints and the passage to
its Hamiltonian structure requires the use of Dirac’s theory of constraints [9]. We
start with the canonical momenta

ΠA ≡ ∂L
∂XA

z

(12)

which cannot be inverted due to eq. (11). The definition of the momenta therefore
gives rise to the constraints

Φ1 = ΠM̃

Φ2 = ΠK + 1
2M̃

Φ3 = ΠM (13)

which must vanish weakly. In order to determine the class of these constraints we
need to obtain the Poisson bracket of the constraints

CAB(w,w′) = {ΦA(w), ΦB(w′)} (14)

using the canonical Poisson brackets

{XA(w), ΠB(w′)} = δA
Bδ(w − w′) (15)

between the dynamical variables and their conjugate momenta. For the first two
constraints we find

CAB(w,w′) =
1
2

(
0 −1
1 0

)
δ(w − w′) (16)

which shows that they are second class. It is understood that w̄ enters into Poisson
bracket relations in exactly the same way as w. We shall follow this loose practice
in the rest of this paper. The remaining constraint Φ3 is first class, but only
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superficially. It is quite unlike the first-class constraints that arise from important
principles such as gauge invariance. The origin of Φ3 as a first-class constraint can
be traced back to the pathology that the component of the vector field (10) along
M vanishes identically. We shall henceforth ignore M and its conjugate momentum
Φ3 completely as they do not play any significant role in phase-space.

The symplectic 2-form is given by [5]

ω = δXA ∧ CA B δXB (17)

and from eq. (16) we find that

ωK = δK ∧ δM̃, (18)

where we see that M̃ is the momentum map.
In order to obtain the Hamiltonian for the degenerate Lagrangian (7) we first

construct the free Hamiltonian obtained by Legendré transformation

H0 = ΠAXA
z − L

= − 1
2MM̃ + 1

2KwKw̄ + 1
2MKz̄ + 1

3M [Kw,K] (19)

and the total Hamiltonian density of Dirac is given by

HT = H0 + λAΦA, (20)

where λA are Lagrange multipliers. For second-class constraints, the Lagrange
multipliers are determined from the solution of

{HT, ΦA} = 0 (21)

which ensure that the constraints hold for all values of z. The Lagrange multipliers
are given by

λ1 = −Mz̄ − 2Kw̄w + 2
3 [Mw,K]− 4

3 [Kw,M ],

λ2 = M,

which consist of the coefficients of the vector field (10) defining the flow. This is a
general property of second-class constraints which are linear in the momenta.

The Dirac bracket is a modification of the Poisson bracket designed to vanish
on the surface defined by the constraints. For two smooth functionals F,G of the
canonical variables, the Dirac bracket is given by

[F,G]K = [F,G]− [F, ΦA]ZAB
K [ΦB , G], (22)

where ZK is obtained by inverting the matrix of the Poisson bracket of the con-
straints

∫
CAB(w,w′′)ZBC

K (w′′, w′) dw′′ = δC
A δ(w − w′) (23)
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and we note [5] that the inverse of the Poisson bracket of the constraints is known
as the Hamiltonian operator in the literature of integrable systems. From eq. (16)
we have

ZA B
K (w, w′) =

(
0 1
−1 0

)
δ(w − w′) (24)

and eq. (8) can be written in the Hamiltonian form

XA
z = ZA B

K

δH0

δXB
, (25)

where integration over primed variables is implied. Finally, Hamilton’s equations
can be written in the form

iXωK = −δH0, (26)

where iX denotes contraction with respect to the vector field (10) of the symplectic
2-form (18). The Hamiltonian function H0 given by eq. (19) is conserved. On shell

H0 = −KzKw̄ (27)

and

−(KwKw̄)z + (KzKz)z̄ + (KzKw̄)w + (KwKz)w̄ = 0

is the associated continuity equation.
The discussion of the symplectic structure of ASDYM equations in the K-

gauge contains some unfamiliar features owing to the choice of a complex variable
as ‘time’-parameter and the asymmetry between the independent variables and
their complex conjugates in eq. (3). We shall now turn to the covariant Witten–
Zuckerman formulation of symplectic 2-form vector density ωµ which is closed

δωµ = 0 (28)

and conserved

∂µωµ = 0 (29)

and the fact that it is covariant relieves us of the encumbrance involved in justifying
the choice of ‘time’ variable. Starting with the Lagrangian (7) we find that the
Witten–Zuckerman symplectic 2-form is given by

ωz = − 1
2δM̃ ∧ δK,

ωz̄ = − 1
2δM ∧ δK,

ωw = − 1
2δKw̄ ∧ δK − 1

3δ[K, M ] ∧ δK,

ωw̄ = 1
2δKw ∧ δK, (30)

where we note that

ωz = ωK (31)

is the expression for the symplectic 2-form (17) obtained from Dirac’s theory of
constraints.
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3. J-gauge

We have remarked on the asymmetry between the complex coordinates and their
complex conjugates in ASDYM equations which is due to a Wess–Zumino term.
This is an essential feature of their complete integrability but leads to problems in
writing a Lagrangian for Yang’s ASDYM equations in the J-gauge. The nonlinear
σ-model Lagrangian does not yield eq. (5). The trace operation implied in this
Lagrangian will always result in equations of motion symmetric in derivatives of J
with respect to z, z̄ and w, w̄. Nair and Schiff [13] have written down a Lagrangian
in five dimensions with the Wess–Zumino term that will take care of this essential
asymmetry but the explicit result which will come from its restriction to a four-
dimensional boundary has not been carried out. The explicit expression for the
Lagrangian in the J-gauge was given by Pohlmeyer [14] for gauge group SU(2). It
depends on each entry of J . For SU(2) Yang parametrized J in terms of Poincaré
coordinates for the forward mass hyperboloid

J =
1
φ

(
1 ρ̄
ρ φ2 + ρρ̄

)
, (32)

where φ is real and ρ is complex. Then eq. (5) reduces to

φφww̄ + φφzz̄ − φwφw̄ − φzφz̄ + ρ̄wρw̄ + ρ̄zρz̄ = 0,

φρ̄ww̄ + φρ̄zz̄ − 2φw̄ρ̄w − 2φz̄ ρ̄z = 0,

φρww̄ + φρzz̄ − 2φwρw̄ − 2φzρz̄ = 0 (33)

and Pohlmeyer showed that the second-order Lagrangian

LJ2 = (2φ2)−1
[
φzφz̄ + φwφw̄ + ρ̄zρz̄ + ρ̄wρw̄

]
(34)

yields eq. (33). We need to cast this Lagrangian into first-order form. It can be
verified that

LJ = − 1
2PP̄ + (2φ)−1Pφz̄ + (2φ)−1P̄ φz + (2φ2)−1φwφw̄

−(2φ2)−1(QQ̄−Qρ̄z − Q̄ρz̄) + (2φ2)−1ρw̄ρ̄w (35)

gives rise to the Euler–Lagrange equations

P = φ−1φz, P̄ = φ−1φz̄, Q = ρz̄, Q̄ = ρ̄z,

Pz̄ + P̄z + 2φ−1φww̄ − 2φ−2φwφw̄ + 2φ−2ρw̄ρ̄w + 2φ−2Qρ̄z = 0,

(Qφ−2)z + (φ−2ρw̄)w = 0,

(Q̄φ−2)z̄ + (φ−2ρ̄w)w̄ = 0, (36)

which together result in eq. (5). It is yet another consequence of the asymmetry
between independent variables and their complex conjugates in eq. (5) that deriv-
atives of ρ, P and Q̄ with respect to z do not appear in eq. (36). Phase-space for
SU(2)-ASDYM equations in the J-gauge is spanned by the variables ρ̄, P̄ , Q, φ only.
The meaningful variables X1 = ρ̄, X2 = P̄ , X3 = Q, X4 = φ satisfy first-order field
equations
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XA
z = XJ(XA), (37)

with the vector field defining the flow

XJ = (2φ−2φwφw̄ − 2φ−1φww̄ − 2φ−2ρw̄ρ̄w − Pz̄ − 2φ−2Qρ̄z)
δ

δP̄

+Pφ
δ

δφ
+ Q̄

δ

δρ̄
+ [2PQ− φ2(φ−2ρw̄)w]

δ

δQ
(38)

for eq. (36). The symplectic structure of the SU(2) J-gauge equations can be dis-
cussed without reference to ρ, P and Q̄.

The Lagrangian (34) is degenerate and applying Dirac’s theory of constraints we
find that the definition of momenta give rise to the constraints

Φ1 = Πρ̄ − (2φ2)−1Q, Φ2 = ΠP̄ , Φ3 = ΠQ,

Φ4 = Πφ − (2φ)−1P̄ , Φ5 = ΠP , Φ6 = ΠQ̄, Φ7 = Πρ (39)

which must vanish weakly. Evaluating the Poisson brackets of these constraints we
find that Φ5, Φ6 and Φ7 are spurious first-class constraints which will be ignored.
For the remaining constraints the Poisson brackets yield

CAB =




0 0 −(2φ2)−1 φ−3Q
0 0 0 (2φ)−1

(2φ2)−1 0 0 0
−φ−3Q −(2φ)−1 0 0


 δ(w − w′) (40)

which are again second class. From the definition (17) it follows that the symplectic
2-form is given by

wJ = −(2φ)−1δφ ∧ δP̄ − (2φ2)−1δρ̄ ∧ δQ−Qφ−3δρ̄ ∧ δφ (41)

which is closed modulo divergence. The total Hamiltonian of Dirac is given by

HT = H0 + λAΦA

H0 = 1
2PP̄ − (2φ)−1Pφz̄ − (2φ2)−1φwφw̄ − (2φ2)−1ρw̄ρ̄w

+(2φ2)−1(QQ̄− Q̄ρz̄),

where λA are Lagrange multipliers which will be determined from eq. (21) which
are strong equations that determine the Lagrange multipliers completely. Since the
constraints are linear in the momenta we know that λA = iXδXA, or explicitly

λ1 = ρ̄z,

λ2 = −Pz̄ − 1
2φ

φw̄w +
2
φ2

φw̄φw − 2
φ2

ρ̄wρw̄ − 2
φ2

Qρ̄z,

λ3 = 2QP − φ2
(ρw̄

φ2

)
w

λ4 = Pφ,

and λi, i = 5, 6, 7 are arbitrary.
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Using eq. (23) we get the Hamiltonian operator for the SU(2) J-gauge

ZA B
J =




0 0 2φ2 0
0 0 −4Q −2φ

−2φ2 4Q 0 0
0 2φ 0 0


 δ(w − w′) (42)

and eq. (36) can be written in the Hamiltonian form (25) with the subscript J
replacing K. Similarly, eq. (26) holds with the vector field (38), the symplectic
2-form (41) and Hamiltonian function H0 given by eq. (43). On shell

H0 = (2φ2)−1φzφw̄ + (2φ2)−1ρ̄zρw̄ (43)

and
[ 1
2φ2

(φzφw + ρwρ̄z)
]

z̄
+

[ 1
2φ2

(φwφz̄ + ρz̄ ρ̄w)
]

z

−
[ 1
2φ2

(φzφz̄ + ρz̄ ρ̄z)
]

w
+

[ 1
2φ2

(φ2
w + ρwρ̄w)

]
w̄

= 0

is the associated continuity equation.
The covariant Witten–Zuckerman symplectic 2-form vector density wµ which is

closed and conserved follows directly from Lagrangian (35). We find

wz = (2φ)−1δP̄ ∧ δφ + (2φ2)−1δQ ∧ δρ̄− φ−3Qδφ ∧ δρ̄

ww = (2φ2)−1δφw̄ ∧ δφ + (2φ2)−1δρ̄w ∧ δρ̄− φ−3ρw̄δφ ∧ δρ̄ (44)

together with their complex conjugates. We note that

wz = wJ (45)

is the expression for the symplectic 2-form (41) obtained from Dirac’s theory of
constraints.

4. Bi-Hamiltonian structure

We have obtained the symplectic structure of ASDYM equations both in the K-
gauge and the J-gauge. These results are not sufficient to conclude that the two
Poisson brackets form a pencil to which we can apply the theorem of Magri and
conclude that ASDYM system admits bi-Hamiltonian structure and is therefore a
completely integrable system. In order to be able to arrive at such a result we
must express both symplectic structures in the same variables. So we turn back to
the definition of the Yang–Mills potential 1-forms A = Aµdxµ in eqs (2) and (4)
that give rise to eqs (3) and (5) respectively. We consider a gauge transformation
between these two choices of gauge

SAJ = AKS + dS, (46)
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where superscripts on the potential refer to its expression in the gauge indicated.
The solution of this equation for S is the definition of the Bäcklund transformation.
We find

S = J−1 K (47)

which enables us to relate eqs (3) and (5). Hence we get

Kw = J−1Jz̄

Kz = −J−1Jw̄ (48)

which is also the Lax pair. This is the required transformation for bringing our
results on the K- and J-gauges together. The Hamiltonian operators in the K-
and J-gauges are related by

ZK = SZJS (49)

and from eq. (48) it follows that

S =
(

d
dw

)−1 (
d
dz̄

J−1 + J−1Jz̄J
−1

)
, (50)

where d−1 denotes the principal value integral. We can now write down the Lenard–
Magri recursion relation

ZK
δHn+1

δK
= SZJS δHn

δK
, (51)

where n = 0, 1, . . . ,∞ and H0 is given by eq. (19). The recursion relation then
determines an infinite hierarchy of conserved quantities. The fact that the transfor-
mation law (50) is an integro-differential equation presents a considerable obstacle
to carry out this task in practice and also prevents a quick check of compatibility
of the Hamiltonian operators (24) and (49).

5. Conclusion

We have presented the symplectic structure of ASDYM equations in explicit form.
Using Dirac’s theory of constraints and the covariant Witten–Zuckerman approach
we have obtained the Hamiltonian operators in Yang’s J- and K-gauges. The re-
sults for the symplectic 2-form coincide in both of these theories. We have also
obtained the transformation law, or Bäcklund transformation, for the Hamiltonian
operators between these two gauges which establishes that ASDYM system admits
two Hamiltonian structures. The complicated nature of the Bäcklund transforma-
tion between these two gauges makes it difficult to check the compatibility of the
Hamiltonian operators as well as higher conserved Hamiltonians according to the
Lenard scheme.
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