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Experimental observation of direct current
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Abstract. The dynamics of two uncoupled distinct Chua circuits driven by a common
direct current voltage is explored experimentally. It was found that, with increasing
current intensity, the dominant frequencies of these two Chua circuits will first vary at
different speeds, approach an identical value for a certain current intensity and then sep-
arate. Techniques such as synchronization index and phase difference distribution were
employed to analyze the phase coherence between these two Chua circuits.
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1. Introduction

Synchronization is a fundamental and ubiquitous phenomenon, first discovered in
periodical oscillators by Huygens [1]. It has been an active area of research dur-
ing the past decade for its essential role in nonlinear dynamics and its potential
applications in engineering, physics, biology and ecology [2,3]. Various subtypes
of synchronization phenomena have been defined such as complete synchronization
(CS) [4,5], generalized synchronization (GS) [6–8], phase synchronization (PS) [9]
and so on. PS describes an intrinsic feature between two coupled nonidentical oscil-
lators where the mismatch between phases of two distinct oscillators is locked within
2π when the coupling strength exceeds certain level, whereas their amplitudes may
remain chaotic and uncorrelated. Moreover, PS can also be established in the case
of chaotic oscillators driven by an external periodic forcing either sinusoidal [10],
impulsive [11] or even nonidentical chaotic oscillator [12] where the dominant fre-
quencies of the oscillators are confined to the frequency of the external forces when
the intensity of the forcing exceeds a certain level. In this paper, we investigate the
dynamics of two uncoupled nonidentical Chua circuits driven by a common direct
current voltage (DCV). Basically, it is equivalent to changing a parameter of the
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Figure 1. (a) Two independent Chua circuits driven by a common DCV. (b),
(c) The phase portrait of the left(right) Chua circuit (VC1 vs. VC2) respectively
by setting positive initial value of VC2 without imposing DCV. (d), (e) The
phase portrait of the left(right) Chua circuit respectively by setting negative
initial value of VC2 without imposing DCV. Attractors of two circuits are
similar but in different sizes.

circuit, where the output depends on the role of this parameter in the system. We
found that the dominant frequency of one circuit decreases when the DCV intensity
is increased while that of the other circuit monotonically increases. Particularly,
when DCV intensity increases, their dominant frequencies approach each other,
overlap at a certain level of the DCV intensity, and then separates. PS is estab-
lished between the two Chua circuits when their dominant frequencies overlap. The
synchronization index and phase difference distributions were calculated to analyze
the PS. In §2, we introduce the experimental set-up and in §3 experimental data
are analyzed. Finally, discussions and conclusions are given in the last section.

2. Experimental set-up

To explore the dynamics of the Chua circuits driven by a common DCV experi-
mentally, we set up two nonidentical Chua circuits (denoted as circuit 1 and circuit
2) driven by a common DCV source as shown in figure 1.

C1 and C2 are the two capacitances, L1 and L2 are the inductors, R1 and R2
are the resistances that couple the two capacitors, and A, B are the operational
amplifiers that keep the DCV one-way coupling to the Chua circuit. The DCV is
generated by a signal generator (Agilent 33220A). RN1 and RN2 are the nonlinear
resistors of three-segment piecewise linear characteristic, which are composed of
two operational amplifiers (Texas Instruments type TL082C) and six resistors. The
circuit equations driven by DCV are given as follows:

C1VC1 = G(VC2 − VC1)− f(VC1),
C2VC2 = G(VC1 − VC2) + iL,

LiL = −VC2 − γ0iL + Vi, (1)

where
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Figure 2. (a) The dominant frequency of two DCV-driven Chua circuits vs.
DCV intensity Vi. (b) The index of phase coherence S vs. DCV intensity Vi.

f(VC1) =





GbVC1 + (Gb −Ga)E if VC1 < −E
GaVC1 if −E ≤ VC1 ≤ E
GbVC1 + (Ga −Gb)E if VC1 > E

. (2)

VC1 and VC2 are the voltages across C1 and C2 respectively and iL is the current
through L. These three variables describes the dynamical system. γ0 is the inner
resistance of the inductor, Vi is the voltage of the external force DCV. Ga and Gb

are the slopes in the inner and outer regions respectively of the piecewise linear
characteristic f(VC1). The parameters are set as R1 = 1.807 KΩ, R2 = 1.862
KΩ, C1 = 100 nF, C2 = 10 nF, L1 = 18.0 mH, L2 = 18.6 mH with tolerances of
the components to be 10% for inductors, 5% for capacitors, and 1% for resistors.
With the parameters presented above, both the circuits are single-scroll chaotic.
If we inject a positive voltage on C2 as the initial value, the two circuits will stay
in the state of figures 1b and 1c respectively, and if we inject a negative voltage
on C2 as the initial value, the two circuits will stay in the state of figures 1d
and 1e respectively. Data are acquired by using 6110/6111E DAQ card of National
Instruments connected to a computer with a sampling rate of 6.0×105 p/s (samples
more than 20 times each period) and a software LABVIEW is used to analyze the
experimental data.

3. Data analysis

Rich dynamic states have been reported in the driven response systems for various
driving sources as periodical or chaotic signals [10,12]. In ref. [10], the dynamics of
the Chua circuit driven by external cosine signals were analyzed. PS between Chua
circuit and the driving signals can be realized by controlling the frequency and
amplitude of driving signals. The dominant frequency of the Chua circuit can be
driven to that of the driving signal when the amplitude and frequency of the signal
are properly adjusted. In ref. [12], rich dynamics such as point attractor, single
scroll periodic, chaotic and double scroll, and two routes of transition from CS to
PS have been reported in Chua circuits driven by nonidentical Chua circuits. In
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this paper, we are interested in the dynamics of the DCV-driven Chua circuits. The
parameter values of two Chua circuits are distinct and set that make the attractors
on the states as shown in figures 1b and 1c respectively. With increasing DCV
intensity, the dominant frequencies of the two Chua circuits vary in dramatically
different scenarios. Figure 2a shows the dominant frequency of two nonidentical
DCV-driven Chua circuits vs. the DCV intensity. As the DCV intensity increases,
the dominant frequency of circuit 1 first decreases in the interval of Vi = 0–420 mV,
followed by an increase while that of circuit 2 monotonically increases in the whole
interval of Vi = 0–520 mV. They meet and overlap at Vi = 371 mV. The frequency
results cannot indicate the actual phase relationship between driven signal and the
Chua circuit. The synchronization index S [13] was used to quantify the phase
coherence between two circuits. PS was found between the two DCV-driven Chua
circuits at DCV intensity Vi = 371 mV. The synchronization index S is defined as
follows. Given two time series of signals, x(t) and y(t) of frequency ω, each time
series can be represented by its Fourier image Fx(ω) or F ∗x (ω):

Fx,y(ω) = |Fx,y(ω)| exp[iθx,y(ω)] =
∫ +∞

−∞
x(t)[y(t) exp(−iωt)dt. (3)

Here θx,y are the Fourier phases of the signals at the frequency ω. The power
spectra of the signals can be given by Px,y(ω) = 〈Fx,y(ω)F ∗x,y(ω)〉 and their cross
spectrum Cxy(ω) = 〈Fx(ω)F ∗y (ω)〉, where 〈 〉 denotes averaging on ensembles or over
time (we suppose the signals are ergodic processes). These characteristics describe
the processes and their interdependence in terms of frequencies. Normalizing the
cross spectrum to the power spectra σxy(ω) = | Cxy(ω)

[Px(ω)+Py(ω)]/2 |, we get the coherence
function σ(ω), which characterizes the phase coherence between two oscillations
on the frequency ω. Particularly, σ(ω) = 1 means that the differences between
the Fourier-phase remains constant (i.e. θx(ω) − θy(ω) = const) at frequency ω
and σ → 0 means that the differences θx(ω) − θy(ω) are random values uniformly
distributed in [−π, π] (the strict equality σ(ω) = 0 achieves only when the number
of data points approach infinity).

The coherence function presents an effective method to describe the interdepen-
dence of two signals in terms of frequencies. However, in order to measure the
interdependencies between signals for all frequencies simultaneously, we must aver-
age the coherence function over all frequencies considering the contribution of every
harmonic to the power of the signals. We may define the synchronization index (in
the phase coherence sense) S between the signals x and y as the normalized average
coherence magnitude:

S =

∫∞
0

[Px(ω) + Py(ω)]σxy(ω)dω∫∞
0

[Px(ω) + Py(ω)]dω
. (4)

Its value is just the ratio of the power of coherent motions to the total power
of signals x and y. It ranges from S = 0 (incoherent of signals x and y for all
frequencies) to S = 1 (complete coherence of two signals for all frequencies).

The index S is calculated for VC1 of two Chua circuits under various DCV in-
tensities. The curve of the index S vs. the DCV intensity Vi is shown in figure
2b, where S has a substantial hump in the interval of Vi = 350–400 mV, which
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Figure 3. (a)–(e). Power spectra of the two DCV-driven Chua circuits with
different DCV intensities Vi = 10, 280, 371, 400 and 520 mV, respectively.

Figure 4. Time dependence of instantaneous phase difference for the two
Chua circuits driven by DCV with various intensities Vi = 100, 300, 350, 371,
387, 400 and 420 mV marked by 1–7 respectively.

indicates strong coherence. The coherence is much weaker outside this interval.
Namely, strong coherence can be achieved only for properly chosen DCV intensities
in this circumstance. The power spectra of two circuits under various DCV inten-
sities verified the result in figures 3a–3e, where the dominant frequencies of two
circuits will approach each other, meet and overlap for a while, and then separate
with the DCV intensity increasing from 10 to 520 mV.

A more efficient way to explore the phase coherence is to calculate the phase
difference between two circuits. It is very important that the phase of the chaotic
oscillator should be carefully defined. For simplicity, we use one-scroll chaotic
attractor as a start. The phase can be defined by first choosing a time-window
moving on a time series, for each segment in current time-window and recording
the occurrence time t1, t2, . . . , tn . . . of every local maximum VC1(t). Then φ(t) =
2π t−tn

tn+1−tn
+ 2nπ, t ∈ [tn, tn+1]. The phase difference is ∆φ(t) = φ1(t)−φ2(t). The

phase coherence between two circuits driven by a common DCV is obvious with a
certain DCV intensity as shown in figure 4, where the phase differences vs. time are
shown in different DCV intensities Vi, whose platforms indicate the phase locking
between two signals. As the DCV intensity increases, the two circuits undergo
the process of weak phase coherence (lines marked 1, 2) to strong phase coherence
(marked 3, 4, 5) and then the weak phase coherence (marked 6, 7). The distribution
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Figure 5. (a)–(e). The distribution of the phase differences with different
DCV intensities Vi corresponding to figures 3a–e.

of the phase differences between two circuits verified the results shown in figures
5a–5e. With weak DCV intensity Vi = 10 mV, the two driven circuits are nearly
uncorrelated and the distribution is almost uniform. As Vi = 280 mV, the structure
of the distribution has a characteristic change as seen in 5b, and the distributions
of phase differences form additional peaks away from the zero phase difference,
and yield a sharp peak at Vi = 371 mV as seen in 5c. At larger intensities, the
distribution of phase difference return to uniform distribution as seen in 5d and 5e.

However, if the attractors are initially set on the state as shown in figures 1d
and 1e respectively. With increasing DCV, the attractor size tends to shrink and
transit to the state as shown in figures 1b and 1c respectively as Vi = 320 mV. No
phase locking can be observed before the transition.

4. Conclusion

In this paper, we experimentally explored dynamics of two independent noniden-
tical Chua circuits driven by a common DCV with various DCV intensities. The
dominant frequencies of the two circuits will first approach each other, meet and
overlap for a while, and then separate as DCV intensity increases. Moreover, the
phase coherence undergoes a process from weak to strong and then to weak, and
the phase locking is clearly observed at Vi = 371 mV, which is well-captured by the
synchronization index S and phase difference distribution ∆φ between two Chua
circuits. This accounts for the complicated structure of the Chua chaotic attractor.
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