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Abstract. The understanding of mesoscopic transport has now attained an ultimate
simplicity. Indeed, orthodox quantum kinetics would seem to say little about mesoscopics
that has not been revealed – nearly effortlessly – by more popular means. Such is far
from the case, however. The fact that kinetic theory remains very much in charge is best
appreciated through the physics of a quantum point contact. While discretization of its
conductance is viewed as the exclusive result of coherent, single-electron-wave transmis-
sion, this does not begin to address the paramount feature of all metallic conduction:
dissipation. A perfect quantum point contact still has finite resistance, so its ballistic
carriers must dissipate the energy gained from the applied field. How do they manage
that? The key is in standard many-body quantum theory, and its conservation principles.
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1. Introduction

A striking signature of mesoscopic transport, as evidenced in quantum point con-
tacts (QPCs), is the discretization of conductance into ‘Landauer steps’ in units
of 2e2/h. The steps appear to be well described by the coherent transmission of
independent electron waves through the contact, imagined as a perfectly lossless
quantum barrier [1–3].

The techniques of single-particle scattering are universally accessible. Conse-
quently, pioneering insights of the Landauer school have achieved more than to
open a new vista of small-scale device physics. They have also made their compact
understanding available to one and all, in a toolbox of easily grasped phenomeno-
logical design aids.

Besides the great simplicity of this widely adopted approach, it is generally agreed
that it cannot sustain any contradiction with the older established principles of mi-
croscopic transport theory [4]. In this overview we clarify, in somewhat sharper
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detail than usual, those inter-relationships that may exist between canonical kinet-
ics on the one hand, and Landauer transport theory on the other.

Central to the Landauer description are two assumptions: (a) Current flows in
a QPC when a mismatch of chemical potentials is set up across the ends of the
wire. In response, carriers flow more or less freely from the ‘high-density’ lead end
to the ‘low-density’ lead end. (b) The intervening channel is a quantum tunnelling
barrier that moderates the unimpeded flux of electrons. The Landauer conductance
formula directly encodes this tunnelling physics.

Assumptions (a) and (b) are not consistent with each other. The first asserts the
validity of charge drift in the mesoscopic regime: a difference in electron density
across the leads drives a current from the high to the low region. That is, the
current flow is metallic because it engages carrier states that are well filled and
spatially extended. In contradistinction, (b) asserts instead that the flux rate is set
– quite literally – by the probability of tunnelling through some phenomenologically
chosen barrier. (Surprisingly, if such a barrier had any internal physical structure
it would be irrelevant to the outcome.) Here the physics is that of states separately
confined to the leads on either side of the barrier. All that matters is that they
have some residual overlap.

The relation between the two hypotheses itself invites two questions. To what ex-
tent do we have a picture – Case (a) of metallic conduction involving truly extended
states, and to what extent is it a description and Case (b) of (self-evidently non-
metallic) tunnelling involving spatially separate, autonomous in- and out-states?
Should one conclude, astonishingly, that mesoscopic transport is really both at the
same time?

These are intriguing, if incidental, issues. We now discuss the other thought-
provoking aspects of the relation between Landauer phenomenology and conven-
tional quantum kinetics.

2. The physical problem: Dissipation

The essential role (or, more accurately, the essential absence) of resistive energy dis-
sipation has recently returned to the forefront of discussions about the microscopic
basis of the Landauer approach [5–7]. In a perceptive early critique of Landauer’s
picture (wherein ballistic conduction consists in perfectly coherent and, therefore,
exclusively elastic transmission), Frensley [8] had already identified the singular
lack of a theoretical account of dissipation (Joule heating) within the Landauer
phenomenology. In admitting coherent scattering, and that only, as the origin of
QPC conductance, the Landauer model leaves an enormous unhealed gap between
it and the fluctuation–dissipation theorem [14], which universally quantifies the
conductance in terms of the actual energy loss via the dissipative electron–hole
pair processes that always accompany metallic transport [4].

In their more recent discussions, Davies [5] and Agräıt et al [6] have also covered
the unresolved status of ballistic dissipation. We also have summarized our own
considerations from the standpoint of kinetics [7]. To date the problem seems to have
had no deeper analysis on the part of any proponents of the Landauer philosophy,
other than that dissipation occurs somehow, somewhere, deep in the leads and far
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from the active channel [2]; too far off, anyway, to spoil the undisputed simplicity
of the coherent-tunnelling account of ballistic conductance.

Surveys of the dissipation issue all agree [5–8] that näıve quantum mechanical
descriptions of single-carrier tunnelling are unable to settle the central problem of
conduction: What causes the dissipation in a ballistic QPC ? The matter goes well
beyond this simple academic consideration.

Not too long from now, reliable and effective nano-electronic design will grow to
demand, not models that are built for minimum effort, but ones that are micro-
scopically grounded and therefore credible, both as basic physics and as quantita-
tively trustworthy engineering tools. Device designers, above all, will need every
confidence to predict the dominant dissipative characteristics of their new quasi-
molecular structures, operating far away from equilibrium. The Landauer approach
is not made for such demands.

We now review the answer to the question posed. Its resolution has been available
all the while – definitively, and free of any artificial conundrums – within many-
body quantum kinetics [4,9]. The microscopic application of many-body methods
leads not only to conductance quantization by fully accounting for inelastic energy
loss [10], but it also resolves a long-standing experimental enigma [11] in the noise
spectrum of a quantum point contact (QPC) [12]. Evidently, the same develop-
ments will foreshadow a systematic pathway to the truly predictive design of novel
structures.

3. The solution: Quantum kinetics

The central issue in conduction is clear. Any finite conductance G must dissipate
electrical energy at the rate P = IV = GV 2, where I = GV is the current and V
is the potential difference across the terminals of the driven conductor. Physically,
there must be an explicit mechanism (e.g. emission of optical phonons) through
which the energy gained by carriers, when driven from source to drain, is channelled
to the surroundings.

Alongside all the elastic and coherent scattering processes, inelastic processes
must also act. Connected with elastic single-particle scattering, intimately and
inevitably, are its dynamic and dissipative companions: the electron–hole vertex
corrections [4]. This much is required by the conservation laws for the electron gas
itself [13]. Over and above this (and still within the global purview of conservation),
there will be additional decay modes coupling the electrons to other background
excitations.

None of these dissipative effects can be described at the level of simple, one-
particle coherent quantum mechanics, for they are all inherently many-body effects,
requiring a genuinely microscopic description. Harnessed together, the elastic and
inelastic processes fix G. Yet it is only the energy-dissipating mechanisms that
secure the thermodynamic stability vital to steady-state conduction.

We already possess a complete quantum-kinetic understanding of the ubiquitous
power-loss formula P = GV 2 [14–16]. It resides in the fluctuation–dissipation
theorem, valid for all resistive devices at all scales, without exception. The theorem
expresses the requirement for thermodynamic stability. A plain chain of reasoning
follows from it [9,10]:
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(i) inelasticity is necessary and sufficient to stabilize current flow at finite con-
ductance;

(ii) ballistic quantum point contacts have finite G ∝ 2e2/h; therefore
(iii) the physics of energy loss is indispensable to a proper theory of ballistic

transport.

The physics of explicit inelastic scattering is beyond the scope of transport models
that rely only on coherent quantum scattering to explain the origin of G in quantum
point contacts. Coherence implies elasticity, and elastic scattering is always loss-
free: it conserves the energy of the scattered particle. This reveals the deficiency
of purely elastic models of transmission. We now review a well-defined microscopic
remedy for this deficiency.

To allow for the energy dissipation vital to any microscopic description of ballistic
transport, we recall that open-boundary conditions imply the intimate coupling of
the QPC channel to its interfaces with the reservoirs. The interface regions must
be treated as an integral part of the device model. They are the very sites for
strong scattering effects: dissipative many-body events as the current enters and
leaves the ballistic channel, and elastic one-body events as the carriers interact with
background impurities, the potential barriers that confine and funnel the current,
and so on.

The key idea in our standard treatment is to subsume the interfaces within the
total kinetic description of the ballistic channel. At the same time, strict charge
conservation in an open device requires the direct supply and removal of current
by an external generator [15] or, equally well, a battery [16]; that is, a source for
the driving field that itself is outside the system. These two criteria are equiva-
lent. They are also prescriptive; mandated by electrodynamics whenever a metallic
channel is subjected to external electromotive forces.

In truly open-system operation, therefore, the current is determined externally,
independent of the local physics peculiar to the reservoirs. This canonical require-
ment sets the quantum kinetic approach entirely apart from the Landauer multi-
reservoir scenario [1], which rests upon a purely intuitive phenomenology: that the
current has to depend on hypothetical density gradients between the reservoirs. For
an externally driven charged system, orthodox electrodynamics never entails this.

4. Conductance from quantum kinetics

It is straightforward to write the algebra for the ideal ‘Landauer’ conductance in
our model system. A uniform, one-dimensional ballistic QPC, of operational length
L, will be associated with two mean free paths determined by vF, the Fermi velocity
of the electrons, and a pair of characteristic scattering times τel, τin. Thus

λel = vFτel; λin = vFτin. (1)

Respectively, these are the scattering lengths set by the elastic and inelastic
processes active at both interfaces. The device (i.e. the QPC with its interfaces) has
a conductive core that is strictly collisionless. It follows from this ballistic boundary
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condition that L then delimits both elastic and inelastic mean free paths, leading
directly to

λel = L = λin. (2)

Finally, the channel’s conductance is given by the familiar formula

G =
ne2τtot

m∗L
=

2kF

π

e2

m∗L

(
τinτel

τel + τin

)
; (3)

the effective mass of the carriers is m∗. In the first factor of the rightmost expression
for G we rewrite the density n in terms of the Fermi momentum kF; in the final
factor, we use Matthiessen’s rule τ−1

tot = τ−1
el + τ−1

in for the total scattering rate in
the system.

Using eqs (1)–(3), the conductance reduces to

G = 2
e2

π~
~kF

m∗L

(
(L/vF)2

2L/vF

)
=

2e2

h
≡ G0. (4)

This is precisely the Landauer conductance of a single, one-dimensional, ideal chan-
nel.

None of the conjectural assumptions, otherwise invoked to explain conductance
quantization [1,3], has been used. Rather, it is the axioms of electrodynamics
and microscopic response theory, and only those, which guarantee eq. (4). In fact,
we have just seen directly how this distinctive mesoscopic result emerges from
completely standard quantum kinetics.

Most important to the microscopic derivation of the Landauer quantised conduc-
tance is the clear and central role of inelastic energy loss, one of the underpinnings
of quantum transport. Charge conservation, the other underpinning, is guaranteed
by our use of microscopically consistent open-boundary conditions at the interfaces.
Their importance cannot be emphasised too strongly. It is fair to say that, as es-
sential physical requirements, they are not transparent within some of the more
intuitive derivations of eq. (4).

In the left-hand panel of figure 1 we plot the results of our model for a QPC [9]
consisting of two one-dimensional conduction bands with their threshold energies
separated by 12kBT , in thermal units at temperature T . We use the natural ex-
tension of eq. (4) to cases where one or more channels may be open to conduction,
depending on T as well as the size of the chemical potential µ. As the role of in-
elastic scattering is enhanced (τin < τel) the conductance deviates from the ideally
ballistic ‘Landauer’ limit.

The right-hand panel of figure 1 shows, as a precursor to our discussion of non-
equilibrium noise (see also figure 3 below), the same conserving quantum-kinetic
calculation of G for a realistic point contact. It is noteworthy that the non-ideality of
G in the quasi-one-dimensional quantum channel grows progressively as the source–
drain voltage that drives the mesoscopic current increases: thus the overall value of
G goes down as the voltage runs from low (0.5 mV) to high (3 mV), and the rate of
optical-phonon emission increases for carriers accelerated within the channel. For a
comparison with corresponding results, as extracted from raw measurements made
in a QPC sample, see figure 2 of ref. [11].
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Figure 1. Quantization of conductance in a two-band ballistic quantum
point contact, calculated within our kinetic theory (see ref. [9]) and displayed
as a function of chemical potential µ in thermal units. The plots are nor-
malized to units of the Landauer conductance quantum G0. Left panel – full
curve: G for an idealized ballistic channel, broken curves: non-ideal behav-
iour increases with the onset of inelastic phonon emission inside the contact.
Right panel – non-equilibrium conductance for an actual multi-band QPC,
computed using a realistic model for field-dependent inelastic scattering. The
device characteristics correspond to those of a heterojunction-based channel
fabricated on epitaxial GaAs/AlGaAs. Compare figure 2 of Reznikov et al
[11].

5. QPC noise: Microscopic basis

The noise response of a quantum point contact is a fascinating aspect of mesoscopic
transport, and a more demanding one both experimentally and theoretically. In
1995, a landmark measurement of non-equilibrium noise was performed by the
Weizmann group [11], which yielded a very puzzling result. Whereas conventional
models [3] fail to predict any structure at all in their noise signal for a QPC driven at
constant current levels, the data show an orderly series of marked and increasingly
strong peaks, just where the carrier density in the QPC starts to grow and becomes
metallic.

Remarkable as they are to this day, the Weizmann results remained absolutely
unexplained for a decade. We have now accounted for the Reznikov et al measure-
ments, within our strictly conserving kinetic description [12].

In figure 2 we display the experimental data side by side with our computation
of excess QPC noise, under the same conditions [12]. In contrast to the outcome
of popular mesoscopic phenomenology [3] one notes the close affinity between the
measurements and the quantum kinetic calculation, as the carrier density is swept
across the first conduction-band threshold, where the conductance exhibits its low-
est step. At fixed values of source–drain current, the accepted noise models predict
no peaks at all, but rather a featureless monotonic drop in the noise strength as
the carrier density passes through the threshold.
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Figure 2. Non-equilibrium current noise of a QPC at constant source–drain
current, as a function of gate bias. Left: Data from Reznikov et al [11]. Right:
Microscopically conserving kinetic calculation from Green et al [12]. In each
case the dotted line traces the currently accepted shot-noise prediction at 100
nA using, as respective inputs, measured and calculated data for G. The
prediction from Landauer theory is well wide of the mark.

To round off our survey of ballistic noise we present a final figure. It serves to
show that the remarkable peaks observed in a QPC channel, at constant applied
current, are by no means fortuitous artifacts. In figure 3 (the QPC noise measured
concomitantly with G in the right-hand side panel of figure 1) we see an unfold-
ing, characteristic peak sequence at constant source–drain voltage as the gate bias
systematically pushes the conduction electrons upward in density: first though the
lowest, and then the next higher, sub-bands in the structure. The noise maxima
are very well replicated by the physics built into our conserving microscopic de-
scription. Once again they invite favourable comparison with observations. This
can be checked against figure 2 of ref. [11].

The constant voltage peaks have been widely celebrated as the predictive tri-
umph of mesoscopic transport phenomenology [3]. On that score, any alternative
fluctuation theory for QPCs must do at least as well. What is unique about our
quantum kinetic approach is not that it offers a microscopically founded account
for effects already explained in the Landauer framework. What is really different is
that it describes, faithfully, everything else that phenomenology has signally failed
to predict in the noise spectrum at constant current.

If there is a single, utterly fundamental, reason why orthodox quantum kinetics is
able to open up in such a striking way the microscopics of fine-scale fluctuations, it
is that – unlike other explanations of transport and noise – it starts its exploration
from the universal principles of conservation, and also ends with them intact. This
is exactly the reason for kinetic theory’s freedom from any and all unjustified, ad
hoc assumptions. It is time to look at the mesoscopic action of conservation.

6. Centrality of conservation

The key to all quantum kinetic descriptions of conductance is the fluctuation–
dissipation theorem, whose practical implementation is eq. (3) (where the overall
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Figure 3. Non-equilibrium noise in a QPC at constant levels of voltage,
computed quantum kinetically as for figure 2 [12]. Characteristic peak se-
quences appear at each of the two lowest sub-band energy thresholds. Note
also the presence of a slower-rising signal background on which the relatively
sharper maxima are superimposed. A similar background is evident in the
corresponding experimental data [11]. While such maxima at constant volt-
age are predicted by other approaches [3], the rising background – like the
unexpected structures at constant current – are not reproduced except by the
fully kinetic model.

relaxation time τtot encodes all the electron-fluctuation dynamics via the Kubo
formula [14]). This universal relation is one of the electron-gas sum rules [13].
In this instance, it expresses the conservation of energy, dissipatively transferred
from an external source to the thermal surroundings, for any process that involves
resistive transport – including that in a ballistic quantum point contact.

A second, and equally fundamental, sum rule concerns the compressibility of an
electron fluid in a conductive channel. This sum rule turns out to have an intimate
link with the non-equilibrium noise behavior reviewed above; here we give a brief
explanation of that crucial link. For details, see refs [12,17–19].

Recall that the carriers in a quantum point contact are stabilized by the presence
of the large leads, which pin the electron density to fixed values on the outer
boundaries of the interfaces (recall too that the interfaces and the channel together
define the open system). No matter what the transport processes within the QPC
may be, or how extreme, the system’s global neutrality is guaranteed by the stability
of the large and charge-neutral reservoirs.

It follows that the total number N of active electrons in the device remains
independent of any current that is forced through the channel, for N is always
neutralized by the ionic background in its neighbourhood, as well as the stabilizing
leads. The presence of the latter means that all remnant fringing fields are screened
out beyond the device boundaries; hence the global neutrality.

One can then prove that the total mean-square number fluctuation ∆N =
kBT∂N/∂µ is likewise independent of the external applied current [17]. The com-
pressibility of the carriers in the QPC is given in terms of N and ∆N by [13]
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κ =
L

NkBT

∆N

N
, (5)

which, in consequence, remains strictly unaffected by any transport process. This
is a surprising corollary of global neutrality. It asserts that, in an open conductor,
the system’s equilibrium compressibility completely determines the compressibility
of the electrons when driven away from equilibrium, regardless of how strong the
driving field is.

The compressibility sum rule expresses the unconditional conservation of carri-
ers in a non-equilibrium conductor. Previously unexamined in mesoscopics, this
principle has an immediate importance and applicability.

How does κ determine the noise in a QPC? The strength of the current fluctua-
tions is, at base, the product of two contending factors:

S(I, t) ∼ 〈I(t)I(0)〉∆N

N
. (6)

The first factor represents the self-correlation of the instantaneous electron current
I(t) evaluated as a trace over the non-equilibrium distribution of excited electrons
in the device. The second factor – evidently a basic characteristic of the electron
gas in the channel – is independent of I, meaning that the invariant compressibility
(eq. (5)) must dictate the overall scale of the noise spectrum.

Let us examine the noise spectra of figures 2 and 3 in light of this key result [12].

• At large negative bias Vg, the channel is depleted. The remnant carriers are
classical, so ∆N/N → 1. The noise is then dominated by strong inelastic
processes at high driving fields, as embodied in 〈I(t)I(0)〉.

• In the opposite bias limit (right-hand sector of each panel in figure 2), the
channel is richly populated and thus highly degenerate, with a large Fermi
energy EF. Then ∆N/N → kBT/2EF ¿ 1. The noise spectrum falls off
according to eq. (6), since the current-correlation factor – now well within
the regime of ballistic operation – reaches a fixed ideal value.

• In the mid-range of bias voltage, there is a point where the carriers’ chemical
potential matches the energy threshold for populating the first conduction
sub-band. Here there is a robust competition: on the one hand, scattering
processes that reduce the correlation 〈I(t)I(0)〉 are less effective, while on the
other hand the onset of degeneracy drives the compressibility down. Where
this interplay is strongest, there are peaks.

Now we understand the outcome of the compressibility rule: it is, quite directly,
the ‘inexplicable’ emergence of the noise peak structures. The striking case of QPC
noise gives an insight into the central importance of the conserving sum rules in the
physics of transport at meso- and nanoscopic dimensions. The more imaginative
treatments of noise fail to address the explicit action of microscopic conservation
in ballistic phenomena, and therefore cannot offer a rational understanding of the
real nature of ballistic conduction.

7. Summary

In this paper we have recalled the most fundamental aspects of mesoscopic transport
physics, and the need to make sure that descriptions of it continue to respect
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those aspects. They are: the primacy of microscopic conservation in charged open
systems; the dominance of many-body phenomena, most of all dissipation; and the
unity of conductance and fluctuations.

Quantum kinetic theory was, and remains, the sole analytical method that can
guarantee all of these requirements. It provides a detailed, cohesive and inherently
microscopic account of conductance and noise together. This applies to the spe-
cific case of quantum point contacts. In our own quantum-kinetic studies we have
accurately reproduced – free of any and all special pleadings – the proper current
response of a mesoscopic channel, including the quantized-conductance signature.

Given the keys to this standard and yet newly fruitful picture (open-system
charge conservation and the efficacy of dissipative many-body scattering), our quan-
tum kinetic analysis presents as a thoroughly orthodox development. Precisely
because it is so firmly and conventionally grounded, it affords an unambiguous,
natural and quantitative understanding of the non-equilibrium fluctuations of a
quantum point contact, with its associated dynamics. That understanding has
been successfully tested in fully explaining the long-standing puzzle posed by the
noise measurements of Reznikov et al [11].

The theoretical impact of noise and fluctuation physics is that it carries much
more information on the internal dynamics of mesocopic systems – a level of knowl-
edge inaccessible through the I–V characteristics on their own. The capacity for
a self-contained microscopic explanation of mesoscopic transport processes under-
writes a matching ability to build new programs for device design that are inherently
rational. The practical need for such programs can hardly be overstated in the con-
text of nanotechnology, given the ongoing paucity of physically based techniques
for it.

In the authors’ view, the time is ripe to restore the methods of microscopic
quantum kinetics to a central place in mesoscopic electronics, where they seem to
have been much less in evidence over recent years. The need is to manifest, and
is becoming more and more pressing with the advance of technology. Some of the
basic tools to meet it are already at hand [10,13,14–17,19].
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