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Abstract. The damage spreading of the Ising model on the 3-12 lattice with compet-
ing Glauber and Kawasaki dynamics is studied. The difference between the two kinds
of nearest-neighboring spin interactions (interaction between two 12-gons, or interaction
between a 12-gon and a triangle) are considered in the Hamiltonian. It is shown that
the ratio of the interaction strength F' between the two kinds of interactions plays an
important role in determining the critical temperature Tq of phase transition from frozen
to chaotic. Two methods are used to introduce the bond dilution on the Ising model on
the 3-12 lattice: regular and random. The maximum of the average damage spreading
(D)max can approach values lower than 0.5 in both cases and the reason can be attributed
to the ‘survivors’ among the spins. We have also, for the first time, presented the phase
diagram of the mixed G-K dynamics in the 3-12 lattice which shows what happens when
going from pure Glauber to pure Kawasaki.
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1. Introduction

The random growth processes, such as the formation of a snowflake, the roughness
of a crack surface, the corroding process in iron and virus spreading, are so com-
plicated that it is difficult to make direct simulations or descriptions [1]. In order
to understand these phenomena in a simple way, we have constructed many math-
ematical growth models, of which the damage spreading (DS) is a very important
one. The DS technique requires one to follow the behavior of two similar samples
(slightly different initial conditions) under the same thermal noise. Usually, the evo-
lution is done by means of a growth rule: Glauber dynamics, heat-bath dynamics,
Kawasaki dynamics, etc. Recently many researches have started paying attention
to the competing Glauber and Kawasaki (G-K) dynamics [2,3], which describes
that a system is in thermal equilibrium with a heat reservoir and is subjected to
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a continuous flux of energy and this has been proved to be of great importance in
describing the time evolution of many dynamical systems.

Although the concept of DS was introduced in the context of biologically mo-
tivated systems by Kuffman in 1969 [4], now it has been proved to be a useful
technique in the study of dynamical properties of statistical models [1,5], especially
in magnetic models, like Ising, Clock, Potts, spin glass, etc. With the DS technique,
one can learn how a perturbation spreads throughout a cooperative system com-
posed of interacting subunits. This technique has also been applied in the study
of Coulomb glass [6]. The DS technique can be applied in the research of many
economic and social phenomena [7].

Many interesting results of DS have been reported since it was applied in sta-
tistical physics. In the case of pure Ising ferromagnets, a sharp dynamical phase
transition is observed and the dynamical phase transition temperature separates
the two phases [1,5,7]: the frozen (order) and chaotic (disorder) phases. In the
frozen phase the spin distance is independent of the initial distance and vanishes
rapidly while in the chaotic phase the distance remains finite for a long time. In
the more complicated systems such as fully frustrated, spin-glass and XY model,
a third phase between these two phases was found. It is called the intermediate
phase where the distance does not vanish but becomes independent of the initial
distance [8]. Many authors had discussed the relation between the DS transition
temperature Ty and the Curie temperature T, [2]. For the two-dimensional Ising
model, it is shown that for the heat-bath dynamics Ty coincides with T, whereas
for Glauber and Metropolis dynamics Ty is close to but smaller than Tt.

Many elements which characterize the DS process have been considered in lit-
eratures, including the interactions (ferromagnetic, antiferromagnetic, spin-glass,
etc.), the Monte Carlo rules (heat bath, Glauber, Metropolis, etc.). As for the
lattice geometry, many work has been done on the square, triangular, hexagonal,
and other lattices. In recent years, much attention has been paid to the DS study
on complex networks [9,10].

Compared to conventional Monte Carlo methods, the DS technique is less sensi-
tive to statistical fluctuations. But it is found that DS depends to a great extent
on the dynamics chosen and, particularly for the ‘heat-bath’ dynamics, on the type
of initial configurations [11]. These properties are very important because they
are contrary to the usual statistical Monte Carlo modeling, where all the dynamics
give the same values for the magnetization, susceptibility and specific heat, differing
only in the convergence rate. Nobre et al [11] investigated the DS in the Ising model
on a triangular lattice, for ferro- and antiferromagnetic interactions, using Glauber
dynamics. They employed two procedures for updating spins: the sequential and
parallel procedures. They found that the DS depends on the procedures for updat-
ing spins and only the sequential algorithm leads to reasonable results. Trivalent
structures are of great importance due to their topological stability and general
occurrence in nature. One of the authors, cooperating with others, investigated
the DS dependence on the topology of two kinds of trivalent structures: a set of
hierarchical regular lattices generated by star—triangle transformation on hexagonal
lattice (the 3-12, the 3-6-24 and the 3-6-12-48 lattices) [7] and random lattices (soap
froth and Voronoi [12,13], here Voronoi is the name of a class of two-dimensional
random lattices). It is shown that for the hierarchical lattices the smallest polygons
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(the smallest polygon in which the number of sides is the smallest) in the lattice
play a very important role — the transition temperature Ty increases with the in-
crease in the number of the smallest polygons Ny when the system is under the
pure G-dynamics and Ty decreases fast as Ny increases when K-dynamics becomes
important.

The 3-12 lattice is also referred to as the (3,122) Archimedean lattice [14]. It can
be generated from the pure hexagonal lattice [7]. On each vertex of the hexagon,
replace the star (Y) by a triangle (V), so that we have a triangle on each vertex
of the original hexagon. That is the so-called star—triangle transformation. In
doing the star—triangle transformation, the side length of the 12-gon is so chosen
that the 12-gon is a regular polygon. The result is a crystal made with 12-gons
and triangles. Although this lattice is simple, it may be the simplest model which
can describe the Ising spins with different nearest-neighbor exchange interaction
coefficients weighted by the related areas of cells and it presents the general features
of the set of the hierarchical lattices. In this paper, we give a further discussion
on the 3-12 lattice. We will focus our study on two aspects: the effects of the
difference of the interaction coefficients between the two kinds of polygons and the
bond dilution dependence of the DS on this lattice.

2. Model and theory

We put spins on the center of the cells (the 12-gons or triangles). It is obvious
that the interaction strength of spins between two 12-gons and 12-gon and triangle
should be different since the triangles and 12-gons have different areas. Taking this
factor into consideration, we write the Hamiltonian in the following way:

H = _ZJijsisj7 (1>

where J;; > 0 is the ferromagnetic exchange interaction coeflicient between the
nearest-neighbor sites ¢ and j. We assume

Jii2 = J (2a)
and
J3:10 = Ji23 = J * F, (2b)

where F' is the ratio of interaction strength between the two kinds of interactions
(12-gon to 12-gon and 12-gon to triangle). In this calculation we let FF = 1 to
S3/S12, here S3(S12) is the area of the triangle (12-gon) and F' = 1 corresponds to
the case where the area influence is not considered (S35 = Sj2) while F' = S3/S512
means J;; o« (S;/5;). Note that if we take F' = 0, the interaction between 12-gons
and triangles are broken, resulting in a kind of bond dilution for the Ising spins in
the lattice.

We deal with the DS problem on the 3-12 lattice by using Monte Carlo method.
We first allow the system A to evolve for a long time to reach equilibrium, then a
replica B of the system is made. At ¢ = 0, the spin in the center cell of the lattice
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B is flipped (damaged) and fixed all the time. The Hamming distance (or damage)
in phase-space is calculated by

1 N

D(T) = N Z(l =052 (1),5B(1))> (3)

i=1

where {s2(t)} and {sP(¢)} are the two spin configurations of the system which are
subjected to the same thermal noise and the same set of random numbers, and NV
is the number of total spins on the lattice studied.

3. Damage spreading with competing G-K dynamics

We use competing G-K dynamics [2,3] to give a weighted transition probability per
unit time from state s to s':

w(s, s') = pwa(s, s') + (1 = p)wk(s, s). (4)

The first term on the right side of eq. (4) corresponds to G-dynamics with p the
weighted probability. The single-spin flipping probability is written as

M
WG(Sv S/) = Z 65’15168’232 Tt 654751- T 68/]\45Mwi(8) (5>
=1

with w;(s) = min[l,exp(—(AE;/kgT)], where w;(s) is the probability of flipping
spin . The contact with the heat reservoir at temperature T follows the Metropolis
prescription with AFE; being the change in energy in flipping spin 7.

The second term on the right side of eq. (4) is based on Kawasaki (K-) dynamics
using two-spin exchange with the probability

M
WK(Sy 5/) = Z 53’131 T 58,:.8]' T 5s3.si te 5sMsMwij (5) (6)
(1,5)

with

(s) = 0, for AE;; <0
Wils) =\ 1, for AE; >0

where w;;(s) is the probability of exchange between the nearest-neighbor spins ¢
and j.

In the following calculation we choose M = 15, where M is the size of the lattice
(the number of the 12-gons along one direction, see figure 1). The results are
averaged over 100 configurations.

Figure 2 shows the typical phase transition curves of the DS of Ising model on
the 3-12 lattice for the case Jia12 = J and Js.12 = Jia.3 = J*S5/512 when there
is competing G-K dynamics. There exists obvious phase transition from frozen
to chaotic. The maximum values of (D) in the long time limit are all 0.5. The
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Figure 1. The 3-12 lattice.
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Figure 2. Averaged damage spreading of the 3-12 lattice as a function of
temperature for the cases F' = S3/S12 and p = 1.0 (a) and 0.8 (b). T is in
units of J/kg and M = 15.
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Figure 3. The critical temperatures as a function of 1 — p for different

interaction strengths F'.

temperature at which (D) rises to half of its maximum value in the long time

limit is chosen as the critical temperature.

In this way, we obtain the critical

temperatures as a function of 1 — p for various F' as shown in figure 3.
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Figure 4. The damage spreading phase diagram for the case F' = 1.

Figure 3 tells us that F plays an important role in determining the critical temper-
atures. The critical temperature decreases with the decrease in F' and it decreases
sharply as 1 — p increases (p decreases). When Kawasaki dynamics is dominant (p
is small), Ty approaches zero and no phase transition occurs. From figure 3 we also
know that the difference of Ty between the two limited cases F = 1 and F' = S3/S12
becomes bigger with the decrease of p.

As was pointed out before, the damage transition temperature Ty separates two
phases: the frozen and chaotic phases. In fact, figure 3 is just the damage spreading
phase diagram. In order to show this, we replot the temperature curve as a function
of 1 — p for the case F =1 (see figure 4), which tells us what happens when going
from pure Glauber to pure Kawasaki (p =0 to p = 1).

It is known that the damage measures the fractions of spins that are different in
configurations A and B and at higher temperature (7' > Tq4) and in long time limit,
(D(t — 00)) = 0.5 holds for G-dynamics whatever the lattice geometry is [7]. This
is confirmed in our calculation. Our calculation shows that (D(t — oo0)) = 0.5 also
holds when there is competition of G-K dynamics. The only exception is found
in the case of very small F' for p = 1. Figures 5a and 5b show the maximum of
(D) as a function of F'. Only when p = 1, (D)nax can approach values lower than
0.5 for the cases with very small F. This result is interesting and unexpected for
the G-dynamics (p = 1). We will show that this phenomenon originates from the
bond dilution of spins, which will be discussed later. When p is a little smaller, this
phenomenon disappears and only one value (0.5) of {D)max is found (see figure 5b).

In the above calculations, we have fixed the 12-gons in the center area of the
lattice damaged. The 12-gons are the main polygons in the 3-12 lattice with the
contiguity number f = 12. The damage on a 12-gon would spread easier and faster
due to its bigger contiguity number. But no obvious difference occurs if we fix the
triangle (the contiguity number f = 3) in the center area of the lattices in the
long time limit. A reasonable explanation may be that the memory of the original
damaged cell is lost after a long time evolution. But if we focus our attention on
the beginning of the damage spreading, the time dependence of damage will tell the
dependence of damage on topology. Figure 6 shows the time dependence of damage
at a given temperature for the cases where we fix different cells in the center area of
the 3-12 lattice. It is easy to understand that, the more linkage a cell has, when it
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Figure 5. Averaged damage spreading of the 3-12 lattice as a function of F
for the cases p = 1.0 (a) and 0.8 (b). T is in units of J/kg and M = 15.
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Figure 6. Time dependence of the averaged damage spreading of the 3-12
lattice at T'=6 for p =1 and F = 1. ‘3’ and ‘12’ indicate that a triangle or
a 12-gon in the center area of the lattice is damaged and fixed. M = 15.

is damaged, the more cells will be affected more quickly. So when we fix the 12-gon
in the center area of the lattice, the system needs lesser time to reach the damage
equilibrium. But the triangle has only three sides (f = 3) and when it is damaged,
less cells will be affected, and so the DS is difficult when compared with the 12-gon
(f = 12). In other words, it needs much time to reach the equilibrium state (the
so-called chaotic).

4. Damage spreading on the bond-diluted 3-12 Ising lattice

Note that we have observed the phenomenon (D),.x < 0.5 in figure 5 and we have
claimed that it is related with bond dilution. In fact, F' = 0 results in the bond
breaking between the 12-gons and triangles. So it is a kind of bond dilution of Ising
spins (when F' = 0, the dilute content is z = 1/6).

Quenched site and bond-diluted Ising models are often used to describe the mag-
netic properties of different materials. They are very important for understanding
the behavior of disordered ferromagnets [15,16]. But till now, few reports have
been presented for the DS on diluted Ising models. In the above F' = 0 case, the
dilution is introduced regularly: all the bonds between 12-gons and triangles are
broken. Next, we will study the DS for the bond-diluted Ising ferromagnets on
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Figure 7. Averaged damage spreading of the diluted 3-12 lattice as a function
of T for the cases p = 1.0 and various dilute contents.

the 3-12 lattice further. Here the bond dilution is chosen randomly. To determine
Jij, we generate a random number 0 < § < 1. If £ > z, J;; > 0, else J;; = 0.
That means that the interaction breaks randomly, not only between a 12-gon and
a triangle but also between two 12-gons. Figures 7a and 7b show the temperature
dependence of the averaged damage spreading for the case p = 1 (the pure Glauber
case). For a fixed dilute content x, two states exist, the state A (with smaller (D))
and the state B (with bigger (D)). Compared with the x = 1 case (no dilution),
the maximum value of (D) is lower in state B while the minimum value of (D) is
higher in state A (for pure frozen state, (D) = 0, but here when z < 1, (D) > 0.
For example, (D) = 0.25 for 2 = 0.2, so no frozen state exists). As z is decreased,
the minimum value of (D) in state A approaches zero (z = 0) gradually, while
as x is increased, the maximum value of (D) in state B approaches 0.5 (z = 1)
gradually. But the difference between the states A and B disappears gradually as
the Glauber probability p decreases. When the dynamics is pure K-dynamics, no
damage spreads out and only frozen state exists.

The phenomenon in which (D)y.x < 0.5 with pure G-dynamics (p = 1) implies
that there exist ‘survivors’ among the spins. The term ‘survivor’ was used first by
Levitan et al [17] to describe the bubbles which do not disappear in the evolving
cellular structures. Here we define the survivors as those sites which are always the
same in A and B. The ‘survivors’ phenomenon can also be found in the damage
spreading on complex networks with power-law degree distributions (we will report
this result later). The reason for the appearance of ‘survivors’ is due to the existence
of the isolated spins in the lattice. The isolated spins increase with decreasing =,
resulting in the decrease of (D)ax, as shown in figure 7.

So, we have introduced the bond dilution in two ways: by letting F' = 0, the
bond dilution is introduced regularly; by using the random numbers and the dilute
content z, the bond dilution is introduced randomly. (D)max < 0.5 is the general
feature of the bond-diluted Ising models.

5. Summary and discussions

In summary, we have studied the damage spreading of the Ising model on the 3-12
lattice with competing G-K dynamics. We include the difference of the two kinds
of interactions between spins of two 12-gons and spins of a 12-gon and a triangle in
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the Hamiltonian, by considering the different areas of the triangles and the 12-gons.
We find that the ratio of the interaction strength between the two kinds of inter-
actions (F') plays an important role in determining the critical temperatures. We
introduced the bond dilution in two ways: regularly (by letting F' = 0) or randomly.
In both cases, (D)max can approach values lower than 0.5. This result is unusual for
the G-dynamics since we have nearly accepted the opinion that (D(t — o0)) = 0.5
holds for G-dynamics at higher temperatures whatever the lattice geometry is. This
phenomenon can be explained in terms of the ‘survivors’, which are the isolated
spins in the lattice due to the bond dilution.

We have also, for the first time, presented the phase diagram of the mixed G—
K dynamics in the 3-12 lattice which shows what happens when going from pure
Glauber to pure Kawasaki (p = 0 to p = 1) and how the strength change between
the two kinds of interactions affects the phase diagram.

This method can also be extended to study social problems, for example, intro-
ducing a model for elections [18]. But for that case, we have to use other dynamics
instead of Glauber or Kawasaki dynamics.
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