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Abstract. It has been shown that the field equations for Charap’s chiral invariant model
of the pion dynamics pass the Painlevé test for complete integrability in the sense of Weiss
et al. The truncation procedure of the same analysis leads to auto-Backlund transforma-
tion between two pairs of solutions. With the help of this transformation non-trivial exact
solutions have been rediscovered.
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1. Introduction

In this paper we have observed that the field equations [1,2] for Charap’s chiral
invariant model of the pion dynamics pass the test for integrability in the sense of
Painlevé analysis due to Weiss et al [3–5]. The formalism of the truncation of a
series solution as advocated by Weiss et al [3] leads to auto-Backlund transforma-
tion between two pairs of solutions. From the transformation, the nontrivial exact
solutions have been rediscovered.

According to Weiss et al, the Painlevé test is as follows: If the singularity manifold
is determined by

u(z1, z2, z3, . . . , zn) = 0 (1.1)

and Φ = Φ(z1, z2, z3, . . . , zn) is a solution of the partial differential equation, then
we require that

Φ = uα
∞∑

j=0

Φju
j , (1.2)
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where Φ0 6= 0,Φj = Φj(z1, . . . , zn) and u = u(z1, z2, z3, . . . , zn) are analytic func-
tions of zj in the neighbourhood of the manifold (1). The condition that u should
be noncharacteristic (for the PDE) ensures that expansion (2) will be well-defined,
in the sense of the Chauchy–Kovalevskaya theorem [6]. Substitution of (2) into
the PDE determines the value(s) of α, and defines the recursion relations for
Φj , j = 0, 1, 2, . . .. When expansion (2) is well-defined and contains the maximum
number of arbitrary functions allowed at the ‘resonances’ [3,7–9], the PDE is said to
possess the Painlevé property and is conjectured to be integrable. Informally, the
resonances are the values of j for which φj are not ‘fixed’ by the recursion relations
(i.e. are arbitrary).

The equations under study are given by

φ = ηµν(∂φ/∂xµ) · (∂β/∂xν), (1.3a)
ψ = ηµν(∂ψ/∂xµ) · (∂β/∂xν), (1.3b)
χ = ηµν(∂χ/∂xµ) · (∂β/∂xν), (1.3c)

where

ηµν = 0 for µ 6= ν

= 1 for µ = ν 6= 4
= −1 for µ = ν = 4 (1.3d)

β = ln(f2
π + φ2 + ψ2 + χ2) (1.3e)

fπ = constant. (1.3f)

One arrives at eqs (1.3) through tangential parametrization of the field equation
for the chiral invariant model of the pion dynamics [1,2].

In order to apply the Painlevé analysis in the sense of Weiss et al, eqs (1.3) are
rewritten as follows:

φ11 + φ22 + φ33 − φ44 = 2φ[exp(−β)](φ2
1 + φ2

2 + φ2
3 − φ2

4)
+2ψ[exp(−β)](φ1ψ1 + φ2ψ2 + φ3ψ3 − φ4ψ4)
+2χ[exp(−β)](φ1χ1 + φ2χ2 + φ3χ3 − φ4χ4),

(1.4a)
ψ11 + ψ22 + ψ33 − ψ44 = 2ψ[exp(−β)](ψ2

1 + ψ2
2 + ψ2

3 − ψ2
4)

+2φ[exp(−β)](φ1ψ1 + φ2ψ2 + φ3ψ3 − φ4ψ4)
+2χ[exp(−β)](ψ1χ1 + ψ2χ2 + ψ3χ3 − ψ4χ4),

(1.4b)
χ11 + χ22 + χ33 − χ44 = 2χ[exp(−β)](χ2

1 + χ2
2 + χ2

3 − χ2
4)

+2φ[exp(−β)](φ1χ1 + φ2χ2 + φ3χ3 − φ4χ4)
+2ψ[exp(−β)](ψ1χ1 + ψ2χ2 + ψ3χ3 − ψ4χ4),

(1.4c)

where

β = ln(f2
π + φ2 + ψ2 + χ2).
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Equations (1.4) with a physical origin stated have been found to have interesting
solutions and mathematical characteristics. Charap [2] obtained solutions for (1.4)
under the assumption that φ, ψ and χ are all functions of (k1x

1+k2x
2+k3x

3+k4x
4)

where ki is any four vector. Ray [10] presented two types of solutions for (1.4). For
obtaining the first type of solution, Ray [10] (rediscovered by Chakraborty and
Chanda [11]) used the ansatz

φ = φ(v), ψ = ψ(v), χ = χ(v), (1.5)

where v is an unspecified function of x1, x2, x3, x4.
This type of solution is a generalization of the solutions obtained by Charap

mentioned above and includes a soliton solution as a special case. For obtaining
the second type of solutions, Ray [10] used the ansatz

φ = φ(x1, x2, x3 − x4), (1.6a)
ψ = ψ(x1, x2, x3 − x4), (1.6b)
χ = χ(x1, x2, x3 − x4). (1.6c)

Chanda et al [12] further generalized them considerably. The reduced equations
for this ansatz are conformally invariant, i.e. the form of the equations remains
invariant under the transformation (x1, x2) → (g, h) where g and h are two mutually
conjugate solutions of Laplace’s equations in x1 and x2. Hence from any solution of
the reduced equations one can immediately generate infinitely many other solutions
of the same equations simply by replacing (x1, x2) by (g, h) where g and h are two
mutually conjugate solutions of Laplace’s equations.

Chakraborty and Chanda [13] presented two other types of exact solutions where
the dependence on x3 and x4 is more generalized than that stated in (1.6). They
obtained two types of solutions. In the first case the ansatz was

φ = φ(τ, σ), ψ = ψ(τ, σ), χ = χ(τ, σ), (1.7a)

where

τ = τ(x1, x2), σ = σ(x3, x4). (1.7b)

In the second case they sought a class of solutions by changing variables to functions
of space–time coordinates, which were restricted in the following way:

(x1, x2, x3, x4) → (X, Y, Z, W ) (1.8a)

such that

X1 = Y2, X2 = −Y1 (1.8b)

and

Z3 = W4, Z4 = W3, (1.8c)

where
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X = X(x1, x2), Y = Y (x1, x2),

Z = Z(x3, x4), W = W (x3, x4).

Here also the reduced equations admitted infinite number of solutions.
In a recent publication [14], Chakraborty and Chanda have shown graphically

that the solutions corresponding to (1.5) of this paper obtained by Ray [10] and re-
discovered by Chakraborty and Chanda [11] represent solitary wave with oscillatory
profile.

Chakraborty and Chanda [11] have found eqs (1.4) to be interesting from another
angle of view. They observed that the equations reported by Charap [1,2] for
the chiral invariant model of pion dynamics under tangential parametrization and
the equations reported by Yang [15] while discussing the condition of self-duality
of SU(2) gauge fields on Euclidean four-dimensional space have some common
characteristics which are mathematically interesting. This has been elaborated in
their publication [11].

With this motivation they have combined the two sets of equations and have
obtained a new set of equations wherefrom the previous two sets can be obtained
as particular cases. It has been found that [11] the solutions of the combined
equations, still having interesting physical character, deviate much from Charap’s
equations. In this connection it may be mentioned that another class of rather
generalized solutions for the nonlinear sigma model of chiral theories has been
found by Enikova et al [16] and more recently been rediscovered by Anslem [17].

The results showing that eqs (1.4) pass the Painlevé test for integrability (in
the sense of Weiss et al) and admit truncation of series leading to auto-Backlund
transformation between two pairs of exact solutions wherefrom nontrivial exact
solutions can be rediscovered add to the importance of Charap’s equations (1.4).

2. Painlevé test for integrability of eqs (1.4) in the sense of Weiss et al

For eqs (1.4) we define the singularity manifold given by

u = u(x1, x2, x3, x4) = 0 (2.1)

and set

φ = uα
∑

φju
j , ψ = uβ

∑
ψju

j , χ = uγ
∑

χju
j , (2.2)

where φ(x1, x2, x3, x4), ψ(x1, x2, x3, x4), χ(x1, x2, x3, x4) are a set of solutions of
(1.4); φj , ψj , χj are all analytic functions of (x1, x2, x3, x4) in the neighborhood
of the manifold (2.1); φ0 6= 0, ψ0 6= 0, χ0 6= 0.

Now, the test may be divided into three main steps after the substitution of (2)
in the differential equations concerned:

(I) Make the leading order analysis (where one gets all possible α, β, γ, φ0, ψ0, χ0

in (2.2)).
(II) Define the recursion relations for uj for the leading orders obtained in step

I and determine the resonance positions (those values of j for which the relations
are not defined).
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(III) Check whether the expansions allow requisite number of arbitrary functions
at the resonance positions.

2.1 Leading order analysis

We assume

φ ∼ φ0u
α, ψ ∼ ψ0u

β , χ ∼ χ0u
γ . (2.3)

We substitute (2.3) in (1.4) and equate the coefficients of the negative powers of u
(considering that all α, β and γ are negative). This leads to α = −1, β = −1, γ = −1
so that

φ = uα
∞∑

j=0

φju
j , ψ = uβ

∞∑

j=0

ψju
j , χ = uγ

∞∑

j=0

χju
j , (2.4)

φ0 = arbitrary, ψ0 = arbitrary, χ0 = arbitrary.

2.2 Resonance positions

We directly substitute (2.4) in (1.4). We have not written explicitly the recursion
relation because of their involved structure. In order to have an idea one can consult
the recursion relations of the work of Chanda and Roy Chowdhuri [5]. Here the
resonance positions are R = −1, 0, 0, 0, 1, 1.

(i) R = −1 indicates that the singularity manifold defined in (2.1) is required to
be arbitrary.

(ii) R = 0, 0, 0 indicate that all of the coefficients φ0, ψ0 and χ0 are required to
be arbitrary.

(iii) R = 1, 1 indicate that any two of the coefficients φ1, ψ1 and χ1 are required
to be arbitrary.

2.3. To check whether the expansions allow requisite number of arbitrary functions
at the resonance positions

(i) The singularity manifold, by definition, is arbitrary.
(ii) The terms involving φ0, ψ0 and χ0 cancel each other. Hence all φ0, ψ0 and

χ0 are arbitrary.
(iii) We get only one equation involving φ1, ψ1, σ1, φ0, ψ0, χ0. Hence two of the

coefficients of φ1, ψ1, χ1 can be kept arbitrary when the third is determined in terms
of those arbitrary functions and φ0, ψ0, χ0.

With the above observations one can conclude that eqs (1.4) pass the Painlevé
test for integrability in the sense of Weiss et al.
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3. Truncation of the series (2.2), auto-Backlund transformation
and exact solutions

Here we forcefully make the coefficients φj , ψj , χj of uj−1 in the expansions (2.4)
zero for j > 1.

The coefficients φ1, ψ1 and χ1 in (2.4) are rewritten as p, q and r respectively in
order to differentiate them from (∂φ/∂x1), (∂ψ/∂x1), (∂χ/∂x1). Then from (2.4)
one gets

φ = φ0u
−1 + p, ψ = ψ0u

−1 + q, χ = χ0u
−1 + r (3.1)

subject to the condition that the three equations in (3.2) are satisfied:

Pu−5 + Qu−4 + Cu−3 + Eu−2 + Fu−1 + G = 0, (3.2a)
P ′u−5 + Q′u−4 + C ′u−3 + E′u−2 + F ′u−1 + G′ = 0, (3.2b)
P ′′u−5 + Q′′u−4 + C ′′u−3 + E′′u−2 + F ′′u−1 + G′′ = 0, (3.2c)

where P, Q, C, E, F, G etc. are given below with the notations:

u = u11 + u22 + u33 − u44, p · q = p1q1 + p2q2 + p3q3 − p4q4 (3.3a)
A = φ0p + ψ0q + χ0r, B = φ2

0 + ψ2
0 + χ2

0 (3.3b)
P = 0, P ′ = 0, P ′′ = 0 (3.3c)

Q = 2A(u · u)−B(u · u) + 2φ0(φ0 · u) + 2ψ0(ψ0 · u)
+ 2χ0(χ0 · u) = 0 (3.4a)

Q′ = Q, Q′′ = Q (3.4b)

C = 2φ0e
β(u · u) + φ0[2p(φ0 · u) + 2q(ψ0 · u) + 2r(χ0 · u)]

−2A(φ0 · u)− 2φ0(φ0 · φ0)− 2ψ0(φ0 ·ψ0)− 2χ0(φ0 · χ0)
+2φ0[φ0(u · p) + ψ0(u · q) + χ0(u · r)]
+2B(u · p)− 2φ0Au + Bφ0, (3.5a)

C ′ = 2ψ0e
β′(u · u) + ψ0[2p(φ0 · u) + 2q(ψ0 · u) + 2r(χ0 · u)]

−2A(ψ0 · u)− 2ψ0(ψ0 ·ψ0)− 2φ0(φ0 ·ψ0)− 2χ0(ψ0 · χ0)
+2ψ0[φ0(u · p) + ψ0(u · q) + χ0(u · r)]
+2B(u · q)− 2ψ0Au + Bψ0, (3.5b)

C ′′ = 2χ0e
β′(u · u) + χ0[2p(φ0 · u) + 2q(ψ0 · u) + 2r(χ0 · u)]

−2A(χ0 · u)− 2χ0(χ0 · χ0)− 2φ0(φ0 · χ0)− 2ψ0(ψ0 · χ0)
+2χ0[φ0(u · p) + ψ0(u · q) + χ0(u · r)]
+2B(u · r)− 2χ0Au + Bχ0, (3.5c)
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E = −2eβ′(φ0 · u)− φ2
0e

β′u + 2Aφ0 + Bp + 2A(u · p)− 2φ0(φ0 · p)
−2ψ0(φ0 · q)− 2χ0(φ0 · r) + 2pφ0(u · p) + 2qφ0(u · q)
+2rφ0(u · r)− 2p(φ0 · φ0)− 2q(φ0 ·ψ0)− 2r(φ0 · χ0)
−2φ0(φ0 · p)− 2ψ0(ψ0 · p)− 2χ0(χ0 · p), (3.6a)

E′ = −2eβ′(ψ0 · u)− ψ2
0eβ′u + 2Aψ0 + Bq + 2A(u · q)− 2φ0(ψ0 · p)

−2ψ0(ψ0 · q)− 2χ0(ψ0 · r) + 2pψ0(u · p) + 2qφ0(u · q)
+2rψ0(u · r)− 2p(φ0 ·ψ0)− 2q(ψ0 ·ψ0)− 2r(ψ0 · χ0)
−2φ0(φ0 · q)− 2ψ0(ψ0 · q)− 2χ0(χ0 · q), (3.6b)

E′′ = −2eβ′(χ0 · u)− χ2
0e

β′u + 2Aχ0 + Br + 2A(u · r)− 2φ0(χ0 · p)
−2ψ0(χ0 · q)− 2χ0(χ0 · r) + 2pχ0(u · p) + 2qχ0(u · q)
+2rχ0(u · r)− 2p(φ0 · χ0)− 2q(ψ0 · χ0)− 2r(χ0 · χ0)
−2φ0(φ0 · r)− 2ψ0(ψ0 · r)− 2χ0(χ0 · r), (3.6c)

F = eβ′φ0 + 2Ap− 2p(φ0 · p)− 2q(φ0 · q)− 2r(φ0 · r)
−2p(φ0 · p)− 2q(ψ0 · p)− 2r(χ0 · p)− 2φ0(p · p)
−2ψ0(p · q)− 2χ0(p · r), (3.7a)

F ′ = eβ′ψ0 + 2Aq − 2p(ψ0 · p)− 2q(ψ0 · q)− 2r(ψ0 · r)
−2p(φ0 · q)− 2q(ψ0 · q)− 2r(χ0 · q)− 2φ0(p · q)
−2ψ0(q · q)− 2χ0(q · r), (3.7b)

F ′′ = eβ′χ0 + 2Ar − 2p(χ0 · p)− 2q(χ0 · q)− 2r(χ0 · r)
−2p(φ0 · r)− 2q(ψ0 · r)− 2r(χ0 · r)− 2φ0(p · r)
−2ψ0(q · r)− 2χ0(r · r), (3.7c)

G = p− e−β′ [2p(p · p) + 2q(p · q) + 2r(p · r)], (3.8a)

G′ = q − e−β′ [2q(q · q) + 2p(p · q) + 2r(q · r)], (3.8b)

G′′ = r − e−β′ [2r(r · r) + 2p(p · r) + 2q(q · r)], (3.8c)

where β′ = f2
π + p2 + q2 + r2.

Now, if one has G = 0, G′ = 0, G′′ = 0 then one can say that eqs in (3.1) represent
auto-Backlund transformation [18,19] between two pairs of solutions of (1.4) given
by (φ, ψ, χ) and (p, q, r) subject to the condition

Pu−5 + Qu−4 + Cu−3 + Eu−2 + Fu−1 + G = 0 (3.9a)
P ′u−5 + Q′u−4 + C ′u−3 + E′u−2 + F ′u−1 + G′ = 0 (3.9b)
P ′′u−5 + Q′′u−4 + C ′′u−3 + E′′u−2 + F ′′u−1 + G′′ = 0 (3.9c)

where P, Q, C, E, F, G, etc are given by (3.3) to (3.8).
It would have been nice if auto-Backlund transformation between two sets of

nontrivial solution could be shown. At this stage the complicacy of the system did
not allow us to achieve that goal. However, in the following section we have shown
the auto-Backlund transformation between a set of trivial solutions (p = 0, q =
0, r = 0) and the nontrivial solutions (φ, ψ, χ) reported in the Introduction.
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4. Rediscovery of solutions reported in the Introduction

Normally an overdetermined system is obtained by equating the coefficients of u−j

in (3.2) separately to zero. However, at the time of rediscovering previous solutions
with p = 0, q = 0, r = 0 it is found that the act of equating the coefficients of
u−j separately to zero imposes a very strong condition which cannot be satisfied.
Therefore, we have kept (3.9) as such and made p = 0, q = 0, r = 0 so that
G = 0, G′ = 0, G′′ = 0 are automatically satisfied.

4.1 Solutions reported in (1.5)

Here the solutions can be obtained from (3.1), (3.8), (p = 0, q = 0, r = 0) and the
assumption

(φ0/u) = a(w), (ψ0/u) = m(w), (χ0/u) = n(w), (4.1)

where a,m, n are functions of w, w = w(x1, x2, x3, x4) and we get

φ = a(w), ψ = m(w), χ = n(w) (4.2)

which is the same as (1.5).

4.2 Solutions reported in (1.6)

Here the solutions can be obtained from (3.1), (3.8), (p = 0, q = 0, r = 0) and the
assumption

(φ0/u) = a′(w′), (ψ0/u) = m′(w′), (χ0/u) = n′(w′), (4.3)

where a′,m′, n′ are functions of w′, w′ = w′(x1, x2, x3 − x4) and we get

φ = a′(x1, x2, x3 − x4) (4.4a)
ψ = m′(x1, x2, x3 − x4) (4.4b)
χ = n′(x1, x2, x3 − x4) (4.4c)

which is the same as (1.6).

4.3 Solutions reported in (1.7)

Here the solutions can be obtained from (3.1), (3.8), (p = 0, q = 0, r = 0) and the
assumption

(φ0/u) = a′′(τ, σ), (ψ0/u) = m′′(τ, σ), (χ0/u) = n′′(τ, σ) (4.5)

where a′′, m′′, n′′ are functions of (τ, σ). τ = τ(x1, x2), σ = σ(x3, x4), and we get
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φ = a′′(τ, σ) (4.6a)
ψ = m′′(τ, σ) (4.6b)
χ = n′′(τ, σ) (4.6c)

which is the same as (1.7).

5. Summary

The field equations for Charap’s chiral invariant model of the pion dynamics pass
the Painlevé test for complete integrability in the sense of Weiss et al. The trunca-
tion procedure of the same analysis leads to auto-Backlund transformation between
two pairs of solutions. With the help of this transformation nontrivial solutions
have been rediscovered. However, only the transformation between a set of triv-
ial solutions and another set of nontrivial solutions could be demonstrated. The
transformation between two sets of nontrivial solutions remains to be demonstrated.

Acknowledgement

One of the authors (PKC) thanks the University Grants Commission, India for
financial assistance. The authors are grateful for some constructive suggestions of
the referee.

References

[1] J M Charap, J. Phys. A6, 987 (1973)
[2] J M Charap, J. Phys. A9, 1331 (1976)
[3] J Weiss, M Tabor and G Carnevale, J. Math. Phys. 24, 522 (1983)
[4] J Weiss, J. Math. Phys. 24(6), 1405 (1983)
[5] P K Chanda and A Roy Chowdhury, J. Math. Phys. 29(4), 843 (1988)
[6] R Courant and D Hilbert, Methods of mathematical physics (Interscience, NY, 1962)

vol. II
[7] M J Ablowitz, J. Math. Phys. 21, 715 (1980)
[8] H Yoshida, Celestial Mechanics 81, 363 (1983)
[9] H Yoshida, Celestial Mechanics 81, 381 (1983)

[10] D Ray, J. Phys. A11(5), 995 (1978)
[11] S Chakraborty and P K Chanda, Pramana – J. Phys. 52(6), 579 (1999)
[12] P K Chanda, D Ray and U K De, J. Math. Phys. 25(8), 2557 (1984)
[13] S Chakraborty and P K Chanda, Pramana – J. Phys. 52(3), 245 (1999)
[14] S Chakraborty and P K Chanda, Pramana – J. Phys. 63(5), 1039 (2004)
[15] C N Yang, Phys. Rev. Lett. 38(24), 1377 (1977)
[16] M M Enikova, V I Karloukovski and C I Velchev, Nucl. Phys. B151, 172 (1979)
[17] A A Anslem, Phys. Lett. B217, 169 (1989)
[18] A L Larsen, Phys. Lett. A179, 284 (1993)
[19] S Roychowdhury, Phys. Lett. A159, 311 (1991)

Pramana – J. Phys., Vol. 66, No. 6, June 2006 969


