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Abstract. In this paper, starting from the careful analysis on the characteristics of
the Burgers equation and the KdV equation as well as the KdV-Burgers equation, the
superposition method is put forward for constructing the solitary wave solutions of the
KdV-Burgers equation from those of the Burgers equation and the KdV equation. The
solitary wave solutions for the KdV—-Burgers equation are presented successfully by means
of this method.
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1. Introduction

As more and more problems in the branches of modern mathematical physics and
other interdisciplinary sciences are described in terms of suitable nonlinear models,
directly exploring explicit and exact solutions (in particular, the solitary wave so-
lutions) of nonlinear partial differential equations (NPDEs for short) plays a very
important role in the nonlinear science, especially in nonlinear physics science. In
recent years, quite a few simple and direct approaches have been developed to seek
the explicit and exact solutions (particularly the solitary wave solutions) of NPDEs.
Among these are the function transformation method [1,2], the homogeneous bal-
ance method [3,4], the hyperbolic tangent function expansion method [5,6], the
trial function method [7,8], the auxiliary ordinary differential equation [9,10], the
sine—cosine method [11], the Jacobi elliptic function expansion method [12,13], and
so on. Unfortunately, not all these approaches are universally applicable for solving
all kinds of NPDEs directly. As a result, it is still a very significant task to search
for various powerful and efficient approaches to solve NPDEs.

In this paper, by carefully analyzing the characteristics of the Burgers equation
and KdV equation as well as KdV-Burgers equation, we present a superposition
method which is generally acknowledged to simply work for linear equations to
construct the solitary wave solutions to the KdV-Burgers equation from those of
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the Burgers equation and KdV equation and apply it to finding successfully the
solitary wave solutions of the KdV-Burgers equation.

2. The superposition approach for solving the KdV-Burgers equation

The well-known Burgers equation and KdV equation as well as KdV-Burgers equa-
tion respectively are
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where « and ( are arbitrary constants with o3 # 0.

The above three equations are probably the most popular nonlinear evolution
equations of physical interest, which not only arise from realistic physical phe-
nomena, but can also be widely used in many physically significant fields such as
plasma physics, fluid dynamics, crystal lattice theory, nonlinear circuit theory and
astrophysics [14-18]. In the present paper, our primary interest is to investigate the
solitary wave solutions of the KdV—Burgers equation which occurs in many different
physical contexts as a nonlinear model equation incorporating the effects of disper-
sion and dissipation as well as nonlinearity and which was applied by Liu [18,19] to
model the inverse energy cascade and intermittent turbulence where a dispersion
effect is taken into consideration by utilizing the superposition method. To start
with, let us carefully analyze the characteristics of the Burgers equation and the
KdV equation as well as the KdV-Burgers equation. From eqs (1)—(3), it is not
difficult to observe that they are all of the same nonlinear term u(du/0x) and of dis-
tinct linear terms and that the linear terms of eq. (3) (—a(0%u/0x?)+ B3(0%u/dz3))
is exactly equal to the sum of those of eqs (1) and (2). For this reason, we may
construct the exact solutions of eq. (3) through the linear superposition of the
solutions to eqs (1) and (2), that is to say, we can presume that eq. (3) has the
following formal solution:

u = aup + bug + ¢, (4)

where a, b and ¢ are constants to be determined later, and ug is the solution of the
Burgers equation (1), and uk the solution of the KAV equation (2). We call eq.
(4) as the linear superposition formula to find the solutions of the KdV-Burgers
equation (3). In what follows, let us look for the solitary wave solutions to eq. (3)
according to the superposition formula (4).

From ref. [20], we are told that the Burgers equation (1) has the solution of the
following form
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1
ug = —ak <1 + tanh 2() (5)
and the KAV equation (2) has the solution of the following form
uk = 120k%sech?¢, (6)
where
(=kx — wt (M)

in which k& and w are the wave number and the angular frequency, respectively.
In view of eqs (5)—(7), and considering the superposition formula (4), we suppose
that the KdV-Burgers equation (3) has the following formal solution

u = a(1 + tanh d€) + bsec h*d¢ + c, (8)

where d is a constant to be determined later. Here it should be noted that we
have inserted a controlling parameter d in eq. (8) when utilizing the superposition
formula (4) in that the solutions to the Burgers equation (1) and the KdV equation
(2) may admit different k and w.

Substituting eq. (8) into eq. (3), and with the aid of the computerized symbolic
computation of the powerful Mathematica, we obtain

a’dk + abdk + acdk + 2bd*k* o — 2ad’k>? 8 — adw

+(a*dk — 2abdk — 2bcdk — 2b*dk + 2ad®k*a + 16bd>k> 3 + 2bdw)tanh d¢

+(—a?dk — 4abdk — acdk — 8bd*k*a + 8ad®k> 8 4 adw)tanh?d¢

+(—a?dk + 2abdk + 2bcdk + 4b*dk

—2ad*k?a — 40bd*k> B — 2bdw)tanh®de

+(3abdk + 6bd* k%o — 6ad’ k> 3)tanh*d¢

+(—2b%dk + 24bd®k> B)tanh®d¢ = 0. (9)
Setting the coefficients of tanh/d¢ (j = 0,1,2,...,5) in eq. (9) to zero gives

rise to a set of over-determined algebraic equations with respect to the unknown
variables a, b, c and d as follows:

a’dk + abdk + acdk + 2bd*k* o — 2ad’k? 8 — adw = 0, (10)
a’dk — 2abdk — 2bcdk — 2b*dk + 2ad*k*a + 16bd> k>3 + 2bdw = 0, (11)
—adk — 4abdk — acdk — 8bd*k*a + 8ad®k* B + adw = 0, (12)
—a?dk + 2abdk + 2bcdk + 4b%dk — 2ad?k* o — 40bd> k3 B — 2bdw = 0,
(13)
3abdk + 6bd* k2o — 6ad®k3 6 = 0, (14)
—2b%dk + 24bd3k33 = 0. (15)

Solving the above system of algebraic equations by using Mathematica, we have
the following results:
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i 6 b 3a? w _ 6a? d «
a = —, = —, C = — —, = —,
253 2573 kT 253 T10k5
where k£ and w are arbitrary constants.

Inserting eq. (16) into eq. (8) and taking into account eq. (7), we get the solitary
wave solution to the KdV-Burgers equation (3) as follows:

(16)

w  3a?  6a? « 3a? 9 «
=—+4+———tanh | ——( ) — —tanh” [ ——( ) . 17
=% Tasg 25" <10kﬁ§> 255 <10k5<> (17)
With the help of the following two equalities:

sinh x

x

tanh— = — 18

My T + coshz (18)
and

sinh®z = cosh®z — 1, (19)
eq. (17) can be rewritten as

From ref. [21], we can see that the Burgers equation (1) admits the following
solution:

up = —ak (1 + cothé() (21)

and the KdV equation (2) admits the following solution
ug = —128k%csch?C. (22)

According to the superposition formula (4) and using the same procedure as
above, we may find the following singular traveling solutions for the KdV-Burgers
equation (3) as

w  3a?  6a? o 3a? 9 «a
=24 2 oth [ ——( ) — S—coth? [ ——( ) . 23
=% Tasp 28 (10kﬁ ) 255 (10kﬂ<) (23)
Making use of the identity (19) and the following identity

T sinh x
hs = SR 24
cot 2 coshz —1’ (24)
eq. (23) can be rewritten as
w 602 sinh (ﬁc) 602 1
U= T8 w93 il a N o (25)
B cosh (5&4) —1 258 ¢oth (ﬁg) 1

w

Obviously, the solutions (17) and (23) are equivalent or similar to those given in
refs [22-24], and the solutions (20) and (25) are also analogous to those obtained
in ref. [25].
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3. Conclusions

By analyzing carefully the characteristics of the Burgers equation and the KdV
equation as well as the KdV-Burgers equation, we bring forward a superposition
method to construct the solitary wave solution to the KdV-Burgers equation from
those of the Burgers equation and the KdV equation.
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