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Abstract. We develop a theoretical model to the scattering time due to the electron-
confined LO-phonon in GaAs-AlxGa1−xAs superlattice taking into account the sub-band
parabolicity. Using the new analytic wave function of electron miniband conduction of
superlattice and a reformulation slab model for the confined LO-phonon modes, an ex-
pression for the electron-confined LO-phonon scattering time is obtained. In solving nu-
merically a partial differential equation for the phonon generation rate, our results show
that for x = 0.45, the LO-phonon in superlattice changes from a bulk-like propagating
mode to a confined mode. The dispersion of the relaxation time due to the emission of
confined LO-phonons depends strongly on the total energy.
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1. Introduction

Owing to the advances in crystal-growth techniques with dimensional control close
to interatomic spacing, such as molecular-beam epitaxy and metal-organic vapour
deposition, it has been possible to develop a variety of low-dimensional systems such
as quantum wells, superlattices, quantum dots etc. Since the pioneering work of
Esaki and Tsu [1,2], semiconductor superlattices (SLs) have received a great deal of
research because of their transport properties and their technological applications in
electronics devices such as novel oscillators, tunnel diodes, hot-electron transistors
and electro-optical devices [3–9]. These structures involve some physics phenom-
ena: Bloch oscillation [10,11] – the Bragg scattering of carriers from the Brillouin
zone boundaries of crystal produces this effect; negative differential conductivity
[12] – the Brillouin zone is too small that those met in the usual crystalline cause
this effect; modulation doping [13–15] – a possible way to reduce scattering strength
which is characterized by the form factor for interaction with phonon determined by
the electron wave function along the direction perpendicular to the layer (this form
factor decreases rapidly with the decrease of electron wave function, the mobility
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can be enhanced); sequential resonant tunnelling [16] – in strong electric fields the
miniband picture in a superlattice breaks down when the potential drop across the
superlattice period exceeds the miniband width. When this condition is satisfied
the quantum states become localized in the individual wells. The electron propaga-
tion through the entire superlattice involves sequential resonant tunnelling; phonon
resonance [17] – at high field where a longitudinal-optical (LO) phonon mediates a
transition between localized Wannier–Stark states whose energy separation equals
the phonon energy, this effect is evident. This phenomenon depends in practice
on a series of factors such as degree of perfection of the quantum well layers, the
number distribution of impurities and the influence of electron–electron interaction.

One of the effects that has attracted the attention of a considerable number of
researchers is the electron–LO-phonon interaction effect. In particular, some com-
monly used quantum structures, such as GaAs-AlxGa1−xAs, are constituted by
weak polar or semi-polar semiconductors such that at room temperature the po-
laron effects can strongly influence the optical and transport properties of these
microstructures. Some results in Raman scattering, cyclotron resonance and mag-
netophonon resonance measurements show the dominance of electron interaction
with LO phonons and reveal important information about the vibration modes in
the layers forming SL [18–24]. The electron–LO-phonon interaction was found to be
strongly dependent on both the geometrical shape and the parameters of the con-
stituent materials [25,26]. The polaron effect in heterostructures of size is, however,
quite different from that in bulk materials. Several theoretical studies are already
reported on calculations of relaxation time due to scattering of carriers in semicon-
ductor heterostucture by optical phonons, treating the case of single or multiple
quantum wells [27–30]. In the work presented in this paper, we not only evaluate
analytically an expression of the scattering time with the new analytic wave func-
tion in SL [31] treated quantum mechanically, but also study the dependence of
this scattering time on the total energy.

2. Theoretical model

The electron–phonon interaction Hamiltonian in low-dimensional systems depends
on the specific phonon spectra in the system and is different from the Fröhlich
Hamiltonian for bulk phonon. The macroscopic dielectric continuum model [32–35]
gives the functional form of the interface modes and confined half-space LO modes.
The electron-confined LO-phonon interaction Hamiltonian as derived from Fröhlich
interaction is given by [36,37]

He−p = λ
∑
q⊥,n

∑
α=±

eiq⊥·rH(z)tnα(q⊥)unα(z)× [anα(q⊥) + a+
nα(−q⊥)],

(1)

where a(q) and a+(q) are the creation and annihilation operators for a bulk phonon
in mode q, corresponding to the even (−) and odd (+) confined phonon modes and
n is the miniband index, while the coupling

λ2 = iCµ/
√

Vq, (2)
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where V is the volume. From [38], C can be written explicitly as

C =
[
e2~ωLO

2ε0

(
1

ε(∞)
− 1

ε(0)

)]1/2

, (3)

where ~ω is the optic phonon of the nth miniband, ε(∞) and ε(0) are the optical
and static dielectric constants respectively, V is the volume and e is the electronic
charge. For the slab model [32–39] unα(z) are defined as

un+(z) = cos(nπz/Lw), n = 1, 3, 5, . . . (4)

un−(z) = sin(nπz/Lw), n = 2, 4, 6, . . . (5)

tnα is given by

tnα =
1

[q2
⊥ + (nπ/Lw)2]1/2

. (6)

Finally

H(z) =
{

1 if − Lw ≤ z ≤ Lw

0 otherwise . (7)

The scattering rate Wi→f appearing is obtained from the Fermi Golden Rule

Wi→f(k) =
2π

~
∑

f

|〈ξf |He−p|ξi〉|2. (8)

Evaluating the matrix element in (8) with the Hamiltonian given by (1) we obtain

Wi→f =
π

2πV ~

(
NLO +

1
2
± 1

2

)
e2~ωLO

q±

(
1

ε(∞)
− 1

ε(0)

)

×δ(U±)I(ki
z, k

f
z, q⊥), (9)

where

In(ki
z, k

f
z, q⊥) =

∑
q⊥

∑
n,α

|Gi→f
n,α (ki

z, k
f
z)|2 |tn,α(q⊥)|2. (10)

The δ-function represents the conservation of energy

δ(U±) = δ

(
~2

2m∗ (ki2

⊥ − kf2

⊥ ) + Ekf
z
− Eki

z
± ~ωLO(q±)

)

∓ denoting the absorption and emission processes. For optical phonon scattering

q2
± = ki2

⊥ ± kf2

⊥ − 2ki
⊥kf

⊥ cos(θ) + (ki
z − kf

z ∓G)2 = cte, (11)

where G is the reciprocal lattice vector of the SL. NLO is the LO-phonon occupation
number defined as
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NLO =
(

exp
~ωLO

kBT
− 1

)−1

. (12)

Gi→f
n,α (ki

z, k
f
z) is the overlap integral of the electron wave function and the z-

dependent electron-confined-phonon Hamiltonian

Gi→f
n,α (ki

z, k
f
z) =

∫ L/2

−L/2

ψ∗f (z)un,αψ∗i (z)dz, (13)

where ψi, ψf are the miniband electron envelope wave functions in the initial and
final states respectively [31]. L is the period of the SL; L = Lw + Lb. At U± = 0,
kf
⊥ and ki

⊥ must be equal. We define a coordinate system and general lines of
summation over kf states that

∑

kf

=
V

(2π)3

∫ ∞

0

kf
⊥dkf

⊥

∫ 2π

0

dθf

∫ π/L

−π/L

dkf
z, (14)

where (kf
⊥, θ) are the polar coordinates in the planes normal to kf

z defined earlier
with the following Jacobian

∂U±

∂kf
⊥

=
~2

m∗ k⊥. (15)

With the use of (9), (13) and (15) the expression for scattering time due to the
electron-confined-phonon interaction τ−1 is calculated in first-order perturbation
theory:

τ−1
op =

1
τ0k⊥

∫ 2π

0

dθ

{∫

γ+

I+
n,α(ki

z, k
f
z, q⊥)[NLO(ω) + 1]dkf

z

q2
+

+
∫

γ−

I−n,α(ki
z, k

f
z, q⊥)[NLO(ω) + 1]dkf

z

q2−

}
, (16)

where γ± is the integration domain over kf
z and is represented in figure 1.

3. Numerical results and discussion

For numerical computation, we have chosen the GaAs-Ga1−xAlxAs with x = 0.45 as
a superlattice. The parameters pertaining to the system are: m∗

w = 0.067m0,m
∗
b =

0.104m0, where m0 is the free electron mass. The dielectric constant in the
wells is taken equal to the one in barrier: εd = 12.8, ε∞ = 10.9, lw = 108 Å,
lb = 38 Å, Vb = 495 meV. The energy of a bulk GaAs LO phonon ~ωLO = 36.8
meV, the static and high frequency dielectric constant for GaAs: εs = 12.35 and
ε∞ = 10.48.

Figure 2 shows the plot of electron–LO-phonon coupling constant as a function of
composition x. This constant increases monotonously and therefore we treat the x
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Figure 1. Representation of constant-energy lines εξK = const. in (k⊥, kz)
plane, the difference being ~ωLO. Two examples are drawn: 2∆ + ~ωLO and
2∆− ~ωLO.

Figure 2. Variation of coupling constant as a function of composition.

fraction as the parameter for electron–LO-phonon interaction in superlattice. The
variation of the optical phonon energy as a function of composition is represented in
figure 3 which shows that with the increase of the concentration fraction, the optical
LO-phonon energy increases. A partial differential equation is solved numerically
for the phonon generation rate (∂Nq/∂t) for x = 0.45.
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Figure 3. Optical phonon energy as a function of composition, x.

Figure 4. Representation of the phonon generation rate vs. Lb.

∂Nq

∂t
=

2π

~
(Nq + 1)

∑

K

|Mq|2f(K, t)[1− f(K − q, t)]

×δ(εξK−q − εξK + ELO)− 2π

~
Nq

∑

K

|Mq|2f(K, t)[1− f(K + q, t)]

×δ(εξK−q − εξK + ELO)− Nq

τq
. (17)

The results are shown in figure 4. We observe a strong dependence of (∂Nq/∂t)
on the barrier width Lb. We deduce that the barrier width Lb has an effect on
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Figure 5. Current density vs. Lb for two different values of transport masses.

Figure 6. Probability density associated with an electron of the first mini-
band in the tight binding approximation. Links pace of potential is to indicate
the positions of the barrier and well of superlattice.

the phonon generation rate, as well as on the confinement of the LO-phonon in the
semiconductor superlattice. The variation of the current density with barrier width
is plotted in figure 5 which shows that the current decreases with increasing barrier
width. Accordingly, the behaviour of the tunnelling probability also decreases with
increasing barrier width indicating that the electronic confinement increases. We
present in figure 6 the probability density associated with an electron in the con-
duction miniband; which shows its maximum in the middle of the quantum wells
of superlattice, where majority of electrons is found, with minimum in the barrier.
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When the barrier width increases, the confinement increases. The two phenomena
are competitors. The first is the contribution of interface phonon and second is the
contribution of confined phonon. This competition is controlled through the factor
Γ = γLLw where γL = (2m∗

wωL1)
1/2 is the wave vector of optical phonon parallel

to the interface.
– If Γ > 1, the contribution of confined LO-phonon increases.
– If Γ < 1, the contribution of interface phonon increases resulting in the reduc-

tion of the confined contribution.
We deduce that the composition x and width of the barrier are the essential

parameters in the electron–LO-phonon interaction, especially for the confinement
of LO-phonon in the superlattice. It justifies our choice of parameters for numer-
ical results. Another quantity which influences the scattering rates is the overlap
integral given by eq. (13). When plotted as a function of the final wave vector for
several values of initial wave vector (figure 7), for larger values of the final wave
vector kf

z the quantity Gi→f
n,α (ki

z, k
f
z) present larger overlap integrals, resulting in

increasing scattering rates. In figure 8 we present a schematic diagram of phonon
wave vectors which shows that for larger energy minibands the phonon wave vec-
tors can be larger. Since the Fröhlich interaction is roughly proportional to 1/q,
the electron couple more weakly to the phonon. Therefore, the scattering rates will
be reduced. Figure 9 illustrates the scattering time due to the electron-confined
LO-phonon interaction confined as a function of the total energy εξ for the value
of ki

z = π/2L.
– For ε1 < εξ < ε2 the relaxation time increases with total energy of a linear

way that describes the dependence of τop with energy. We can deduce that εi =
|2∆− ~ωLO| and ε2 = 2∆.

– When 2∆ < εξ < 2∆ + ~ωLO the scattering time decreases drastically as total
energy increases which is due to the confinement effect and in confirmity with a
previous remark that for larger energy miniband the electron couples weakly to the
phonon.

Figure 7. Plots of the matrix elements as kf
zL for two different ki

z values.
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Figure 8. Schematic diagram of phonon wave vectors.

Figure 9. Relaxation time in GaAs-Al0.45Ga0.55As superlattice as a function
of the total energy for ki

z = π/2L.

In conclusion, we have presented a systematic study of the relaxation time due
to the electron-confined LO-phonon interaction. The theory presented applied the
slab model for confined LO-phonon modes, and used a new analytic wave func-
tion associated with electron in conduction minibands. We have shown that the
composition x of GaAs-Ga1−xAlxAs superlattice and the width at the barrier Lb

are essential parameters and the confinement LO-phonon results are in agreement
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with experimental measurements [40]. The competition between the contribution
of interface phonon and the one of confined phonon is controlled through the factor
Γ. We also found that the scattering time significantly depends on total energy.
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