
PRAMANA c© Indian Academy of Sciences Vol. 66, No. 1
— journal of January 2006

physics pp. 31–42

Diffused vorticity approach to the oscillations
of a rotating Bose–Einstein condensate confined
in a harmonic plus quartic trap

M COZZINI
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Abstract. The collective modes of a rotating Bose–Einstein condensate confined in an
attractive quadratic plus quartic trap are investigated. Assuming the presence of a large
number of vortices we apply the diffused vorticity approach to the system. We then use
the sum rule technique for the calculation of collective frequencies, comparing the results
with the numerical solution of the linearized hydrodynamic equations. Numerical solutions
also show the existence of low-frequency multipole modes which are interpreted as vortex
oscillations.
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1. Introduction

Quantized vortices are one of the most striking features of superfluids, ranging from
liquid helium to superconductors. Bose–Einstein condensates of alkali gases have
proved to be one of the best tools to study these fascinating quantum objects,
presenting several advantages with respect to both helium and superconductors.
On the other hand, due to the limited resolution imposed by current experimental
techniques, direct in situ imaging of vortices is a very difficult task. This problem
has been however overcome by using time-of-flight absorption images, which take
advantage of the expansion of the gas after the release of the trap.

In this context, particularly appealing structures are given by vortex arrays,
where singly quantized vortices typically arrange in highly regular triangular lat-
tices, similar to the Abrikosov lattice of superconductors. In order to realize such
configurations, large amounts of angular momentum have to be transferred to the
gas, which can be done by using various experimental procedures [1]. The acquired
angular velocity then tends to enlarge the rotating cloud, the centrifugal force giv-
ing rise to bulge effects which flatten the density profile towards a 2D configuration.
In the presence of purely harmonic confinement characterized by a frequency ω⊥ in
the plane of rotation, this phenomenon fixes an upper limit for the angular velocity
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Ω of the system, namely the frequency Ω = ω⊥ at which the quadratic effective
potential given by the centrifugal force exactly equals the harmonic trapping term.
Beyond this angular velocity the centrifugal force dominates over the confinement
and the system is no longer bounded.

The possibility of reaching arbitrarily high angular velocities is however provided
by stronger than quadratic traps [2–4]. The introduction of a quartic term in the
potential then opens up new regimes in the study of rotating condensates, mak-
ing possible the realization of new equilibrium configurations with different vortex
arrays.

In the present contribution, we will first briefly summarize the stationary so-
lutions for an effectively two-dimensional Bose–Einstein condensate rotating in a
harmonic plus quartic trap at zero temperature [5]. Then, within the Thomas–Fermi
approximation [6], we will focus on the analysis of the most important collective
excitations of the system [7]. Numerical solution of the hydrodynamic equations will
be combined with the sum rule method. Vortex arrays will be treated within the
so-called diffused vorticity approximation [8], thereby neglecting the microscopic
motion of single vortices in favour of the macroscopic dynamics of the system.
Nevertheless, signatures of vortex modes will also be found, although the corre-
sponding predicted frequencies are not expected to be very accurate. Indeed, a
consistent calculation of such effects would require a more detailed treatment, as
the one of ref. [9].

2. Stationary configurations

As anticipated above, in the presence of a large number of vortices, as always
assumed in the following [10], it is possible to use the so-called diffused vorticity
approach, consisting of averaging the velocity field v over regions containing many
vortex lines and assuming that the vorticity is spread continuously in the fluid. For
example, in the case of a uniform vortex lattice with average vortex density nv,
this corresponds to assuming rigid body rotation v = Ω ∧ r with Ω = hnv/2M ,
where M is the atomic mass. The relation between the effective angular velocity Ω,
oriented along the vortex line direction, and the vortex density nv can be derived
by imposing that the circulation of the averaged velocity field around a single
vortex cell be equal to h/M , as for the single vortex case. More generally, the usual
irrotationality condition ∇ ∧ v = 0 of the superfluid hydrodynamics is broken in
favour of ∇ ∧ v(r) = hnv(r)/M , where nv(r) is the average vortex density in the
proximity of point r. It is then clear that the validity condition of this approach is
that the average distance 1/

√
nv between vortices be much smaller than the size

of the cloud [11], the concept of diffused vorticity being adequate to describe the
dynamics only at distances larger than 1/

√
nv. If in addition ξ ¿ 1/

√
nv, where ξ =

~/
√

2gn is the healing length defined in terms of the interaction coupling constant
g and bulk density n, one can safely use the Thomas–Fermi approximation. Indeed,
if the size of vortex cores fixed by ξ is much smaller than the inter-vortex distance,
one can assume a slowly varying density profile between vortices, consequently
neglecting density gradients associated with quantum pressure effects.

Within the presently discussed approximations, the system is then described by
the rotational hydrodynamic equations, which in the rotating frame read
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∂n

∂t
+ ∇ · (nv′) = 0, (1)

∂v′

∂t
+ ∇

(
v′2

2
+

Vext

M
− |Ω ∧ r|2

2
+

gn

M

)
= v′ ∧ (∇ ∧ v′)− 2Ω ∧ v′,

(2)

where n(r, t) is the spatial density, v′(r, t) = v(r, t) − Ω ∧ r is the velocity in
the rotating frame, and Vext is the external potential. It is trivial to check that
v0 = Ω ∧ r, gn0 = µ− Vext + M |Ω ∧ r|2/2 is a stationary solution for the system,
where µ, fixed by the normalization condition

∫
n dr = N , is the chemical potential

in the rotating frame.
Although equilibrium configurations in Thomas–Fermi approximation can be ob-

tained also for the 3D case [3], for simplicity we will consider only 2D configurations,
which makes the analysis of collective excitations considerably easier. In fact, due
to the repulsive centrifugal term −|Ω ∧ r|2/2 in eq. (2), which tends to flatten the
equilibrium density n0, this is a natural approximation for fast rotating conden-
sates [12]. Instead of using the 3D coupling constant g3D = 4π~2a/M , where a is
the usual 3D s-wave scattering length, we then introduce an effective 2D coupling
constant g2D = g3D/Z, where Z is a proper length taking into account the extension
of the real system along the rotation axis [13].

The trapping potential is given by

Vext =
~ω⊥

2

(
r2

d2
⊥

+ λ
r4

d4
⊥

)
, (3)

where ω⊥ is the harmonic oscillator frequency, d⊥ =
√
~/Mω⊥ is the character-

istic harmonic oscillator length with the atomic mass M , r =
√

x2 + y2 is the
two-dimensional radial coordinate, and λ is the dimensionless parameter character-
izing the strength of the quartic term. In the following, we will use dimensionless
harmonic oscillator units, where ω⊥ and d⊥ are the units of frequency and length
respectively.

The equation for n0 then becomes

n0 =
1
g

[
µ +

Ω2 − 1
2

r2 − λ

2
r4

]
=

λ

2g
(R2

2 − r2)(r2 −R2
1), (4)

where g is the dimensionless coupling constant and

R2
1,2 =

Ω2 − 1
2λ

±
√(

Ω2 − 1
2λ

)2

+
2µ

λ
. (5)

The density is assumed to be zero where the right-hand side of eq. (4) is negative.
For µ > 0 the value of R1 becomes purely imaginary and the density vanishes at the
radius R = R2, while for µ ≤ 0 two different radii R1,2 are present. This reflects the
transition occurring at µ = 0, where a hole forms in the centre of the condensate and
the density profile assumes an annular shape. From the normalization condition one
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can calculate the transition angular velocity Ωh obtaining Ω2
h = 1+(12λ2gN/π)1/3

[5].
For the case Ω < Ωh, when the hole is absent, expressing R1 in terms of R2 = R

as R2
1 = (Ω2 − 1)/λ − R2, the normalization condition gives the following third

degree equation for R2

R4(4λR2 − 3Ω2 + 3) =
12gN

π
(6)

while the chemical potential becomes µ = R2(λR2 − Ω2 + 1)/2. In the following
we will also need the expectation values 〈r2〉 =

∫
n0r

2 dr/N = πR6(3λR2 − 2Ω2 +
2)/24gN and 〈r4〉 = πR8(8λR2 − 5Ω2 + 5)/120gN .

For the case Ω > Ωh, defining R2
± = R2

2±R2
1 the normalization condition simply

gives

λR6
− =

12gN

π
, (7)

and hence R2
+ = (Ω2 − 1)/λ and R2

− = (Ω2
h − 1)/λ. Now the chemical potential

µ = −λ(R4
+ −R4

−)/8 and the previously defined expectation values become 〈r2〉 =
R2

+/2 and 〈r4〉 = (5R4
+ + R4

−)/20.

3. Collective modes

The collective oscillations of the system in the Thomas–Fermi approximation can
be found by linearizing the hydrodynamic equations (1) and (2), which become

∂

∂t
δn + ∇ · (n0 δv) = 0, (8)

∂

∂t
δv + g ∇ δn + 2Ω ∧ δv = 0. (9)

These equations can be solved by expressing the radial and azimuthal components
δvr and δvφ of the velocity field in terms of δn and looking for solutions of the
form δn = δn(r)eimφe−iωt, where m is the azimuthal quantum number, φ is the
azimuthal angle and ω is the excitation frequency in the rotating frame. This gives
[14]

(ω2 − 4Ω2)δvr = i

(
−ω

∂

∂r
+

2mΩ
r

)
gδn, (10)

(ω2 − 4Ω2)δvφ =
(
−2Ω

∂

∂r
+

mω

r

)
gδn, (11)

ω

[
ω2 − 4Ω2 − m2gn0

r2

]
δn− 2mΩ

r

∂(gn0)
∂r

δn +
ω

r

∂

∂r

(
rgn0

∂δn

∂r

)
= 0.

(12)
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At first sight, one could expect that the last equation depends both on gN and λ.
Actually, only a given combination of these parameters really matters: in particular,
for given Ω and m, the solution is uniquely fixed by the value of Ωh, i.e. by the
product λ2gN .

Equation (12) can be significantly simplified in the large Ω limit [7], where useful
analytical results can be obtained. In general, however, this equation has to be
solved numerically, which can be achieved by direct integration with the natural
initial condition [15]

∂δn

∂r
(R2) =

ω(ω2 − 4Ω2) + 2mΩλ(R2
2 −R2

1)
ωλR2(R2

2 −R2
1)

δn(R2) (13)

and by varying ω in order to obtain a well-behaved solution. This procedure can
be easily automatized by checking the validity of a condition similar to eq. (13) for
the final integration point r = 0 for Ω < Ωh and r = R1 for Ω > Ωh and essentially
corresponds to the so-called shooting method described in ref. [16]. The code has
also been checked [17] against the relaxation method [16].

To obtain analytical results also below the large Ω limit, we will rely on the sum
rule method. For this purpose we introduce the p-energy weighted moments

mp(F ) =
∑

n

σn(F )Ep
n0 (14)

relative to a generic excitation operator F =
∑N

k=1 f(rk), where En0 is the energy
difference between the excited state |n〉 and the ground state |0〉, and σn(F ) =
|〈n|F |0〉|2 is the associated strength. We also define

m±
p (F ) = mp(F )±mp(F †). (15)

Notice that for hermitian operators F = F † one simply has m+
p (F ) = 2mp(F ) and

m−
p (F ) = 0.
The energy weighted moments can be used to derive rigorous upper bounds for

the excitation frequencies of the system [18]. For example, one has the following
inequality for the lowest energy ~ωmin excited by the operator F

(~ωmin)s ≤ m+
p+s(F )

m+
p (F )

, (16)

where s is positive and the equality holds whenever F excites one single mode.
The explicit calculation of the moments m+

2p+1(F ) and m−
2p(F ) for p ≥ 0 can be

carried out in terms of commutators between the excitation operator and the total
Hamiltonian of the system, evaluated on the ground state. In addition, one has
the important result m+

−1(F ) = −χF (0), which relates the useful inverse energy
weighted moment to the static limit of the dynamic response function χF (ω).

We first consider the lowest axisymmetric (m = 0) mode. One expects that this
breathing oscillation is mainly excited by the monopole operator M =

∑N
k=1 r2

k,
although such perturbation, due to the presence of the quartic term in the potential,
slightly couples also to higher modes [19]. Then, as usual, we extract the frequency
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Figure 1. Frequency of the lowest m = 0 mode as a function of the angular
velocity for λ = 0.5, gN = 1000 (frequencies are in harmonic oscillator units).
The solid line is the sum rule estimate, while the triangles are obtained from
the numerical solution of eq. (12). The dashed vertical line marks the critical
angular velocity Ωh = 3.2935.

of the lowest excited mode from the ratio between the energy weighted (m1) and
inverse energy weighted (m−1) moments. Indeed, as evident from eq. (14), low order
moments minimize the contributions coming from higher eigenfrequencies [20]. The
m1 moment for a hermitian operator can be expressed in terms of commutators as
m1(F ) = 〈0|[F, [H, F ]]|0〉/2. Here the many-body Hamiltonian H in the rotating
frame, with an obvious meaning of the symbols, is given by H = Hkin + Hext +
Hint−ΩLz, where the interaction term Hint = g

∑
i<j δ(ri−rj). For the monopole

operator one has [M, [H,M]] = 2M and hence m1(M) = 2N〈r2〉. On the other
hand, since adding a static monopole perturbation to the Hamiltonian is equivalent
to renormalizing the trapping frequency [18], the monopole static response can
be calculated from δ〈r2〉 = χM(0)Mδω2

⊥/2N = (∂〈r2〉/∂ω2
⊥)δω2

⊥ (in dimensional
units), where the derivative has to be calculated at constant angular momentum.
Then, recalling that m−1(M) = −χM(0)/2, in the Thomas–Fermi approximation
one finds

ω2 =
m1(M)
m−1(M)

=

{
6λR2 + 4 (Ω < Ωh)

6λR2
+ + 4 (Ω > Ωh)

, (17)

where the two expressions coincide for Ω = Ωh. For Ω > Ωh, since R2
+ = (R2

1+R2
2) =

(Ω2 − 1)/λ, one finds the simple result ω =
√

6Ω2 − 2.
Sum rule and hydrodynamic results are reported in figure 1. The agreement be-

tween the sum rule estimate and the numerical solution of eq. (12) is quite good,
confirming the hypothesis that the chosen moments are essentially saturated by
the lowest m = 0 mode. It is worth noticing that close to the critical angular ve-
locity Ωh the Thomas–Fermi approximation is expected to fail, because quantum
pressure effects become important in the inner region of vanishing density. The
sharp transition shown in the sum rule result and the corresponding dimple in
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the hydrodynamic data are in fact smoothed out by the full Gross–Pitaevskii solu-
tion [7].

We now switch to excitations of the form f(r) = r|m|eimφ, which carry multi-
polarities different from zero. In particular, we will concentrate on the quadrupole
(m = 2) operator Q. The situation turns out to be much more complicated than
for the monopole operator and one has to include in the analysis a larger number
of moments, treating separately the two regions below and above Ωh.

Concerning the case Ω < Ωh, one can proceed exactly as in the case of purely
harmonic trapping [21] making a simple 2-mode assumption and solving the corre-
sponding algebraic system given by the m+

−1, m−
0 , m+

1 , and m−
2 moments. Indeed

one expects that the low order moments of the quadrupole operator are saturated
by the two lowest modes, the coupling with higher modes being negligible. Since
m−

0 (Q) = 〈0|[Q†,Q]|0〉 = 0, the 2-mode assumption implies that the strengths of
the considered m = ±2 modes are equal. A simple calculation then shows that the
resulting frequencies are

ω(m = ±2) =
1
2




√√√√
(

m−
2

m+
1

)2

+ 4
m+

1

m+
−1

± m−
2

m+
1


 , (18)

while for the strengths we have σm=+2(Q) = σm=−2(Q†) = m+
1 /[ω(m = +2) +

ω(m = −2)]. For the explicit calculation of the m+
1 and m−

2 moments in the rotating
frame sum rules give

m+
1 (Q) = 〈0|[Q†, [H,Q]]|0〉 = 8N〈r2〉, (19)

m−
2 (Q) = 〈0|[[Q†,H], [H,Q]]|0〉 = −16N(2Ω〈r2〉 − 〈`z〉), (20)

where `z = −i∂/∂φ. Since in the Thomas–Fermi diffused vorticity approach the
equilibrium velocity is v0 = Ω∧r, so that 〈`z〉 = Ω〈r2〉, one simply finds m−

2 /m+
1 =

−2Ω. In the same approximation, from the static quadrupole response one has
instead m+

−1 = πR6/3g and hence m+
1 /m+

−1 = 3λR2 − 2Ω2 + 2. Finally,

ω(m = ±2) =
√

3λR2 − Ω2 + 2∓ Ω. (21)

At Ω = 0 the two lowest m = ±2 modes are degenerate but, as soon as some
vorticity enters the system, a splitting between the modes arises [22]. In the rotating
frame, one can then distinguish between a low-lying and a high-lying branch, with
azimuthal quantum number m = +2 and m = −2 respectively.

When Ω > Ωh, both the low- and high-lying branch acquire an additional mode,
as shown by the hydrodynamic numerical results reported in figure 2. These new
modes, which have opposite azimuthal quantum numbers with respect to the old
ones, do not have any counterpart for Ω < Ωh and arise due to the annular structure
of the condensate. Their frequencies turn out to be very close to those of their
previously discussed partners, becoming exactly degenerate in the large Ω limit [7].
Hence, since a full treatment of the 4-mode system would be very complicated, we
base our sum rule analysis on the assumption that two doubly degenerate energy
levels are present. In order to calculate the resulting six unknown quantities ωH,L,
σH,L(Q), and σH,L(Q†), one needs two more moments, namely
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Figure 2. Rotating frame frequency as a function of the angular velocity for
the main m = +2 (upward triangles) and m = −2 (downward triangles) modes
for the same parameters as in figure 1. The dashed vertical line corresponds to
Ω = Ωh, while the solid lines correspond to the sum rule predictions discussed
in the text.

m+
3 (Q) = 〈0|[[Q†, H], [H, [H,Q]]]|0〉

= 16N [(6Ω2 + 1)〈r2〉+ 〈p2〉+ 3λ〈r4〉 − 6Ω〈`z〉], (22)
m−

4 (Q) = 〈0|[[[Q†,H],H], [H, [H,Q]]]|0〉
= −64N [2Ω(2Ω2 + 1)〈r2〉+ 2Ω〈p2〉 − (6Ω2 + 1)〈`z〉

+3λ(2Ω〈r4〉 − 〈r2`z〉)], (23)

where p2 = −(∂2/∂x2+∂2/∂y2). The solution of the corresponding algebraic system
gives

ω2
H,L =

1
2


m−

4

m−
2

±

√√√√
(

m−
4

m−
2

)2

− 4
m+

1

m+
−1

(
m−

4

m−
2

− m+
3

m+
1

)

 , (24)

σH,L(Q) = ±1
2

(m+
1 −m+

−1ω
2
L,H)ωH,L + m−

2

ω2
H − ω2

L

, (25)

σH,L(Q†) = ±1
2

(m+
1 −m+

−1ω
2
L,H)ωH,L −m−

2

ω2
H − ω2

L

, (26)

where, by using the Thomas–Fermi results 〈`z〉 = Ω〈r2〉, 〈p2〉 = Ω2〈r2〉 and m+
−1 =

π(R6
2−R6

1)/3g, one has m+
1 /m+

−1 = 4(Ω2−1)λ2R4
−/[3(Ω2−1)2+λ2R4

−], m+
3 /m+

1 =
5Ω2−1+(3/5)λ2R4

−/(Ω2−1) and m−
4 /m−

2 = 6Ω2−2+(6/5)λ2R4
−/(Ω2−1). Recalling

that λR2
− = Ω2

h − 1, one can then rewrite the frequencies as
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Figure 3. Behaviour of the m = +2 vortex mode with the lowest number
of radial nodes for the same parameters as in figure 1: (a) rotating frame
frequency ω as a function of the angular velocity Ω (the dashed vertical line
corresponds to Ω = Ωh); (b) radial dependence of the density variation at
Ω = 0.9Ωh (ω = 0.396), the angular dependence being simply given by ei2φ.
In the inset, the azimuthal component δvφ of the velocity variation is shown
for the angles φ = 0, π/2, π, 3π/2.

ω2
H,L = 3Ω2 − 1 +

3
5

(Ω2
h − 1)2

Ω2 − 1

±
√(

3Ω2 − 1 +
3
5

(Ω2
h − 1)2

Ω2 − 1

)2

− 4
5

5(Ω2 − 1)2 + 3(Ω2
h − 1)2

3(Ω2 − 1)2 + (Ω2
h − 1)2

.

(27)

The results predicted by eqs (21) and (27) are reported in figure 2. An analysis of
the strengths given by eqs (25) and (26) shows that at Ω = Ωh only the old modes
are significantly excited. However, with increasing Ω, while the m = +2 high-lying
mode still has vanishing strength, the m = −2 low-lying mode becomes more and
more important, eventually even overcoming the contribution given by the high-
lying m = −2 mode [7]. It is also worth noticing that in the large Ω limit the

high-lying frequency is essentially given by
√

m−
4 /m−

2 and one has ω2
H = 6Ω2 − 2

as for the monopole mode. In the same limit, the low-lying frequency is given
by ωL = (

√
2/3)(Ω2

h − 1)/Ω [7]. If one had used the same 2-mode assumption
discussed for Ω < Ωh and also for Ω > Ωh, the resulting values would have largely
underestimated the correct frequencies. Finally, we notice that the same procedure
could be used to extract the dipole frequencies.

In the last part of this section we are going to discuss another class of modes
found from the numerical solution of the hydrodynamic equations. Indeed, numer-
ical calculations show the presence of very low frequency multipole modes which
cannot be interpreted in terms of sound propagation. One can still label these ex-
citations with the azimuthal quantum number m and the number of radial nodes.
The frequencies of the m = +2 modes with the lowest number of radial nodes are
plotted in figure 3a as a function of the angular velocity. It emerges that these
modes are present on both sides of the critical angular velocity Ωh and that their
frequency is zero for Ω = 0. The rotational origin of these excitations together with
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their very low frequencies induces to identify these oscillations as multipole vortex
modes, belonging to the family of Tkachenko modes already studied in harmoni-
cally trapped condensates [23–26]. In order to further investigate this hypothesis
one can calculate the corresponding velocity variation, which indeed, at least for
Ω < Ωh where the central hole is absent, resembles the typical lattice distortions
of Tkachenko modes. This is shown in the inset of figure 3b, where the azimuthal
component δvφ of the velocity variation is plotted, the radial component δvr being
practically negligible.

Concerning the multipolarity of the modes, a simple remark is in order here. As
noted in ref. [27], rotational hydrodynamic equations admit a class of zero energy
solutions which may be interpreted as Tkachenko modes. More in detail, any zero
frequency solution of eqs (8) and (9) obeys the relation

δv =
2Ω
Ω2

∧∇gδn , (28)

which implies ∇ · δv = 0. Hence, substituting into eq. (8) and using ∂n0/∂φ = 0,
valid for an axisymmetric equilibrium density profile, one finds

∂

∂φ
δn = 0, (29)

so that these modes must correspond to m = 0. It follows that all the m 6= 0 modes,
including Tkachenko ones, cannot have zero frequency in the diffused vorticity ap-
proach. However, due to the crude approximation used to treat vorticity within this
method, one does not expect the predicted frequencies to be very accurate.

Actually, it turns out that the numerical frequencies decrease by increasing the
number of radial nodes. This is probably related to the fact that the nodes accumu-
late in the proximity of the cloud boundary, where the Thomas–Fermi approxima-
tion is expected to fail. This situation is similar to the case of the m = 0 breathing
mode at the critical angular velocity Ωh, where the frequencies plotted in figure 1
show an unphysical dimple not present in the full Gross–Pitaevskii simulations. It
is also worth noticing that the absence of such dimple in the positive m modes of
figures 2 and 3a is indeed due to the fact that these oscillations are concentrated
on the external boundary (see figure 3b), so that the quality of the approximation
used to treat the central density at Ω = Ωh does not affect their frequency.

According to the proposed picture, the same class of solutions of the rotational
hydrodynamic equations must be present also for a purely harmonic potential. This
is indeed the case. For the m = +2 mode with the lowest number of radial nodes,
where the predicted frequency is expected to be more reliable, in the frame rotating
at Ω = 0.7 one finds ω = 0.204 (in units of the harmonic trapping frequency). Note
that for 2D harmonic trapping the usual multipole modes in the rotating frame can
be found analytically according to the formula ω(±|m|) =

√
2|m| − (|m| − 1)Ω2∓Ω,

identical to the 3D result found in ref. [27]. For the harmonic case, in addition, once
the radial distance is expressed in units of the Thomas–Fermi radius [28], eq. (12)
depends only on m and Ω, so that all the eigenfrequencies are independent of the
interaction. The diffused vorticity estimate of the multipole Tkachenko frequencies,
consequently, cannot properly include the compressibility effects which have already
proven to be important for the m = 0 case [25]. Nevertheless, the comparison with
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the calculations available in [29] shows that the order of magnitude of the predicted
frequencies is correct.

4. Conclusions

In this paper, we have presented the numerical solution of the two-dimensional
linearized rotational hydrodynamic equations and an accurate sum rule analysis
for the monopole and quadrupole modes of a rotating condensate in a harmonic
plus quartic trap, offering a discussion complementary to the work contained in
ref. [7]. The numerical results for the monopole and high-lying quadrupole modes
have revealed shortcomings in using the Thomas–Fermi approximation rather than
the full Gross–Pitaevskii solution [7] near to the critical angular frequency Ωh for
hole formation. The frequency Ωh has also been identified as the threshold angular
frequency where additional modes appear, due to the new geometry of the system.
On the other hand, sum rules have provided reliable analytical estimates for the
frequencies and for the excitation strengths of the considered modes. Finally, it has
been shown that the multipole vortex oscillations have a non-zero energy counter-
part in the diffused vorticity approach, in contrast to the m = 0 Tkachenko modes.
The corresponding frequency estimate is however expected to be scarcely precise,
due to the same effects which lower to zero the energy in the m = 0 case.
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