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Abstract. I discuss in detail the result that the Bell’s inequalities derived in the context
of local hidden variable theories for discrete quantized observables can be satisfied only
if a fundamental conservation law is violated on the average. This result shows that
such theories are physically nonviable, and makes the demarcating criteria of the Bell’s
inequalities redundant. I show that a unique correlation function can be derived from the
validity of the conservation law alone and this coincides with the quantum mechanical
correlation function. Thus, any theory with a different correlation function, like any
local hidden variable theory, is incompatible with the fundamental conservation laws and
space-time symmetries. The results are discussed in the context of two-particle singlet and
triplet states, GHZ states, and two-particle double slit interferometry. Some observations
on quantum entropy, entanglement, and nonlocality are also discussed.

Keywords. Quantum correlation functions; conservation laws; Bell’s inequality; entan-
glement; quantum entropy; nonlocality.

PACS Nos 03.65.Ta; 03.65.Ud; 03.67.-a

1. Introduction

This paper deals with a generalization and a detailed discussion of the implications
of the recent result that the quantum mechanical correlation function is a unique
consequence of a fundamental conservation law (that arises from a space-time sym-
metry, like the conservation of angular momentum), and therefore all local hidden
variable and local realistic theories are incompatible with the fundamental conserva-
tion laws [1]. The basis of this result was the discovery that the angular correlation
function is simply an average over the angular momenta of one of the particles
conditional on specific values of the projection of angular momentum (+%/2 for
example) for the other particle. The relation between the correlation functions and
the conservation laws goes to the core of the theories of quantized observables and
reveals the fundamental flaw in local realistic theories, making any experimental
tests on their viability unnecessary. This statement is in the same spirit as stating
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that theories or models allowing perpetual motion are ruled out on first principles.
If conservation laws are not applicable on the average, perpetual motion becomes
possible since mechanical quantities can be transferred from quantum ensembles
to classical systems. In experimentally interesting cases (like the spin-singlet and
its photonic equivalent) the Bell’s inequalities can be obeyed only by violating a
fundamental conservation law, and therefore any expectation that they might be
obeyed in nature is physically naive.

The apparent indeterminism and quantum jumps during quantum measurements
are striking non-classical features of quantum mechanics. Attempts to understand
these features, especially in measurements of correlations, have lead to considerable
progress in the understanding of quantum correlations and entanglement, including
many applications involving processing and transmission of quantum information.
Yet, the fundamental issues that served as motivations for these developments re-
main, by and large, as they were. A local hidden variable theory or a local realistic
theory is a classical statistical theory meant to replace quantum mechanics [2]. Such
theories were proposed with the hope that one could preserve classical notions like
locality, and reality of events and history in space and time, and yet reproduce the
statistical results of quantum mechanics. The randomness in the measured results
of an observable in such theories is mapped to the random values taken by certain
hidden or unobservable classical variables. These were brought back into discussion
in mainstream physics by the observations by Bohm, Bell and others that von Neu-
mann’s no-go theorem for hidden variables was not universally valid. John Bell’s
analysis of local hidden variable theories resulted in the celebrated Bell’s inequali-
ties [3]. These represent an upper limit on the correlation expected in such theories
between results of measurements on separated correlated quantum systems. In the
standard formulations, the magnitude of the correlation and its upper limit in a
local hidden variable theory are typically smaller than what are predicted in the
quantum mechanical description, for a wide range of settings of the measurement
apparatus. Thus, quantum mechanical correlations violate the Bell’s inequalities.

Several experiments have been done in the past, and several are in planning and
execution to test the Bell’s inequalities, and to thereby test the viability of local
hidden variable theories [4]. Essentially all experiments to date find that the Bell’s
inequalities are violated, and that the measured correlations are in fact larger than
the upper limit specified by the Bell’s inequalities. The experiments also confirm
with high precision that the quantum mechanical prediction for the correlation is
what is favoured. The fact that many of these experiments are often discussed, and
even more new experiments are being planned and performed means that some-
how the issue of viability of a local realistic theory is not closed, and that the
surprise over the violation of Bell’s inequalities is strong. Modern experiments are
attempting to perfect the tests so that various experimental loopholes arising in
imperfections in the experiments are removed. However, if it is generally known
that such experiments are testing quantum mechanics against theories that are
grossly incompatible with fundamental conservation laws, these tests will become
irrelevant. The importance of the result found in ref. [1] is that it unveils the
fundamental physical constraint that makes the experimental observations in con-
formity with the quantum mechanical correlations, and shows clearly that no such
experiments will ever show the Bell’s inequality to be obeyed. In fact, the result
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suggests that the more perfect the experiment is, the better will be the violation of
the Bell’s inequalities; the conservation constraint is more stringent and the con-
servation law is perfect when there are no random decohering interactions that can
perturb quantities like angular momentum and when the experimental ensemble is
complete and the detection efficiency is perfect.

2. Correlation function from conservation law

Now I discuss the main result, its proof and its implications in detail. I start the
discussion in the context of two-valued discrete observables, like spin projections
of systems for which the total angular momentum is zero. Typical experimental
configurations can be mapped to this case. Thus the starting configuration is char-
acterized by the total spin, Siot = 0. Subsequently the system splits into n particles
on which spin-projection measurements are done at different locations in arbitrary
directions. Since typical measurements are done with two particles, we often take
n = 2. Our aim is to see whether there are definite predictions for the correlation
function of these measurements if the only assumption or constraint we make is
the conservation of angular momentum on the average. Such a correlation function
will then be applicable to all theories that respect the validity of the conservation
law on the average. Further, if such a correlation function is a unique implication
of the conservation laws, then the converse is true — a theory that has a different
correlation function will be incompatible with the fundamental conservation laws.

2.1 Spin-1/2 singlet

First I will derive and discuss the result that the quantum correlation function for
the two-particle singlet state is a unique consequence of the conservation law of
angular momentum. I will then derive the general result for higher spin singlet
states, and for certain other systems relevant and important for the experimental
studies.

The maximally entangled state of two spin-1/2 particles (or polarization entan-
gled photons) often employed in discussions and experiments on the Bell’s inequal-
ities is described by the wave function

e — %{m—w — L), (1)

where the state |1,—1) is the short form for |1); [-1),, and represents a definite
value for spin projection of +#/2 for the first particle and —#/2 for the second
particle if measured in any particular direction. The state is a superposition of two
such product states and it is an entangled state. Two observers A and B make
measurements on these particles individually at space-like separated regions with
time information such that these results can be correlated later through a classical
channel.
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The local hidden variable description of the same system starts with the func-
tional restrictions on the outcomes A and B of measurements at the two locations
3]

A(a,h) = +1, B(b,h) = £1. 2)

A and B denote the outcomes +1 or —1 of measurements A and B, a and b denote
the settings of the analyzer or the measurement apparatus for the first particle and
the second particle respectively and h are the hidden variables associated with the
outcomes. The local results should depend only on local settings and values of the
hidden variables. The Bell correlation function is of the form

P(a,b) = /dhp(h)A(a7 h)B(b,h), where /dhp(h) =1, (3)

where p(h) is the normalized statistical distribution of the hidden variables.
This is an average over the product of the measurement results. P(a,b) is similar
to the classical correlation function of the outcomes defined by

Pla,b) = 1 Y (4iB). (@

The observed correlation is calculated using this formula, with observed outcomes
Ai and Bi.
The quantum mechanical correlation for the same experiment is given by

P(a, b)QM =—a-b. (5)

This is the expectation value of the operator o1 -a ® o5 -b for the singlet state when
the projection is expressed in units of /2. (In terms of values of the projections
of spin, the correlation function is P(a,b)qu = —a - b li?/4.) The essence of the
Bell’s theorem is that the function P(a,b) has distinctly different dependences on
the relative angle between the analyzers for a local hidden variable description
and for quantum mechanics. In the local realistic model, A (and B) can have
simultaneous definite values for various directions a (and b) in the set {+1,—1},
unlike the case in quantum theory where a definite value is manifested only in a
measurement for a particular direction without any way of assigning values in the
other unmeasured directions. Then the combination of joint measurements

AB+ A'B— AB'+ AB'=A(B-B)+ A (B+ B')=+2 (6)

because each observable takes values +1, and the simultaneously assigned values
for A and A’ (or B and B’) can only be the combinations (+1,+1), (+1,—1),
(—=1,41) and (—1,—1). So the specific combination of the Bell correlation func-
tions P(a,b)+ P(a’,b) — P(a,b’) + P(a’,b’) is an average of +2, and lies between
42 and —2. Its magnitude is bounded from above by 2. This is the Bell’s inequality.
Looked at this way, it is clear that the inequality arises from ignoring the fundamen-
tal premise of quantum mechanics — superposition of states. Allowing the possibility
of simultaneously assigning definite values (reality) for the spin projection in two
different and even orthogonal directions for the same particle (B = B’ = 1, for ex-
ample, for 25% of the particles in this case) makes the subensemble violate quantum
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Figure 1. The settings of the analyzers in a two-particle spin correlation
experiment.

superposition as well as the conservation constraint. The Bell’s theorem refers to
a classical statistical alternative to quantum theory. Our result goes a step ahead
and shows that such theories do not respect fundamental conservation laws, thereby
taking them out of contention on first principles.

Our aim is to derive the correlation function independent of any particular theory,
from the only assumption that angular momentum is conserved. I will show that
the quantum expectation value, P(a,b)qu = —a - b, follows uniquely from the
conservation law for angular momentum. (When a =b, P(a,b)qu = —1, and as
the angle between a and b increases, the correlation drops as the vector projection of
the two directions, exactly as expected from the conservation of angular momentum
after averaging.)

2.2 Assumptions and clarifications

Apart from the fact that we are dealing with measurements that result in discrete
quantized outcomes, +1 and —1 in units of //2, there is only one physical assump-
tion used in deriving the main result: the total angular momentum is a conserved
quantity on the average. Thus, the average total angular momentum measured
on the sub-systems (particles) should add up to the initial value of the starting
configuration.

We discuss this requirement in the context of the singlet state for clarity. We
are considering a set of measurements in which the direction at A is fixed as a
and that at B is fixed as b (see figure 1). Each individual measurement in any
direction gives either +1 or —1. Some important clarifications are essential at this
stage. Since the only constraint on the initial state is that it is a singlet state with
Stot = 0, the individual particles at different measurement locations can show both
41 and —1 as results with equal probability. If measured in the same direction
a pair of particles will always show the result {+1,—1}, in conformity with the
angular momentum conservation (in quantum theory, this can be read off from the
state since the singlet state retains its form when written in any basis). If the
directions are different, the vector components of the average angular momentum
in the same direction should add up to zero. Clearly the average over the total
ensemble comprising of all the particles at A or B will show zero values.

N N
d A=Y Bi=0. (7)
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Therefore their sum is always zero in a trivial way. This does not test the conser-
vation of angular momentum for the two-particle system. To test the validity of
the conservation of angular momentum on the average, it is essential that all suffi-
ciently large correlated sub-ensembles also obey the conservation law. For example,
the two sub-ensembles in which the measured values at A are +1 and —1, along
with corresponding correlated values measured at B, should separately conserve the
average angular momentum. I will prove this point independent of any particular
theory before proceeding further, to establish the generality of the final results.

The elementary detection event in a correlation experiment is the detection of the
values of a specific observable for two or more particles in the multiparticle event.
A statistically large sub-ensemble for our purpose is that in which the statistical
fluctuations are much smaller than the average value itself, and this is the case when
|AQ|/(Q) ~ /NN is sufficiently small, where Q is the relevant observable. In the
context of the Bell’s inequalities, we need only 1/v/N < 2(v/2 —1), satisfied by any
good experiment. Consider a set of elementary detection events {1,2, ..., N}. This
consists of observations {(A;By), (42B2)...(4;B;)...(AxyBn)}. The average value of
the correlation is independent of arbitrary reordering of the index 7. The ensembles
are taken to be large enough for the statistical errors to remain small in the sub-
ensembles. The reordering of the record of the events can be done such that A; = +1
for events {i = 1,...,N/2} and A; = —1 for events {i = N/2 + 1,..,N}. The
distribution of B; in each sub-ensemble depends on the angle between the analyzers.
(The situation is symmetric. We could classify the sub-ensembles based on the
values of B; being +1 and —1.)

The theory independent correlation function is

N
Plab) = S (AB). ®)
1

For the singlet state, we have the condition that if the correlation is measured in
the same direction at A and B, P(a,b) = —1. (This follows from the fact that
for a zero-angular momentum system breaking up into two particles, each showing
only *+1 as projections, the only combinations of projections in the same direction
allowed by angular momentum conservation are (+1,—1) and (—1,+1). For other
systems, there are similar ‘boundary’ conditions. For example, for the triplet state,
P(a,b)z = —1, and P(a,b)x = +1, when both are measured along the z-axis and
x-axis respectively.) Then

A;+B; =0 9)
for every event. Therefore, for the sub-ensembles,

N/2 N/2
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Each of the terms above is the average angular momentum for that sub-ensemble.
Therefore, in this case the average angular momentum is conserved for each two-
particle sub-ensembles separately, (4); + (B); =0, and (A), + (B), = 0.

For each of the sub-ensembles the magnitude of average angular momenta, (A4), ,
(A)y, (B), , (B), are preserved in rotations of the axis through angle 6. For example
consider (B), = 1 in a particular direction. If measurements are made at angle 6
to this direction in this sub- ensemble of spin-1/2 particles, the probabilities for +1
is COSQg and for —1, it is sin? . So, the average spin projection at angle 6, or
equivalently the average angular momentum in the direction 6 is

(B), = +1 x cos? g + (—1) x sin? g = (B) cost. (12)

Therefore, if the analyzer at B is at angle 6, the average angular momentum mea-
sured at B for each sub-ensemble will be (B),; = (B), cos and (B),, = (B), cosf
respectively. (Effectively we can derive the equivalent of the Malus’ law from the
constancy of the magnitude of the angular momentum, by performing this calcula-
tion in the reverse.)

Then we get from eqs (11) and (12), after multiplying with cos 6,

(A)ycost = —(B)y, , (13)
(A)ycos0 = —(B)y, - (14)

Therefore, the conservation law applies to each sub-ensemble separately for arbi-
trary 6.

The discovery that the correlation function is determined by the average angular
momentum of one particle conditional on a specific measured angular momentum
projection of the other particle [1] is the basis of the results presented in the sub-
sequent sections. Thus

P(a,b) = %Z(AZBZ») - % (P(a,b)a_ss + P(a,b)a__1)
. N/2 ! N
=3|m0 LB (=) e 2 P

- % (1 X (Bi) azyr + (1) X (Bi) o=_y) -
(15)

The notation (B;),_,, represents the average value of angular momentum at B,
conditional on specific values of angular momentum projection at A.

We do not make any assumption regarding locality or reality. These concepts
are not needed for the proof since we are dealing with only averages and expec-
tation values obtained in measurements. (Assumption of locality makes the proof
stronger.) No counterfactual statements are made in this discussion. At no stage
we demand the validity of the conservation law for individual events. This in any
case is impossible when the outcomes are discrete.
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+1

cos(theta)

-cos(theta)

Figure 2. The vertical arrow represents the average angular momentum of
the ensemble with spin projection 4+1 measured at A. Its vectorial compo-
nent along direction b is cos(#). Then conservation requires that the average
angular momentum along b at the location B is — cos(6).

2.3 Derivation of the unique correlation function

Consider two subsets, A1 and A2, of results at the location A; one subset containing
only +1 and the other containing only —1. For the two-particle system with total
zero angular momentum, there will be equal number of +1 and —1 at A and B.
The average angular momentum for the first subset at A is +1 and for the second
subset, it is —1. There will be two correlated subsets, B1 and B2, at B whose
individual averages will depend on the angle setting at B (figure 1). Consider

P(a,b)s—yi = NL/Q > (4 =+1)By] = NL/Q ; B;. (16)

This is nothing but the average angular momentum measured at B in the direc-
tion b. From eq. (12), with (A), = +1, this is —cos(#) in unit of /2, where 0 is
the angle between the measurement directions (see figure 2).

P(a,b)a=1+1 = —cos() (17)

Then, and only then, the average angular momentum is conserved.
Similarly, for the subset with results —1 for A,

1 1
P(a,b)s—_1 = N7 > [(Ai=-1)B] = N7 ;Bi = —cos(f).
(18)
Therefore the correlation for the entire set is also — cos(6), or P(a,b) = —a - b.

Let us summarize, for clarity, the steps leading to the theory-independent cor-
relation function that follows from the conservation law [1]. The projection of the
normalized classical angular momentum vector in a direction that is rotated by
angle 6 is just cos(f). In a situation where individual measurements give discrete
values +1 and —1, the average angular momentum still preserves this relation. A
set of particles with average angular momentum +1 in a particular direction will
show an average angular momentum cos(6) in a direction rotated by 6.
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Since A; and B; take values of +1 or —1 (in units of %/2), we group the values
such that all A; are +1 in one group and all A; are —1 in another. Of course the
B; are mixed in both groups. Then the summation index, which is scrambled due
to regrouping, is relabelled from 1 to N again. We get

1
P(a,b) = N Z(AiBi)
) | N2 N

1
=2 NTH;H'(BiHNi > —1(By . (19)

A= i (N/2)+1

The first term is the average of B; conditional on A; = +1, and the second term is
the average of B; given A; = —1. Nay = Ny_ = N/2. Then we get, using only the
conservation law for the averages,

P(a,b) = % (—cos() — cos(#)) = — cos(). (20)

This is same as the quantum mechanical correlation function P(a,b)gm. We have
proved that the correlation function — cos(#) and thus P(a, b)qu is a consequence
of the conservation of angular momentum. The correlation function represents the
conservation law, and follows uniquely and directly from it.

This result immediately implies that any other correlation function with a dif-
ferent dependence on the relative angle violates the law of conservation of angular
momentum. Equivalently, any expectation that the experimental tests might have
supported a correlation function different from P(a,b)qm = —a - b certainly had
not appreciated the fact that in order to get a deviation from —a - b, the conser-
vation law for angular momentum has to be violated. The Bell’s inequalities can
be obeyed only when the correlation function deviates significantly from —a - b.
This completes the proof that the Bell’s inequalities can be obeyed only in theo-
ries of discrete observables that do not respect the fundamental conservation law,
invalidating any credibility for such theories. The correlations in any local hidden
variable theory obeys the Bell’s inequalities, and hence these theories fall in a class
that do not respect the fundamental conservation laws.

Since all the measurements are done using classical apparatus there is no question
of attributing this discrepancy in the angular momentum to some uncontrolled
measurement interaction. In particular, the correlation is perfect when the two
space-like separated analyzers are in the same direction, and this rules out any
correlated influence of the hidden variables accounting for the discrepancy in any
local theory.

It is important to note that the requirement of conservation laws is much stronger
than the demarcating criteria based on the Bell’s inequalities. Our result implies
that even the slightest deviation from the quantum mechanical correlation function
makes the theory physically nonviable due to the incompatibility with the funda-
mental conservation laws. For the Bell’s inequalities to be obeyed, this violation has
to be as much as 30% to 50% or even more, depending on the experimental system.
I may also stress again, to avoid a common confusion, that the discussion so far
is in the context of measurements that give discrete results, and that we are not
dealing with classical observables that can take any value within some continuous
interval. The results are generalized to continuous observables in a later section.
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2.4 Generalization to higher spins

The result can be generalized to two-particle systems with larger total spin [1].
For a spin-S entangled singlet state, there will be 25 + 1 different possibilities for
measurement results, +5,4+(S5 —1)..0.. — (S — 1), —S. All of these occur with equal
probability, due to rotational invariance. Since each sub-ensemble has to separately
obey the conservation law, as explained earlier, we group the measurements at A in
a sequence. The angle between analyzers at A and B is 6. For a specific group at A
with measured results of (S—n), for example, the average of the angular momentum
in the direction rotated by 6 is (S — n) cos(6). Conservation of angular momentum
then dictates that the average angular momentum at B is —(S —n) cos(f), and the
correlation for that group is

P(S,0) = —(S —n)?cos(h). (21)

The same correlation will be observed also for the results —(S —n) at A. For the
‘0’ state, the correlation (average of the angular momentum correlation) is zero.
Therefore, the average of all the two-point measurements is

—cos(8) (S2+ (S —1)% 4+ 04 -+ (S —1)>+ 5?)
25 +1
= —cos(0)S(S +1)/3. (22)

P(a,b)

This is same as the quantum mechanical correlation function for the spin-S singlet
state [5]. The physically valid correlation function is uniquely predicted from the
conservation law. Therefore, any other functional dependence of correlation is
incompatible with the conservation constraint.

Clearly, it is possible to generalize this approach to larger number of particles
sharing the angular momentum of the initial state. Instead of a single correlation
function, there will be a set of parametrized correlation functions representing var-
ious conditional joint probabilities. But in each case, it is the conservation of total
angular momentum on the average that will decide the correlation function.

2.5 Spin-1/2 triplet state

Though most of the experiments related to the Bell’s inequalities are done with an
effective singlet state, we derive the correlation function for a triplet state to show
the generality of the equivalence of the conservation of angular momentum and the
correlation function. The spin-1/2 triplet state corresponds to the situation where
the total angular momentum is 1/s(s + 1) with s = 1. There are three discrete
projections along the quantization axis possible with m = £1, and m = 0. Our
task is to derive the correlation functions using only the conservation constraint,
without using the quantum mechanical operators. If the measurement axis of spin
projection of one of the particles is fixed to be the quantization axis that prepared
the two-particle system, then the correlation function for the m = 0 state is identical
to the one that we derived earlier for the singlet state, because in that direction the
total spin projection is constrained to be zero. Similarly, the correlation functions
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1) (2)SA8 6a

Figure 3. Diagram detailing the geometry for the calculation of two-particle
correlation for a triplet state from the conservation of angular momentum.
See text for a complete description.

for the m = +1 states are simple, since it corresponds to both the spin projections
aligned up for m = +1, and aligned down for m = —1. Therefore, consideration
of the average angular momentum balance dictates that these correlation functions
are just products of two cosine functions in respective angles measured from the
z-axis. Here we calculate the case with m = 0, for general angular settings of the
detectors. Of course, the condition s = 1, m, = 0 means that classically the spins
should be aligned in the x—y plane, with both pointing in the same direction. The
projection of the total angular momentum along the z-direction should be zero for
each measurement, since m, = 0. So, for any single measurement on the pair in the
x—y plane, the projections will be (+,+) or (—, —). But along the z-direction, the
measurement on the pair will give projections (+,—) or (—,+), according to the
two angular momentum constraints that s = 1, and m, = 0. Quantum mechanically
the measurement has a similar interpretation as can be seen by writing the state
in the z-basis, and also in the z-basis (see below).

Now we derive the general correlation function from the considerations of con-
straints on the total angular momentum. The measurements are done at two loca-
tions A and B as in the case of the singlet, in directions a (angle 64) and b (angle
05). All results will be either +1 or —1 in unit of i/2. Consider all the results with
a +1 at A. The average angular momentum of this subset is +1. This is represented
as vector S4 in figure 3. The correlated measurements at B will have an average
angular momentum Sp that corresponds to the conservation constraint of the orig-
inal state — the average angular momentum at B should be a vector that cancels
the z-component (m. = 0), and has identical x and y components as the average
angular momentum at A. It is just the reflection of the average angular momentum
at A, in the x—y plane. This is represented as vector S4p in the figure. Only then
can one satisfy the fact that the total angular momentum of the state is non-zero,
requiring that the x or y component is non-zero since the z-component is zero. All
vectors in the figure are measured average angular momenta, and their projection
along particular directions.

Thus the magnitude of the average angular momentum at B along the direction
—04 from the —z axis is +1, which is identical to the angular momentum at A in
the 64 direction. The correlation function is simply the projection of this angular
momentum along the fp direction, from the z-axis. Therefore, the correlation
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function for the triplet, m = 0 state can be deduced as

P(a,b) = +1 x cosf = +1 x cos(180 — (04 + 65))
=—cos(0a+05). (23)

The subset for which all measurements at A gives —1 leads to the same P(a,b).
Thus the correlation function for the entire ensemble is also

P(a,b) = —cos(f4 + 0p) . (24)

More specific correlation functions can be derived from this. If the measurements at
A are done along the z-axis, then 84 = 0, and then the correlation is identical to that
in the singlet state, P(a,b) = —cosfp. If the measurements at A are done along
the x-axis, then 84 = /2, and the correlation function is P(a,b) =sinfp. This
correlation function was obtained using the fact that the total angular momentum of
the state is s = 1, and that the total projection on the z-axis is zero. Measurements
on the two particles should then reflect the same conservation constraints.

Let us now see whether this agrees with the quantum mechanical correlation
function, to be obtained by the appropriate operators acting on the state. The
triplet m = 0 state in the z-basis is

1
wr = Il L) (25)

In the x-basis this becomes

¥rx = Zs{IL 1)y — <L =D} (26)

Clearly, a single measurement on the pair along the z-axis should give either the
result (+,—) or the result (—,+) with equal probability. On the other hand, the
measurement along z-axis (or along y-axis) will give either (+,4) or (—, —).

The quantum mechanical correlation function is calculated as

Pa,b)gy = (Y7[(0-a) (o -b) [¥r). (27)

This may be done conveniently in the matrix representation of the operators and
the state.

_ as ayp — iag
G.a_<a1+ia2 —as ) (28)

In the case we are considering where the measurements are in a plane normal to
the y-axis, in the x—z plane, as = 0. Similarly, ¢ - b can be written. In the matrix
representation the triplet state is

S ONORTG RN S

The expression for P(a, b)QM can now be evaluated, and this gives
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P(a, b)QM = (sinf4sinfp — cosf, cosfp) = —cos (04 +0p). (30)

Thus the quantum mechanical correlation function is identical to the one we ob-
tained using the conservation constraints on the average angular momentum. This
particular correlation violates the Bell’s inequality for specific angles. This again
is what is expected since obeying the Bell’s inequality will amount to violating the
conservation law.

2.6 The three-particle GHZ state

This is an interesting example where the quantum mechanical correlation product
of the values of three-point measurement conflicts with local realistic theories even
for a single measurement, and not just for averages and correlation functions. Re-
markably, the analysis in terms of angular momentum conservation gives the same
result. Though various correlations as a function of relative angles can be derived
using conservation of angular momentum, as in the case of the two-particle states,
here we discuss only the result when the measurement is done in the same direction
for all the three particles.
The GHZ state [6], written in the z-basis is

Venz = % (4 )y — == =) (31)

The total spin projection on the z-axis can only be +3/2 or —3/2. It is obvious
that this state, if written in the eigenbasis of the z-axis measurements, cannot have
terms with an odd number of 4+ values, since there is a minus sign between the two
three-particle states constituting the superposition in the z-basis. Expansion of
|+, +,+) , in the z-basis contains triple products of terms of the form (|+)+|—))x

that simply add. Terms in the expansion of |—, —, —), contains similar products
of (|[4+) — |—))x that cancel out unless there is an odd number of |—) kets. Writing
explicitly in the z-basis,
1
Venz-x = 5 ([ + =) x + 1+ = Fhx H =+ H)x += = —)x)-
(32)

Of course, this says that the initial state can have spin projection on the z-axis, in
each measurement, of only —3/2 and +1/2. Thus, from the conservation of angular
momentum, the correlation product of three separate measurements on the three
particles, all performed in the z-direction is always —1. Each measurement should
show an odd number of (—1) outcomes to give a net angular momentum projection
of —3/2 or +1/2 along the z-axis. Any other combination of measurement results
((+,—,-) or (+,+,+) for example) will be incompatible with the conservation of
angular momentum, just as a result of the form (4, +) when measured in the same
direction is incompatible with the zero angular momentum of the spin-singlet state.

The local hidden variable theories predict that the product of measured values in
the z-direction will be 4+1. The state ¥gyy is an eigenstate of the commuting oper-
ators 0,0.05, 0,020y, and o 0705 with eigenvalue +1. The product of these oper-
ators is the operator —olo203, and therefore the eigenvalue of olo202 in the GHZ
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state is —1. In a local realistic theory, the values of the spin projections represent

reality as they exist, context independent, and implies that mjm3mj has the same

value as implied by the corresponding operator equation. Then, m;mzmg =1

m;mimg =1, and m;mgmi = 1. But each of m; is +1, and the product of the
three expressions involve squares of the various m, values, and therefore the prod-
uct should have been mlm2m?2 = +1. (This statement is equivalent to ignoring the
noncommutativity of the operators in the product.) This is obviously inconsistent
with the restriction on the angular momentum along the z-axis.

In contrast, the three-particle state

)

v, = % (4,47 + 1= = =) ) (33)

has the property that its spin-projections along z-axis can only be +3/2 or —1/2.

1
\IJ+X = 5 (‘+7+7+>X + |+77) 7>X + |7a+a 7>X + |7? 77+>X) . (34)

The product of eigenvalues in the x-direction will be +1. In this case, local hidden
variable theories predict —1 for the product, violating the restriction on the angular
momentum along the z-axis.

The application of the angular momentum constraint allows us to also derive
angle-dependent correlation functions easily for these cases, in simple situations.
For example, for the original GHZ three-particle state, when two of the three par-
ticles are detected in the same state in the z-direction as (+,4) or (—,—), the
correlation function with the third particle measured at angle 6 from the z-axis is

P(X,X,0) = —cos(h). (35)

If any two are detected in different states along z-axis, the three-point correlation
function is 4 cos(6). Thus the quantum predictions have a transparent and simple
meaning when seen as a measurement compatible with the conservation of the
angular momentum along a particular axis.

3. Continuous variables and correlations

There are several examples of non-classical, two-particle correlations that violate
a Bell’s inequality involving the continuous variables position and momentum in
the entanglement and correlation. Here we discuss one such example to show that
such correlations are also determined by the conservation law alone, and hence
experimental results can obey a Bell’s inequality only by violating the fundamental
conservation law on the average.

The original EPR wave function has such a correlation. The EPR system consists
of two particles with well-defined simultaneous values for their total momentum and
their relative positions, p1 + p and ¢; — ¢2, represented by commuting observables.
The relevant conservation law is that the total momentum should be conserved
during propagation and that independent measurements on the two particles should
give results that obey this conservation law on the average.
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Figure 4. The two-particle quantum correlation function in this experiment
is the same as the shifted one-particle two-slit interference pattern determined
by the conservation of the linear momentum. The momentum of the particles
detected at A dictates the momentum of the correlated particles to be along
the dashed long arrow, and the two-slit interference pattern should then be
centred in that direction. This is also the conditional probability or two-par-
ticle correlation. The dashed line interference pattern is the one centred at
xa =x = 0.

The experimental set-up that we consider is the two-particle, two-slit interference
geometry in which at least one particle encounters a screen with two slits and then a
measurement plane where there are detectors with timing information for recording
the position of the particles (figure 4). Measurements on each particle separately
reveal no interference pattern. But the coincidence measurements in which one
detector is kept at a fixed position at A and the other scanned at B reveal a two-
particle correlation identical to a shifted single-particle two-slit interference pattern
with 100% visibility. The equivalent of the Bell’s inequality in this case is that
the local hidden variable theory predicts visibility less than 70%. The quantum
mechanical two-particle correlation function for this set up is

P(xy,20) = %(1 + cos ka(z1 + x2)), (36)

where k£ = 27 /), and « is the geometrical amplification factor from the source
to the screen. The detector positions x; and x5 are measured in the same sense
at locations A and B. This is a conditional probability. The similarity to the
correlation function for spin variables is obvious. Let us see what the conservation
of momentum alone predicts in this situation. Consider the sub-ensemble generated
by fixing one of the detectors at some position z4. For all the particles detected
at this position the momentum direction from the source is fixed (within a small
uncertainty related to the size of the source) as 84 = x4/Da, where Dy is the
distance between the source and the detector at A. This means that the average
transverse momentum for the particles detected at the detection region B has to be
oppositely directed such that 05 = x5/Dp = —604. Thus the single-particle two-slit
interference pattern detected at B should have its mean position at angle

QBZ—GAO(—.Z'A/DA. (37)

The interference pattern at B should be shifted by xpg = —Dp x 6 4. Since the
single-particle two-slit interference pattern with mean at x = 0 is (1 +cos akzp)/2,
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the shifted two-particle correlation pattern predicted by the conservation of linear
momentum is

P(za,xp) = %(1+coska(m3+m,4)) (38)

if we take D4 = Dpg. This is the same as the quantum mechanical correlation
function. The condition xp + x4 = 0 determines the central fringe, and this is
exactly the condition that the transverse momenta are equal and opposite. We
see that the quantum two-particle correlation function is just the shifted single-
particle interference pattern consistent with the conservation of linear momentum.
Therefore, application of the conservation constraint alone predicts a correlation
function with 100% visibility, shifted by an appropriate angle that depends on the
position of the detector at A. Clearly, a reduction of visibility to 70% in a good
experiment can happen only by a gross violation of the conservation law.

A reduction of the visibility can happen in a non-ideal experiment where the con-
servation constraint is weak due to geometry or decoherence. Our analysis predicts
that the wider the detector at A, the less will be the visibility of the correlation
function, due to averaging over x 4 in the cosine function. It also predicts the weak-
ening of visibility when the source is very small in size due to the uncertainty in
the total momentum by dp ~ h/dx, where dx is the size of the source. Then the
conservation constraint is uncertain by dp, and pa + P =~ dp and not zero. I stress
again the point that the conservation constraint is applied only for those events
that are detected, and there is no assumption on the reality of values of momenta
without a measurement. Also, there is no counterfactual quantities used anywhere
in the analysis.

4. Discussion
4.1 Correlation in local hidden variable theories

From the generality of the result that the conservation law implies a unique corre-
lation function identical to the quantum mechanical correlation function, it is clear
that our fundamental attitude towards local hidden variable theories and the Bell’s
inequalities will require significant revision. The conservation law is both necessary
and sufficient to have the correlation function of the quantum mechanical form.
Local hidden variable theories are not viable physical theories because they violate
the fundamental conservation laws on the average by a large margin. To be more
explicit and precise about the amount of departure from the conservation law, let
us see what the angular dependence of the Bell correlation function for local hidden
variable theory looks like. This dependence was derived and discussed in detail in
Bell’s writings (see for example ref. [7]). If the angle of one of the analyzers is
suddenly changed, the correlation function has to change, and since there is no
information available on the instantaneous setting of the spatially separated ana-
lyzer, this change is to be composed of individual changes that depends separably
on the individual angular setting of each analyzer. This shows that the correlation
function changes linearly with angle (figure 5) [7]. If the correlation function obeys
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correlation

— | angle —

Figure 5. Diagram showing the different dependences of the correlation func-
tions on relative angle. The solid curve represents the quadratic behaviour,
near zero relative angle, of the correlation function from the conservation of
angular momentum (same as the quantum mechanical correlation). The linear
change in correlation (dotted lines) is a characteristic of local hidden variable
theories of the type discussed by Bell. It violates the requirement of conser-
vation of angular momentum as explained in the text.

the constraint that for § = 0 the correlation is —1 and for § = 7/2 the correlation
is zero for the spin-half case, the function is linear in the entire range. We see that
such a correlation function does not respect the conservation of angular momentum
of the total state on the average. Every fundamental conservation law associated
with a space-time symmetry is expected to be valid in any fundamental theory
of physics on the average, and this indeed is the case for conservation of energy—
momentum, and angular momentum. When one tests the Bell’s inequalities, one is
testing whether a theory for which the conservation law is not applicable could be
a valid theory of natural phenomena — obviously, the inequalities are bound to be
violated.

4.2 A comment on correlations in mized states

Mixed states in quantum mechanics are statistical mixtures of pure states. In such
a system the average of every physical quantity is a statistical ensemble average over
the various pure states with weightage specified by the mixing fractions. Therefore,
in general, the correlations are less than or equal to those in pure states of mul-
tiparticle systems. Description of a mixed state in a local hidden variable theory
is doubly classically statistical. Since the pure state correlations are completely
equivalent to the conservation constraints as we have shown, the correlations in
a mixed state is simply the statistical average of the pure state correlations, and
therefore the statistical average of the conservation constraints. There is a direct
linear relation between the correlations of the constituent pure states and that of
the mixed state. For the mixture specified by

X = {pi, Xi}, (39)

where p; is the classical statistical weightage for each pure state X; constituting
the mixed ensemble, the correlation is
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P(a,b) =) p;Pi(ab,X;). (40)

As the mixing increases, the correlations drop. These correlations may even degrade
towards the bounds set by the Bell’s inequalities. But the correlations are still
equivalent to the conservation constraints because the average of any quantity is
just the linear weighted average over the constituent pure states of the mixture.

4.3 A comment on quantum entropy

We can use the result on pure state correlations for gaining insight as to why the
maximal violation of Bell’s inequalities in an N-particle maximally entangled state
increases exponentially. The maximal violation is in fact due to the difference
in the cosine and the linear correlation functions (just the amount by which the
conservation law is violated). Their ratio is maximum at 6§ = 7/4, and it is v/2.
For an N-particle system, the correlation space is multidimensional with 61,65, ...
representing the various relative settings between apparatus. Now the violation of
the inequalities is the ratio of areas in this multi-dimensional space, and its maximal
value is (v/2)" where n = N — 1 is the dimensionality of the correlation space, and
N is the number of spin-half particles. Thus the violation is given by

C(N) =20V=1/2, (41)

Our results indicate that the amount of violation depends only the number of
particles in the N-particle maximally entangled state and not on the value of the
spin itself. This is because the coefficient multiplying the angular dependence
—cos(f) is just a scaling factor applicable to both the quantum correlation and
the local hidden variable theory when the correlations are constrained to be equal
in the two theories at # = 0 and 8 = /2. Therefore their ratio will reflect only
the difference between the cosine correlation and the linear correlation. Clearly, the
source of the exponential factor is the same as that in the expressions for entropy for
a classical multiparticle system. It is a measure of how many ways a fundamentally
conserved quantity can be distributed among N-particles. The difference in the
quantum mechanical case from the classical case is that the distribution is reflected
in the relative phases between the states, and not directly in the value of the
observables [8]. The essential idea is that a classical conservation constraint on
any generalized momentum p,,, like the total angular momentum or energy being a
constant, directly translates to a constraint on the phase of the combined quantum
mechanical system since the quantum phase depends linearly on these physical
quantities (in the form %pudx“). Thus a classical constraint on a two-particle
system of the form P4 + pp = 0 will induce a constraint on the quantum phases
of the two-particle wave function. In a multi-particle system, the different ways
of sharing the phases subject to the constraint is in fact the quantum entropy [8].
While individual phases can be arbitrary, their sum or difference will be constrained
and this is how the conservation law and hence the quantum correlation are encoded
in terms of local quantities. This clarifies the physical relation between quantum
entropy, conservation laws and violation of the Bell’s inequality.
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4.4 A comment on nonlocality

Since the quantum mechanical correlation function is shown to be a unique conse-
quence of a fundamental conservation law, it is clear that the correlation is encoded
at source as the information on the total conserved quantity in the particles. In
this paper we have not discussed the ‘mechanism’ in the quantum world that gives
the correct correlations on spatially separated measurements despite the lack of
reality for the values of the observables prior to the measurement. In the standard
theory, the mechanism goes by the name quantum nonlocality. I have shown else-
where [9,10] that this information is encoded in the phase correlation between the
particles at the source itself — the classical conservation law becomes a constraint
on the relative phase. Each particle has a corresponding state with an arbitrary
initial phase, but the phases of the two states obey a constraint. This is sufficient
to give the observed correlations. The correlation is predetermined, and encoded in
the difference between the unobservable individual phases, without having to encode
it directly as the value of the observable quantity like spin projection or momen-
tum itself. Thus quantum correlations can be reproduced without ascribing definite
reality, in the EPR sense, to observable quantities before an actual measurement.
These facts indicate that there need not be any nonlocal influence violating Einstein
locality.

In the context of the result discussed in this paper, an important point to be noted
is that quantum formalism allows the unmeasurable initial phase to be a continuous
variable associated with the system, with a hidden reality, without committing on
the reality of the measurable values of physical quantities. This allows a descrip-
tion of EPR-like correlations without nonlocality, but with a shifted reality. The
Bell’s theorem prohibits ascribing reality at the level of the observables if quantum
correlations are to be reproduced. Once the observables themselves are relieved of
the burden of pre-assigned values, by assigning reality only to the phases, Einstein
locality can be preserved and the conservation laws can be respected while repro-
ducing the quantum correlations. Such an approach circumvents von Neumann’s
objections as well as Bell’'s theorem. This was suggested as the correct way of
resolving the issues contained in the EPR problem [9,10], and some related issues
and questions [11] are being investigated. It is also plausible that the true source of
quantum randomness (Einstein’s dice) is related to the randomness of initial phases.
In this sense the quantum phase is the true hidden variable, already contained in
the standard quantum formalism. A more detailed discussion of this aspect as well
as of the importance of phase of individual systems in multi-particle correlations
may be found in refs [9,10].

5. Summary

In this paper I discussed in detail the result that a correlation function different
from what is predicted by the quantum theory, and in particular the correlation
function of the local hidden variable theories, implies a violation of a fundamental
conservation law related to the basic space-time symmetries, like the conservation
of angular momentum. This result followed from the observation that the angular
correlation function is determined by the average angular momentum of one of the
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particles conditional on specific values of the projection of angular momentum for
the other particle. Similar remarks apply to other set of observables like linear mo-
mentum in appropriate entangled and correlated systems. The Bell’s inequalities
can be obeyed only by violating a fundamental conservation law on the average
by a large margin. Validity of the relevant conservation law implies a violation of
the Bell’s inequalities. Hence no theory of quantized observables that respects basic
conservation laws will follow the Bell correlation function. While the Bell’s inequal-
ities are good criteria for demarcating local hidden variable theories from quantum
mechanics, the fact that local hidden variables do not respect fundamental conserva-
tion laws even on the average make the Bell’s inequalities redundant from the point
of view of viable physical theories. More importantly this finding discredits any lo-
cal realistic theory as a viable alternative to quantum mechanics. They are flawed
seriously even in a theoretical sense (like perpetual motion machines are), and there
is no need to test their viability by sophisticated experiments; these experiments
attempting to test the Bell’s inequalities are in fact trying to test whether a class
of theories that is grossly incompatible with a fundamental conservation law could
be physically viable. Much experimental ingenuity and efforts have been invested
in testing a theory that respects conservation laws (quantum mechanics) against
others that do not. The consolation perhaps is that unexpected and remarkable
technological offshoots for quantum information and computing have resulted from
these efforts.
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