PRAMANA © Indian Academy of Sciences Vol. 65, No. 1
— journal of July 2005
physics pp- 49-59

Supersymmetric quantum mechanics
for two-dimensional disk

AKIRA SUZUKI', RANABIR DUTT? and RAJAT K BHADURI!?

'Department of Physics, Tokyo University of Science, Tokyo 162-8601, Japan
2Department of Physics, Visva Bharati University, Santiniketan 731 235, India
3Department of Physics and Astronomy, McMaster University, Hamilton LIH 6T6,
Canada

E-mail: akira@rs.kagu.tus.ac.jp

MS received 11 September 2004; accepted 19 January 2005

Abstract. The infinite square well potential in one dimension has a smooth supersym-
metric partner potential which is shape invariant. In this paper, we study the general-
ization of this to two dimensions by constructing the supersymmetric partner of the disk
billiard. We find that the property of shape invariance is lost in this case. Nevertheless,
the WKB results are significantly improved when SWKB calculations are performed with
the square of the superpotential. We also study the effect of inserting a singular flux line
through the center of the disk.
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1. Introduction

During the last three decades, the algebra of supersymmetry has been profitably
applied to many non-relativistic quantum mechanical problems [1-8]. In supersym-
metric quantum mechanics (SUSYQM), one gets a better understanding of why
certain potentials are analytically solvable. All familiar solvable potentials have the
property of shape invariance [2,5] which is realized through a relationship between
the two supersymmetric partner potentials with a change of parameters related by
translation. These (one-dimensional) potentials have the property that their exact
eigenvalue spectra may be expressed algebraically in terms of one quantum number.
An entirely new class of shape invariant potentials has also been found subsequently
in which the parameters are related by scaling [8,10]. These are not discussed in
the present context. SUSYQM also generate a large class of isospectral potentials,
many of which are reflectionless and turn out to be the multi-solitonic solutions of
the nonlinear KdV evolution equation at ¢ = 0 [8,11].
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For approximate quantum calculations, SUSYQM provides a modification of the
semi-classical WKB quantization condition. Supersymmetry-inspired WKB quan-
tization conditions (SWKB) [12-14] reveal several interesting features. Unlike the
standard WKB method [9], the leading order SWKB formula yields exact analytic
expressions for the energy eigenvalues of all the known shape-invariant potentials for
which the change of parameters are of translational type, the higher order correc-
tion terms vanishing identically [13,14]. Interestingly, one does not need to invoke
the Langer-like modification, such as the replacement of I(I + 1) by (I + 1/2)? for
spherically symmetric potentials, as it appears naturally in SUSYQM [9,14]. For
non-exactly solvable cases, SWKB theory has so far predicted improved energy
eigenvalues from the leading order as well as sub-leading orders (in powers of h),
as compared to those obtained from the corresponding WKB calculations [11,14].

At this point, it may be natural for one to ask whether shape invariance and
the exactness of the SWKB quantization formulae remain intact if the potential
under study is generalized to higher dimensions. To be more specific, it may be
worthwhile to study the supersymmetric structure of the two-dimensional quantum
disk billiard, of which the one-dimensional version, the infinite square well poten-
tial, has been found to be shape invariant. In two dimensions, the disk billiard
does not have a closed algebraic expression for the energy eigenvalues, but these
are obtainable from the zeros of the cylindrical Bessel functions for each angular
momentum quantum number [. Because of this lack of algebraic solvability, we do
not expect the property of shape invariance to persist in the disk. Nevertheless, it is
interesting to construct the partner potentials and perform the SWKB calculations
in this case, since the usual WKB quantization does not reproduce correctly the
quantum-mechanical energy spectrum for the disk [9].

In this paper, we study in some detail the supersymmetric structure associated
with the 2D disk (§2). In particular, we examine the supersymmetric partners for
each partial wave. These look quite different from the disk, and are not shape
invariant. The SWKB lowest-order results, however, are significantly better than
the corresponding WKB ones. We also show that the insertion of a semionic flux
line through the center of the disk regroups the degeneracies of the partial waves,
and restores the shape invariance in the I = (0,1) pair, but not for the others. The
disk has been studied in detail from the point of view of the periodic orbit theory,
without and with a flux line [17,18]. Unfortunately, because the superpotential is
different in each partial wave, we are unable to make a connection of SUSYQM to
periodic orbit theory, as may be possible in one dimension [13].

2. SUSYQM for disk
2.1 Supersymmetric partner potentials

Consider a particle of mass m confined to a two-dimensional circular domain of
radius R with infinitely steep wall as represented by the potential

V(r) =0, r<R,
= 00, r>R. (1)
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Classically, the particle is reflected at the boundary of the circular billiard. For

quantum motion, we consider the two-dimensional stationary Schrédinger equation

1o 10 1 07

— [W +o ﬂw} Y(r, @) + V(r)(r,¢) = EY(r,¢) . (2)

By substituting
- (r)
v o) = > e 3)
l;oo ﬁ

in eq. (2), we obtain the radial equation

2 dPuy(r) {(12 —1/4)n?

Tom dr? +V(r) | w(r) = Equ(r) , (4)

2mr?

in which k; = y/2mE;/h? is the wave number. This is a one-dimensional equation
for w;(r) in a fixed partial wave [. Substitution of the disk potential (1), and
imposing the boundary condition that the wave function must vanish at r = R
discretizes the eigenvalues, which are given by the zeros of the cylindrical Bessel
function, Jy(ki,nR) = 0. We have introduced an additional quantum number
n = 1,2, ... to specify, for a given [, which zero of the Bessel function is matched at
the boundary. It is the nodal quantum number, analogous to the one-dimensional
case. The eigenenergies of the disk are given by

z

kit = ‘g” (n=1,2,..) (5)
(hkin)? B2,

Ein = om  2mR2 (6)

The corresponding eigenfunctions are given by
ul(lg (r) = N/ kit Jpg)(kinr)
= Nin /20T Iy (20,02) (7)

where N;, is a normalization constant and = = r/R. The superpotential, W;(r) is
given by

h 1 dul(}l) (r)

Wi(r) = — ’ .

1(7") \/%ul(ll)(r) dr ( )

_ ], S (zuaz) I +1/2 )
vamR [y (2 02) x

We plot W& and W in figure 1 as a function of z. Note that W?(z) is not symmetric
about its center, and that it is tangential to £ = 0. We may now construct the

partner potentials Vl(l), Vl(2) as
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100

Figure 1. The squared superpotentials W7 (r) for I = 0 (solid curve) and
I =1 (dashed curve).

V) = W) - <= T, (10)
V() = W)+ =T, (1)

Whereas V}(l) reduces to just the disk potential with the inclusion of the centrifugal
barrier, and an energy shift that yields a zero-energy ground state

h? 1?-1/4
{/—zﬁ,l} , for <R

Vl(l)(T) =4 2mR2 x2 (12)
00 for >R
E})) = By — Bia, (13)
the expression for VZ(Q) is more complicated.
h? Jij1 (2,17) ?
! (T) 2mR2 Z‘ll’l J\l|(2\l|,1m)
N Juer (i) 1 +1/2
1 i (2p1,17) x
(1 +1/2)(|1] +3/2)
+ " + 2] - (14)

@ through the singularity

(2)

Note that the hard-disk nature is incorporated in V,
arising from the zero of Jy;(2;,12) at © = 1. The eigenfunctions of V'’ may be

analytically written as
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() _ Z]l,n41%
Uy (1) = Nint1 22 _ 2
|7],n+1 RS

Jjij+1(210,02) Ty (21 n+17)
X |z ’ : —z J z T
{ li],1 T Cra) 1,n+1J)1+1 (21 n417)

(15)

In figure 2 we display the partner potentials for the [ = 0 partial wave. The first
few eigenenergies (given by eq. (6)) and the corresponding eigenfunctions, obtained
analytically, are shown in figure 3. Note that in two dimensions, for [ = 0, there is

an attractive centrifugal potential that drives Vo(l) negative, although its partner

V(Z)
0
0 0.5 1 0 0.5 1
X X

Figure 2. Superpartners with [ = 0. Corresponding eigenenergies are shown
by dashed lines.

n=I ‘ ‘
0 0.5 10 0.5 1
X X
Figure 3. Eigenfunctions for supersystems with [ = 0. Corresponding

eigenenergies are shown by dashed lines.
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VO(Q) has no such attraction. The n = 1 state of Vo(l) comes at zero energy by
construction. Since the wave function u; ,, given by eq. (15) looks quite complicated,
we also checked numerically that it reproduces the correct eigenvalues. In figures
4 and 5 the partner potentials and their eigenfunctions and eigenenergies for [ = 1
are similarly shown. Note that now the potential Vl(l) has a repulsive barrier as
expected, and its partner is narrower in shape. We see from these diagrams that
the superpartners may be very /-dependent.

In order to test whether the partner potentials defined by eqs (10) and (11)
preserve the property of shape invariance for the disk problem, we consider the
shape invariance condition [8]

Va(r;ar) = Vi(r,a2) + R(ay). (16)

2)
Vv
V(J) 1
1
0 0.5 1 0 0.5 1
X X

Figure 4. Superpartners with [ = 1. Corresponding eigenvalues are shown
by dashed lines.

X X

Figure 5. Eigenfunctions for supersystems with | = 1. Corresponding eigen-
values are shown by dashed lines.
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Here, a; is a set of parameters, as is a function of a;, and the remainder R(aq) is
independent of r. For example, for the one-dimensional square-well, taking W (z) =
—Acot(ax), we have

v — A(A - a)cosecz(az) — A% (17)

V® = A(A + a)cosec? (ax) — A% (18)

We note that in V(1) by changing A — (A + ), a — «a, we get V) plus a
remainder R that is independent of x. In the one-dimensional case, therefore, we
conclude that the partners are shape invariant. When we implement this test for
the disk, we find that even for the [ = 0 case, we do not obtain shape invariance.
Let us rewrite eq. (9) in the form

Jip1(kr)

b
Ty~ @D

Wi(r) = Ak = (19)

where A and b are constants, and we have suppressed the subscripts for simplicity
in writing z);, = kr. Using this superpotential, we may immediately write down
the expressions for the superpartners:

J? 24k J,
W = A(A = )g22EL 289 1/2)2+L
2b )
+T—2(l+1/2)[2b(l+1/2)fl]fAk ,
J? 24
v = A+ oe e - 2oy a7
Jl T Jl
2b
+50+ 1/2)[2b(1 +1/2) + 1] + Ak* . (20)

We find that the above potentials do not satisfy eq. (16) for any choice of parameters
related by translation.

2.2 SWKB calculation

Let us first consider the usual WKB calculation for the disk. It is worth pointing
out that with the correct Maslov phase factors [16], the lowest order WKB calcu-
lation yields exact results for the one-dimensional square-well potential [19]. This,
however, is not so for the disk. The leading order WKB quantization formula for
the disk is given by [9]

(K*R? — 12)Y/2 — | cos™! (;R) = <n + i) 7, n,=0,1,2,.... (21)

The Maslov phase factor of 3/4 arises from one smooth and one hard turning point.
The SWKB energy eigenvalues for V(1) are given by [12]
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Table 1. SWKB results in comparison with the WKB results for [ = 0 and 1.

WKB SWKB EXACT WKB SWKB EXACT
n 60,71 0,n 0,n 6l,n 1,n 1,n
1 —0.2315 0.0000 0.0000 —0.2842 0.0000 0.0000

2 24.4425 24.6864 24.6881 34.2760 34.5394 34.5365
3 68.8557 69.1028 69.1038 88.5625 88.8201 88.8175

T2
2\/2m/ dr\/Eg,‘T’lVKB —W2(r)=2r(n—1Dh, n=1,2 ..., (22)
T1

where 71 and 7y are turning points obtained from
E§VEB — Wi (r) = 0. (23)

The SWKB quantization condition for V(2 replaces (n — 1) by n in the RHS of eq.
(22). Even when SWKB is not exact, the SUSY level degeneracy of the partner
potentials is preserved. Note from figure 1 that by construction VVl2 has the lowest
eigenvalue at zero energy, where the classical turning points are coincident. In
table 1, we present the SWKB results for the [ = 0,1 partial waves for the disk.
For comparison, the WKB and the exact results are also given. In this table, ¢
(with the appropriate superscripts) are defined as

h2

5 €l = (Ein— Epn). (24)
The table shows that the largest error in WKB occurs in the ground state. Had
we corrected for this error by an energy shift in WKB, the other WKB energies
would improve dramatically, but still would not be as good as the SWKB energies.
In this respect, the SWKB results for the disk are similar to the much studied
one-dimensional potentials [4,7,8,13].

2.3 Disk with a flux line

We have seen that in going from the one-dimensional square well to the two-
dimensional disk, the property of shape invariance is destroyed. We may ask if
shape invariance may be restored by subjecting the particle to a Bohm—Aharonov
like gauge field [20]. It is well-known in the literature [21,22] that if one takes the
particle to be charged, and couples it to the vector field of a singular flux line, a
centrifugal-like term with a coefficient proportional to the flux strength arises in
the two-dimensional Schrodinger equation. In two dimensions, it is also legitimate
to consider flux lines of fractional strength (in units of %) A particle with a frac-
tional flux line attached to it is called an anyon. For our one-body problem, the
flux line is perpendicular to the plane of the disk, and passes through the center.
Its vector potential in polar coordinates is given by

A, =0, A,=Tco (25)

:@;,
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where « is the dimensionless strength of the flux line. The charged particle Hamil-
tonian in the presence of the vector potential is obtained by changing p — (p—£A).

Taking the charge e to be positive, the resulting Hamiltonian of the particle in a
potential V' (r) is given by

p2 h2 )
o= L L.— V(). 2
P L —ap v (20
where p? = —h?(1-2r2) and AL, is the angular momentum operator. The net

effect of the flux line is to split the degeneracy of the states with angular momentum
quantum numbers [ and —I, since in all equations |I| is replaced by |l — a|. The
result is specially interesting for o = 1/2 (semion), since a little algebra will show
that the cylindrical Bessel functions in the wave functions are now replaced by the
spherical ones, as in three dimensions. In particular, for [ = 0, and [ = 1 (but not
for I = —1) eq. (12) shows that the semionic flux line exactly cancels the —ﬁ—term,
restoring shape invariance. Without the flux line, there was degeneracy in levels
with [ = £1,£2,..., and | = 0 levels had no degeneracy. With the semionic flux
line, levels with [ = (0,1), (-1, 2), (=2, 3)... become degenerate in pairs. The radial
parts of the degenerate states are identical, but the angular parts are orthogonal.
Since the pair (0,1) has now the wave function u(kr) = /(kr)Jy /2 (kr) = sin(kr),
W? has the same form as in the one-dimensional square well, but in the radial
coordinate r > 0. More generally, the wave functions are given by

M _ (2111,02) 9111 (1), ), 1<0
Uy (1) = Nin X { 21-1,02)J1-1(21-1,nT), I>1 (27)

where the notation is the same as before. These wave functions are of the same
form as in three dimensions, except that the radial coordinate is planar, and the
degeneracy is 2 and not (2/4+1). We note from the above equation that pair-wise the
wave functions have the same spherical Bessel function of order [ = ||, where [ is the
angular momentum of the one in the pair with the negative (or zero) [. For example,
the pair (0,1) has I =0, the pair (—1,2) has I =1, ete. Thus the superpotential for
a pair may be denoted as Wi(r), and calculated as before. In figure 6 we display
the superpartners for Z = 0, and their spectra. The SWKB results are exact for
this case, but not for I > 0. The results of the SWKB calculations are displayed
in table 2 for [ = 0,1 and 2. SWKB is exact for [ = 0, and the discrepancy in the
fourth decimal place is due to numerical inaccuracy.

Finally, it is to be noted that it is not in every case that generalizing to two
or higher dimensions destroys shape invariance. Harmonic oscillator and Coulomb

Table 2. SWKB calculations in comparison with the analytic values for

=0, 1and 2.

SWKB EXACT SWKB EXACT SWKB EXACT
n 60,77, EO,n 61,77, el,n 62,n 62,n
1 0 0 0 0 0 0

2 29.6089 29.6088 39.4950 39.4888 49.5151 49.5018
3 78.9571 78.9568 98.7148 98.7091 118.6498 118.6374
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n:

n=2
n=1

)
v v
0
0 0.5 1 0 0.5 1
X X

Figure 6. The superpartners of the two-dimensional disk in the magnetic
field with oo = 1/2. The dashed lines represent the energy eigenvalues.

potentials in two and three dimensions still have shape invariant partners. In both
these cases, the energy eigenvalues are expressible in terms of a single principal
quantum number n, and not separately on n, and [.
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