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Abstract. Considering gravitational collapse of Type I matter fields, we prove that,
given an arbitrary C2-mass function M(r, v) and a C1-function h(r, v) (through the corre-
sponding C1-metric function ν(t, r)), there exist infinitely many choices of energy distri-
bution function b(r) such that the ‘true’ initial data (M, h(r, v)) leads the collapse to the
formation of naked singularity. We further prove that the occurrence of such a naked sin-
gularity is stable with respect to small changes in the initial data. We remark that though
the initial data leading to both black hole (BH) and naked singularity (NS) form a ‘big’
subset of the true initial data set, their occurrence is not generic. The terms ‘stability’
and ‘genericity’ are appropriately defined following the theory of dynamical systems. The
particular case of radial pressure pr(r) has been illustrated in details to get a clear picture
of how naked singularity is formed and how, it is stable with respect to initial data.
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1. Introduction

In recent papers [1–3], Joshi, Dwivedi and Goswami have discussed the role of initial
data in spherically symmetric gravitational collapse for Type I matter fields. It is
shown that given the density (ρ) and pressure profiles (pr, pθ) at the initial space-
like hypersurface from which the collapse evolves, there is a wide choice available
to choose the velocity function and rest of the initial data so that the end state
of collapse is either a black hole (BH) or a naked singularity (NS). This result is
significant for two reasons: (1) It produces a substantially ‘big’ initial data set which
under gravitational collapse results into a naked singularity. (2) Type I matter fields
include most of the known physical forms of matter like dust, perfect fluid. At least
in spherically symmetric case, this result shows that while considering black hole
physics, one must discard certain part of initial data set that leads the collapse to
a naked singularity. However, all initial data are not independent, and so it poses
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a question, which initial data set shall evolve into a NS as a result of gravitational
collapse? Further, having a NS for certain initial data set is not enough because if it
looses its characteristic for small perturbation in the neighbourhood of that certain
initial data set, then the NS is not serious enough to challenge cosmic censorship
conjecture [4]. Therefore, the all important question, i.e. is the NS developed from
certain initial data set a stable one?

This motivates us to study both the aforementioned questions. We prove that
given a C2-mass function M(t, r) and C1-velocity function ν(t, r) on an initial space-
like hypersurface, there always exists a C1-function b(r) such that the total initial
data comprising of mass function (includes density and pressures), a function ν(r)
and energy distribution function b(r) evolves into a naked singularity as a result of
gravitational collapse.

Cooperstock et al [5] have shown that if the radial pressure pr is positive (r > 0)
and having strictly positive mass function, then non-central singularity is covered
by the horizon irrespective of the sign of tangential pressure pθ. The stability of
central shell-focusing singularity at r = 0 that we are discussing in this paper is
with respect to small changes in the initial data comprising of mass function and
velocity function. ‘Small’ changes in the initial data are with respect to appropriate
norm on the functions space of all physically reasonable initial data. This concept
of stability is analogous to that of structural stability in the theory of dynamical
systems and is explained in §4. Essentially, we prove that the set of initial data
leading the collapse to central shell-focusing naked singularity is an open subset
of the set of all initial data in a suitable functions space. That we get a covered
singularity which is non-central when pr > 0 does not disturb the stability of central
shell-focusing singularity (naked or covered) with respect to small changes in initial
data.

In §2, we briefly summarize the analysis given in [3] and state the conditions on
the initial data under which the collapse will lead to a naked singularity. In §3, we
analyse the condition of existence of naked singularity to prove our assertion men-
tioned above by using existence theory of first-order ordinary differential equations.
Thereafter, in §4, we define and explain the concept of stability and genericity that
we follow in this paper and we prove openness of initial data set. We, then, discuss
genericity of this set. In §5, we study the particular case pr(r) to demonstrate the
involvement of pr and pθ as an initial data in the occurrence of NS, its stability and
non-generic nature. Finally, we make some concluding remarks.

2. Field equations, initial data and naked singularity

In this section, we summarize analysis from [3]. The general spherically symmetric
metric describing space-time geometry within the collapsing cloud can be described
in comoving coordinates (t, r, θ, φ) by

ds2 = −e2ν(t,r)dt2 + e2ψ(t,r)dr2 + R2(t, r)dΩ2, (1)

where dΩ2 = dθ2 +sin2 θ dφ2 is the metric on a 2-sphere. The stress–energy tensor
for Type I field in a diagonal form is given by [6]
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T t
t = −ρ, T r

r = pr, T θ
θ = Tφ

φ = pθ. (2)

The quantities ρ, pr and pθ are the energy density, radial and tangential pressures
respectively. We take the matter field to satisfy weak energy condition, i.e., the
energy density measured by any local observer be non-negative. So for any vector
V i, we must have, TikV iV k ≥ 0 which means ρ≥0; ρ + pr≥0; ρ + pθ≥0.

Einstein field equations for the metric (1) are

ρ =
F ′

R2R′
, (3)

pr = − Ḟ

R2Ṙ
, (4)

ν′ =
2(pθ − pr)

ρ + pr

R′

R
− p′r

ρ + pr
, (5)

−2Ṙ′ + R′
Ġ

G
+ Ṙ

H ′

H
= 0, (6)

G−H = 1− F

R
, (7)

where we have defined G(t, r) = e−2ψ(R′)2 and H(t, r) = e−2ν(Ṙ)2.
The total mass in a shell of collapsing cloud of comoving radius r is represented

by the arbitrary function F = F (t, r). The weak energy conditions imply F ≥ 0.
The regularity at the initial epoch t = ti is preserved by F (ti, 0) = 0, i.e. the mass
function should vanish at the centre of the cloud. The density singularity in the
space-time is at R = 0 and R′ = 0, the latter is due to shell-crossings and can
possibly be removed from the space-time [7]. So we consider here only a physical
singularity where all matter shells collapse to a zero physical radius known as shell-
focusing singularity. We can use scaling freedom available for the radial coordinate
r to introduce the function v(t, r) by the relation

R(t, r) = rv(t, r). (8)

We have v(ti, r) = 1; v(ts(r), r) = 0 and for collapse v̇ < 0. The above relation is
obtained by defining v(t, r) = R/r [8]. The time t = ts(r) corresponds to the shell-
focusing singularity R = 0. The six arbitrary functions of the shell radius r as given
by ν(ti, r) = ν0(r), ψ(ti, r) = ψ0(r), R(ti, r) = r, ρ(ti, r) = ρ0(r), pr(ti, r) =
pr0(r), pθ(ti, r) = pθ0(r) evolve the dynamics of the initial data prescribed at the
initial epoch t = ti. From eq. (5), we obtain

ν0(r) =
∫ r

0

(
2(pθ0 − pr0)
r(ρ0 + pr0)

− p′r0

ρ0 + pr0

)
dr (9)

which indicates that not all the above initial data are mutually independent and
that ν0(r) has the form,

ν0(r) = r2g(r), (10)
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where g(r) is at least a C1 function of r for r = 0, and at least a C2 function
for r > 0. Let us now assume the physically reasonable behaviour of the initial
data at the center r = 0, i.e. p′r0

(0) = p′θ0
(0) = 0 and pr0(0) − pθ0(0) = 0. For

details, we refer [1]. We have a total of five equations with seven unknowns, namely
ρ, pr, pθ, ν, ψ, R and F giving us the freedom of choice of two functions. Selection
of these two free functions, subject to the given initial data and the weak energy
condition above, determines the matter distribution and the metric of the space-
time and thus, leads to a particular time evolution of the initial data. The existence
and uniqueness of solution of the system of field equations with the above mentioned
initial data has been discussed by Joshi and Dwivedi [1,9]. The solution continues
to exist in the neighbourhood of the singularity given by R = 0. A general mass
function for the cloud can be considered as

F (t, r) = r3M(r, v), (11)

where M(r, v) is regular and continuously twice differentiable. Using eq. (11) in
eqs (3) and (4), we obtain

ρ =
3M + r[M,r + M,v v′]

v2(v + rv′)
; pr = −M,v

v2
. (12)

Then as v → 0, ρ → ∞, and pr → ∞, i.e. both the density and radial pressure
blow up at the singularity. The regular density distribution at the initial epoch is
given by ρ0(r) = 3M(r, 1) + rM(r, 1),r.

We take the initial surface to be the cloud given by 0 ≤ r ≤ rc for some finite rc on
which the initial data, namely the mass function F (t, r), the metric function ν(t, r)
and the function b(r) (to follow) evolve as the collapse begins according to the Type
I field equations. So, we take M(r, v) > 0 and at least C2 in D ≡ [0, rc]× [0, 1], for
varying r ∈ [0, rc], v ∈ [0, 1]. Consider the general metric function,

ν(t, r) = A(t, R), (13)

where A(t, R) is arbitrary, continuously differentiable function of t and R, with the
initial constraint A(ti, R) = ν0(r). We use eq. (13) in eq. (5) to get

2pθ = RA,R(ρ + pr) + 2pr +
Rp′r
R′

. (14)

From the above equation, we conclude that the tangential pressure also blows up
at the singularity. Also, the use of eq. (13) in eq. (6), yields

G(t, r) = d(r)e2(A−R A,tdt), (15)

where d(r) is another arbitrary continuously differentiable function of r. From
eq. (10), we generalize the form of A(t, R) as A(t, R) = r2g1(r, v), where g1(r, v)
is a continuously differentiable function and g1(r, 1) = g(r). Similarly, we have
A− ∫

A,tdt = r2g2(r, v) and at the initial epoch g2(r, 1) = g(r). We write

d(r) = 1 + r2b(r), (16)
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where b(r) is the energy distribution function for the collapsing shells. Then using
eqs (11), (13) and (15) in eq. (7), we get

√
RṘ = −er2g1(r,v)

√
[1 + r2b(r)]Rer2g2(r,v) −R + r3M, (17)

where negative sign is chosen since, for the collapse, Ṙ < 0. Defining a function
h(r, v) as

h(r, v) =
er2g2(r,v) − 1

r2
= 2g2(r, v) + O(r2v2) (18)

and substituting eq. (18) in eq. (17), we get

√
vv̇ = −

√
e2r2(g1+g2)vb(r) + e2r2g1(vh + M). (19)

Integrating the above equation, we have

t(v, r) =
∫ 1

v

√
vdv√

e2r2(g1+g2)vb(r) + e2r2g1(vh + M)
. (20)

Here, the variable r is treated as a constant in the above equation. Expanding
t(v, r) around the centre, we get

t(v, r) = t(v, 0) + rχ(v) + O(r2), (21)

where the function

χ(v) = −1
2

∫ 1

v

√
v[vb′(0) + vh,r(0, v) + M,r(0, v)]
[vb(0) + vh(0, v) + M(0, v)]3/2

dv. (22)

Now, it is clearly seen that the value of χ(0) depends on the functions b(0),M(0, v)
and h(0, v), which in turn, depend on the initial data at the initial surface t = ti.
Thus, a tangent to the singularity curve t = ts0 is completely determined by the
given set of density, pressure, velocity function ν and function b(r). Further, from
eq. (19), we can write

√
vv′ = χ(v)

√
vb(0) + vh(0, v) + M(0, v) + O(r2). (23)

If the neighbourhood of the centre R = 0, r = 0 gets trapped earlier than the
formation of singularity, then it is covered (i.e. occurrence of a black hole), and
if otherwise happens the singularity is naked (i.e. singularity can be observed
locally or by a faraway observer) [7]. For the examination of the nature of central
singularity at R = 0, r = 0, we consider the equation for outgoing radial null
geodesic, dt/dr = e(ψ−ν) and test, if there would be any families of null geodesics
coming out of the singularity. Further, we write the null geodesic equation in terms
of the variables (u = rα, R), choosing (α = 5/3), and using eq. (7), we obtain

dR

du
=

3
5

(
R

u
+

√
vv′√
R/u

)(
1− (F/R)√
G[
√

G +
√

H]

)
. (24)
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If the null geodesics terminate at the singularity in the past with a definite tangent,
then at the singularity, we have dR/du > 0, in the (u,R) plane with a finite value.
Hence, all points r > 0 on the singularity curve are covered since F/R → ∞ with
dR/du → −∞ and only the singularity at the centre r = 0 could be naked. For the
case, when R′ > 0 near the central singularity, we have

x0 = lim
t→ts

lim
r→0

R

u
=

dR

du

∣∣∣
t→ts,r→0

(25)

and use of eqs (23) and (24) yield x
3/2
0 = (3/2)

√
M(0, 0)χ(0) and the radial null

geodesic emerging from the singularity in (R, u) coordinates is R = x0u, or in (t, r)
plane, it is given by t− ts(0) = x0r

5/3. Therefore, if χ(0) > 0 then x0 > 0, and we
get radially outgoing null geodesics coming out from the singularity, giving rise to a
naked central singularity. However, if χ(0) < 0 then we have a black hole solution,
as there will be no such trajectories coming out. For χ(0) = 0, we will have to take
into account the next higher order non-zero term in the singularity curve equation,
and a similar analysis can be carried out by choosing a different value of α.

Thus, it is clearly seen as to how the initial data determine the NS/BH phases
as end states of collapse, since χ(0) is determined by these initial profiles for the
collapsing matter given by eq. (22).

3. Existence of energy distribution function b(r) leading to NS

In this section, we prove the assertion mentioned in the Introduction. We choose
b(r) to satisfy the differential equation on a constant v-surface

1
2

√
v[vb′(r) + vh,r(r, v) + M,r(r, v)]
[vb(r) + vh(r, v) + M(r, v)]3/2

= B(r, v) (26)

for 0 ≤ r ≤ rc where B(r, v) is a continuous function defined on D such that

B(0, v) =
1
2

√
v[b′(0)v + vh,r(0, v) + M,r(0, v)]
[vb(0) + vh(0, v) + M(0, v)]3/2

< 0 (27)

for all v in [0, 1]. It will then follow that

χ(0) = lim
v→0

χ(v) = −
∫ 1

0

B(0, v)dv > 0. (28)

This condition ensures that central shell-focusing singularity will be naked.
We, now, discuss the existence of b(r) as a solution of the differential equation

(26). We put

x(r, v) = vb(r) + vh(r, v) + M(r, v) (29)

a continuous function of r, in eq. (26) and rearranging it, we get

dx

dr
=

1√
v

[
2B(r, v)x3/2

]
≡ f(x, r) (30)
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with the initial condition

x(0, v) = vb(0) + vh(0, v) + M(0, v). (31)

Let us ensure the existence of C1-function x(r, v) as a solution of the above initial
value problem defined throughout the cloud. The function f(x, r) is continuous in
r, with x restricted to a bounded domain. With such domain of r and x, f(x, r) is
also C1-function in x which means f(x, r) is Lipschitz continuous in x. Therefore,
the differential equation (30) has a unique solution satisfying initial condition (31).

Further, we can ensure that the solution will be defined over the entire cloud, i.e.
for all r in [0, rc] by using the freedom in the choice of arbitrary function B(r, v).
For this, we consider the domain [0, rc] × [0, d] for some finite d. Let S be the
supremum of the modulus of f(x, r). Then the differential equation (30) has a
unique solution defined over the entire cloud provided [10]

rc ≤ inf
(

rc,
d

S

)
=

d

S
. (32)

This yields

max
0≤r≤rc,0≤x≤d

∣∣∣∣
1√
v

[
2B(r, v)x3/2

]∣∣∣∣ ≤
d

rc
. (33)

Condition (32), in turn, will be satisfied if the weaker condition

0 ≤ |B(r, v)| x3/2 ≤ d
√

v

2 rc
(34)

holds for all r in [0, rc].
The collapsing cloud may start with rc small enough so that the expression

d
√

v/2rc which is always positive, satisfies condition (34) with x restricted to a
bounded domain. We then have infinitely many choices for the function B(r, v),
which is continuous and which satisfies conditions (27) and (34) for each choice of
v. For each such B(r, v), there will be a unique solution x(r, v) of the differential
equation (30), satisfying initial condition (31), defined over the entire cloud and in
turn, there exist a unique function b(r) for each such choice of B(r, v), that is given
by the expression

b(r) =
x(r, v)−M(r, v)− vh(r, v)

v
(35)

over [0, rc]. Thus, for a given constant v-surface and given initial data of mass
function F (t, r) = r3M(r, v) and h(r, v) = (er2g2(r,v) − 1)/r2 satisfying physically
reasonable conditions (expressed on M), there exists infinitely many choices for the
function b(r) such that condition (27) is satisfied. The condition continues to hold
as v → 0, because of continuity. Hence, the central singularity developed in the
collapse is a naked singularity.
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4. Definition of stability and genericity of NS/BH

In this section, we give appropriate definitions of stability and genericity. Our
definitions of stability and genericity are based on the structural stability of a
dynamical system, and genericity of a property of a dynamical system respectively.
For more details, refer chapter 7, §3,4 of Abraham and Marsden [11].

Let M be a manifold on which a vector field or a dynamical system is defined.
Let X (M) be the space of all vector fields on M. Whitney Cr-topology on X (M),
generated by the norm is given by

||f ||r = sup

{
r∑

k=0

||Dkf(u)||/u ∈ U

}
,

where V and W are vector spaces, U an open subset of V , and f : U → W . Dkf
denotes kth Frechet derivative of f . X (M) endowed with Whiteny Cr-topology is
denoted by X r(M).

Let X1 be a vector field or a dynamical system on M. Then X1 is structurally
stable if there is a neighbourhood Φ of X1 ∈ X r(M) in the Whitney Cr-topology
such that Y1 ∈ Φ implies X1 and Y1 are topologically conjugate, i.e., they have
equivalent phase portraits. This means that there is a homeomorphism h0: M → M
carrying oriented orbits of X1 to oriented orbits of Y1.

A property of vector fields in X r(M) is a proposition P (x1) with a variable
x1 ∈ X r(M). A property P (x1) with a variable x1 ∈ X r(M) is generic if the subset
{x1 ∈ X r(M)/P (x1)} ⊂ X r(M) contains a residual set.

A subset A of a topological space X1 is called residual if and only if A is the
intersection of a countable family of open dense subsets of X1. A topological space
X1 is a Baire space if and only if every residual set is dense. We also know that
every complete metric space and in particular every Banach space is a Baire space.
Also, whether M is compact or not, X r(M) is a Baire space.

In our case, we apply these definitions analogously to the evolution of initial
data into a gravitational collapse leading to a naked singularity or a black hole.
We treat evolving initial data as a vector field or a dynamical system and consider
the space of all initial data with sufficient differentiability defined on a collapsing
compact spherical shell of Type I field, in place of X (M), endowed with a suitable
Cr-topology. Property P of a dynamical system becomes the property of initial
data, namely, whether these initial data lead the collapse to a naked singularity or
a black hole. Thus, the definitions of stability of a naked singularity and genericity
of its occurrence can be stated as follows.

Let I0 be the initial data set, which when evolves, leads the collapse to a NS/BH.
We say that a NS/BH is stable, if there is a neighbourhood I of I0 in Cr-topology
such that, if I1 is another initial data in I, then I1 also leads the collapse to a
NS/BH. In other words, if the set of initial data leading the collapse to a NS/BH
forms an open subset of Cr-space of all initial data, then the NS/BH will be stable.
Similarly, occurrence of a NS/BH will be said to be generic, if the set of all initial
data leading to NS/BH, is a dense subset of the parent Cr-space. All sets of initial
data are required to satisfy the constraint equations, in addition to the energy
conditions.
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4.1 Stability of naked singularity

The analysis in §3 shows that the only conditions on the initial data which evolve
the collapse into a naked singularity are the energy conditions. Hence, for stability,
we have to examine energy conditions only. What we now show is that, the set of
such initial data satisfy energy conditions forms an open subset of the space of all
initial data. For this, we use the technique of Saraykar and Ghate [12]. The energy
conditions ρ≥0, ρ + pr≥0, ρ + pθ≥0 can be written in the form

[3M + rM,r + rv′M,v] ≡ E1 ≥ 0, [3M + rM,r − vM,v] ≡ E2 > 0,

[3wM + rwM,r + w1M,v − rv(v + rv′)M,rv] ≡ E3 ≥ 0,

where w = 2(v+rv′)+rvν,r and w1 = 2r2v′2−(2+r)v2ν,r on the domain D. Here,
we have used an assumption that v is an increasing function of r so that v′ ≥ 0 on
any surface t = tj say, so that no shell-crossing singularity condition (i.e. R′ > 0)
holds, so, this is a valid assumption. We know that as the nuclear fuel exhausts in
a star, it starts collapsing under its tremendous gravitational pull, and in this case,
in the formation of central singularity radial pressure diverges, so we assume radial
pressure pr to be non-negative throughout the gravitational collapse. Therefore,
from eq. (12), we have M,v ≤ 0. Then, E1 ≤ E2. Hence, only E1 and E3 shall take
part in further stability analysis.

We assume that X is an infinite dimensional Banach space of all C2 real-valued
functions defined on D, endowed with the norms

||M(r, v)||1 = sup
D
|M|+ sup

D
|M,r|+ sup

D
|M,v|

and

||M(r, v)||2 = sup
D
|M|+ sup

D
|M,rr|+ sup

D
|M,rv|+ sup

D
|M,vv|.

These norms are equivalent to the standard C1 and C2 norms

||M(r, v)||1 = sup
D

(|M|+ |M,r|+ |M,v|)

and

||M(r, v)||2 = sup
D

(|M|+ |M,rr|+ |M,rv|+ |M,vv|). (36)

Let G = {M(r, v) : M > 0,M is C2, E1 > 0 and E3 > 0 on D} be a subset of X.
We show that G is an open subset of X. For M in G, let us put δ = min(M),

γ = min(E1), β = min(E3), λ = max(w), λ1 = max(w1), λ2 = max(v + rv′) and
λ3 = max(v′) for varying r in [0, rc] and v ∈ [0, 1], the functions involved herein are
all continuous functions defined on a compact domain D and hence, their maxima
and minima exist. We define a positive real number

µ =
1
2

min
{

δ,
γ

9
,

γ

3rc
,

γ

3rcλ3
,

β

12λ
,

β

4rcλ
,

β

4λ1
,

β

4rcλ2

}
.
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Let M1(r, v) be C2 in D with ||M−M1||1 < µ and ||M−M1||2 < µ. Using definition
(36), we get |M1−M| < µ, |M1,r−M,r| < µ, |M1,v−M,v| < µ and |M1,rv−M,rv| < µ
over D. Therefore, for choice of µ, the respective inequalities are

M1 > M− δ

2
> 0, 3|M1 −M| < γ

6
,

r|M1,r −M,r| ≤ rc|M1,r −M,r| < γ

6
,

rv′|M1,v −M,v| ≤ rcλ3|M1,v −M,v| < γ

6
,

3w|M1 −M| < β

8
, rw|M1,r −M,r| ≤ rcλ|M1,r −M,r| < β

8
,

w1|M1,v −M,v| ≤ rcλ1|M1,v −M,v| < β

8
,

rv(v + rv′)|M1,rv −M,rv| < β

8
(37)

that are satisfied on D. The 2nd, 3rd and 4th inequalities from above yield

3|M1 −M|+ r|M1,r −M,r|+ rv′|M1,v −M,v| < γ

2
< γ ≤ E1

Further, we can write |[3M1 + rM1,r + rv′M1,v] − E1| < E1 where E1 > 0 on D.
Hence, [3M1 + rM1,r + rv′M1,v] > 0 on D. Using similar analysis for the last four
inequalities of eq. (37), we obtain [3wM1+rwM1,r +w1M1,v−rv(v+rv′)M1,rv] > 0
on D provided w > 0 and w1 > 0 on D.

Thus, M1 > 0, M1 is C2, [3M1 + rM1,r + rv′M1,v] > 0 and [3wM1 + rwM1,r +
w1M1,v − rv(v + rv′)M1,rv] > 0 on D provided w > 0 and w1 > 0 throughout D.
Therefore, M1(r, v) also lies in G and hence, G is an open subset of X.

The conditions w > 0 and w1 > 0 required for openness of G on D, impose
conditions on the function ν(t, r), ν(t, r) = A(t, R) and A − ∫

A,tdt = r2g2(r, v).
Therefore, h(r, v) = er2g2(r,v)−1/r2 is constrained by the conditions w > 0 and
w1 > 0 in domain D. Now, let Y be an infinite dimensional Banach space of all C1

real-valued functions defined on D. The set H of functions h(r, v) with restrictions
w > 0 and w1 > 0 would form (by similar technique) an open subset of Y . Then
G ×H is an open subset in the product space X × Y .

Taking (M1, h1(r, v)) in the neighbourhood of (M, h(r, v)) in G×H, and using eq.
(34) analogously for M1 and h1, we have a choice of infinitely many B1(r, v), such
that for each such B1(r, v), there will exist a unique b1(r) so that the initial data of
mass function r3M1 and h1(r, v) together will lead the collapse to the formation of
a naked singularity. Thus, naked singularity arising from (M, h(r, v)) is C2-stable
in the sense defined above.

The analysis given above, guarantees the existence of a metric function ν(t, r)
for a given initial data set. Such choice of ν(t, r) and expressions for G and H
together will yield the metric (1) as an exact solution leading to the occurrence
of naked singularity. Thus, the given initial data and the weak energy conditions
above determine the matter distribution and the metric of the space-time.
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4.2 Genericity of NS/BH

Let us discuss the genericity of the occurrence of these singularities. We have seen
that in Type I matter field collapse, the end state of collapse is governed by the
choice of initial data. As explained above, occurrence of a NS is generic if the set
G × H of ‘true’ initial data (M, h(r, v)), contains a residual set in the space. The
space X × Y contains negative functions which cannot be realized as a limit of the
sequence of positive functions belonging to G × H. Hence, G × H is not dense in
X × Y . The space under consideration is a Banach space. Every complete metric
space and in particular every Banach space is a Baire space, and since in a Baire
space, every residual set is dense, it follows that G × H is not residual. Therefore,
we conclude that occurrence of naked singularities is not C2-generic. Further, since
the set G ×H is open, it cannot be nowhere dense and hence G ×H is not a meagre
set either. Thus, it is a substantially ‘big’ set.

5. Special case pr = pr(r)

The case pr = 1 has been studied by Goswami and Joshi [13] and it is shown that
the presence of a non-vanishing pressure gradient gives rise to either the formation
of NS or a BH [13]. We illustrate the above analysis by studying a special case
where pr is a function of r alone. It gives a more clear picture of the occurrence
of naked singularity and its stability. We choose two allowed free functions pr and
ν(t, r) as follows:

pr = pr(r), ν(t, r) = c(t) + η(R). (38)

Now, let us see, how the Einstein’s field equations react to this choice which will
decide the evolution of collapse. As pr is a function of r alone, integrating eq. (4),
we obtain

F (t, r) = −pr

3
R3 + z(r), (39)

where z(r) is another arbitrary function of r. We need to choose z(r), z(r) =
2
3r3pr(r) so that the mass function takes the form

F =
pr

3
(2r3 −R3) (40)

that satisfies the regularity conditions at the initial epoch F (ti, r) = prr
3/3 and

F (ti, 0) = 0. Therefore, F ≥ 0 provided pr ≥ 0. Hence, non-negativity of radial
pressure shall maintain non-negativity of mass function throughout the gravita-
tional collapse. Next, eq. (3) becomes

ρ =
1
3

3pr(2r2 −R2R′) + p′r(2r3 −R3)
R2R′

. (41)

The density blows up at the singularity in the limit of approach to the singularity,
i.e., as r → 0 and t → ts. At the initial epoch t = ti,
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ρ = pr +
1
3
rp′r ≥ 0, (42)

an all important relation between energy density and radial pressure at the initial
epoch.

Equation (6) takes the form

G = e2η(R)dp(r), (43)

where dp(r) = 1 + r2bp(r) where bp is the energy distribution function for the
collapsing shells. Using eq. (38) in eq. (5), we obtain

(ρ + pr)η,RR′R = 2(pθ − pr)R′ −Rp′r. (44)

Since the density blows up at the singularity, from the above equation, it is clear
that the tangential pressure also blows up in the limit of approach to the singularity.
Further, we find that all the initial data are not independent at the initial epoch
t = ti

(ρ + pr)η,Rr = 2(pθ − pr)− rp′r. (45)

Above equation and eq. (42) suggest that bp, radial and tangential pressures will
be sufficient to form initial data set for the collapse. We are going to show the
existence of bp through pr and pθ. Therefore, we consider pr, pθ as an initial data
set. Using this initial data prescribed at the initial epoch t = ti to evolve the
collapse, we can integrate eq. (44) and obtain,

η(R) =
∫ R

0

2(pθ0 − pr0)−Rp′r
R(ρ0 + pr0)

dR. (46)

Thus, velocity distribution function η(R) is determined by smooth functions pr

and pθ. Using eqs (40) and (43), eq. (7) can be written as

√
RṘ = −a(t) eη

√
[1 + r2bp]Re2η −R + (pr/3)(2r3 −R3), (47)

where a(t) is a function of time and we choose a(t) = 1 by suitable scaling of time
coordinate.

We define

hp(R) =
e2η(R) − 1

R2
= 2gp(R) + O(R2). (48)

Using this definition, eq. (47) takes the form

√
v v̇ = −

√
vbpe4η + e2η[v3hp(rv) + (pr/3)(2− v3)]. (49)

Integrating the above equation, we obtain

t(v, r) =
∫ 1

v

√
vdv√

ve4ηbp + e2η[v3hp(rv) + (pr/3)(2− v3)]
, (50)
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where the variable r is treated as a constant. Further, the time taken for the central
shell to reach the singularity is given by

ts0 =
∫ 1

0

√
vdv√

vbp(0) + v3hp(0) + (pr/3)(0)(2− v3)
(51)

and ts0 is well-defined provided [vbp(0)+v3hp(0)+ pr(0)(2−v3)/3 ] > 0. The time
taken for other shells to reach the singularity can be determined from the Taylor
expansion of t(v, r) around r = 0 as t → ts,

ts(r) = ts0 + rχp(v) + O(r2), (52)

where χp(v) = dt(v, r)/dr|r=0 and

χp(v) = − 1
2

∫ 1

v

√
v[vb′p(0) + v4hp,r(0) + (p′r(0)/3)(2− v3)]

[vbp(0) + v3hp(0) + (pr(0)/3)(2− v3)]3/2
dv. (53)

For any constant v surface, we have d(v) = 0 which implies
√

vv̇ = −(1/χp(v))
√

vv′.
Now, eq. (49) takes the form

√
vv′ = χp(v)

√
vbp(0) + v3h(0) +

pr(0)
3

(2− v3) + O(r2). (54)

The radial null geodesic eq. (24) in the variables (u = rα, R) as t → ts, r → 0,
gives

x
3/2
0 =

3
2
χp(0)

√
2
3
pr(0). (55)

From eq. (53), it is clear that χp(v) depends on the functions bp(0), hp(0), pr(0)
and these functions, in turn, depend on the given set of density, pressure and
velocity function ν. Therefore, eq. (55) depicts that tangent to the singularity
curve t = ts0 is completely determined by the given set of initial data and radial
pressure in particular. The radial null geodesic emerging from the singularity in
(R, u) coordinates is R = x0u, while in (t, r) plane, the null geodesic near the
singularity is given by t− ts(0) = x0r

5/3.
It is clear that if χp(0) > 0 then x0 > 0 and with this, we get radially outgoing null

geodesics coming out from the singularity, giving rise to a naked central singularity.
However, no such trajectory comes out if χp(0) < 0 as we have a black hole situation.
Thus, we have some region of space-time for which χp(0) > 0 depending on initial
data, leading to occurrence of central naked singularity in that space-time region.
Therefore, we choose bp to satisfy the following differential equation on a constant
v-surface:

1
2

√
v[vb′p(r) + v4hp,r(rv) + (p′r(r)/3)(2− v3)]

[vbp(r) + v3hp(rv) + (pr(r)/3)(2− v3)]3/2
dv = B(r, v), (56)

where B(r, v) is a continuous function defined on D such that
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1
2

√
v[vb′p(0) + v4hp,r(0) + (p′r(0)/3)(2− v3)]

[vbp(0) + v3hp(0) + (pr(0)/3)(2− v3)]3/2
dv = B(0, v) < 0

for all v ε [0, 1]. (57)

It then follows that

χp(0) = lim
v→0

χp(v) = −
∫ 1

0

B(0, v)dv > 0. (58)

The above requirement ensures the nakedness of central shell-focusing singularity.
Now, we discuss existence of bp as a solution of the differential equation (56). For
this, we use

y(r, v) = vbp(r) + v3hp(rv) +
pr(r)

3
(2− v3) (59)

a continuous function of r, in eq. (56), and we obtain

dy

dr
=

1√
v

[
2B(r, v)y3/2

]
≡ ϕ(y, r) (60)

with initial condition

y(0, v) = vbp(0) + v3hp(0) +
pr(0)

3
(2− v3). (61)

This initial value problem defined throughout the cloud has a C1-function y(r, v)
as its unique solution defined over the entire cloud. Using the arguments of general
case (§3) for the function ϕ(y, r) and B(r, v)) a weaker condition

0 ≤ |B(r, v)|y3/2 ≤ n
√

v

2rc
(62)

holds for all r in [0, rc] and v ∈ [0, 1] where n is a finite number such that 0 ≤ y ≤ n.
This condition holds true for y restricted to a bounded domain and the collapse
may start with rc small enough. Therefore, there are infinitely many choices for
the function B(r, v), which is continuous and satisfies conditions (57) and (62) for
each choice of v. For each such B(r, v), there will be a unique solution y(r, v) of the
differential equation (60), satisfying initial condition (61), defined over the entire
cloud. This unique solution y(r, v) for each such choice of B(r, v) yields

bp =
y(r, v)− v3hp(rv)− (pr(r)/3)(2− v3)

v
(63)

over [0, rc]. As each function appearing in the above expression is continuous, the
condition holds true as v → 0, because of continuity. We know that velocity
distribution function η(R) is determined through smooth functions pr, pθ on a
given constant v-surface, which in turn, through eq. (48) determines the function
hp(rv). Thus, for a given constant v-surface and given initial data of radial and
tangential pressures pr and pθ, there exists infinitely many choices of the function
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bp such that condition (57) is satisfied. We have thus proved the existence of energy
distribution function bp for a given set of initial data leading to the occurrence of
a naked central shell-focusing singularity.

Now, we illustrate the stability of occurrence of NS. For simplicity, we consider
the evolution of initial data on the initial surface t = ti where v = 1 and v′ = 0.
Using eqs (42) and (45), the energy conditions ρ≥0, ρ + pr≥0, ρ + pθ≥0 can be
described as

ρ = pr +
1
3
rp′r ≡ K1 ≥ 0, 2pr +

1
3
rp′r ≡ K2 ≥ 0,

2(2 + rη,R)pr +
[
1 +

1
3
(2 + rη,R)

]
rp′r ≡ K3 ≥ 0.

We denote by Xp an infinite dimensional Banach space of all C1 real-valued func-
tions defined on [0, rc], endowed with the C1 norm. Let Gp = {pr(r): pr > 0, pr is
C1,K1 > 0 and K3 > 0 on [0, rc]} be a subset of Xp.

Now, we have to show that Gp is an open set in Xp. For pr in Gp, we put
α1 = min(pr), α2 = min(K1), α3 = min(K3), and λp = max(2 + rη,R). We define
a positive real number

µ =
1
2

min
{

α1,
α2

3
,
α2

rc
,

α3

6λp
,

α3

3rc
,

α3

3rcλp

}
.

Let pr1(r) be C1 in [0, rc] with ||pr−pr1 || < µ. Now, using definition of standard
C1 norm, we get |pr−pr1 | < µ and |p′r−p′r1

| < µ over [0, rc]. Then, for each choice
of µ, the respective inequalities

pr1 > pr − α1

2
> 0, |pr1 − pr| < α2

6
,

1
3
r|pr′1 − p′r| ≤

1
3
rc|p′r1

− p′r| <
α2

6
,

2(2 + rη,R)|pr1 − pr| ≤ 2λp|pr1 − pr| < α3

6
,

r|pr′1 − p′r| ≤ rc|p′r1
− p′r| <

α3

6
,

r

3
(2 + rη,R)|p′r1

− p′r| ≤ rcλp|p′r1
− p′r| <

α3

6
,

are satisfied in [0, rc]. Using the above inequalities analogous to the general case,
we obtain pr1 > 0, [pr1 + rp′r1

/3] > 0, [2(2 + rη,R)pr1 + [1 + (2 + rη,R)/3]rp′r1
] > 0,

provided (2 + rη,R) > 0 on [0, rc]. Therefore, pr1 ∈ Gp and hence, Gp is an open
set in Xp.

The function η(R) is determined by pr, pθ on the given constant v-surface and
the condition (2 + rη,R) > 0 is necessary for openness of the set Gp. Therefore, the
C1 function hp(R) = (e2η(R) − 1)/R2 is also determined by the initial data pr, pθ

on a given constant v-surface constrained with (2 + rη,R) > 0 on [0, rc]. Let Hp be
a subspace of Xp containing such initial data hp(R). Then Gp ×Hp is an open set
in the product space Xp ×Xp.

Let (pr1 , hp1(r)) be in the neighbourhood of (pr, hp(r)) in Gp × Hp. Using eq.
(62) analogously for pr1 and hp1(r), we have a choice of infinitely many B1(r, 1),
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such that for each such B1, there will exist a unique b1(r) so that the initial data
pr1 and hp1(r) together will lead the collapse to form a naked singularity. Thus,
naked singularity arising from the initial data (pr, hp(r)) is C1-stable. Thus, this
particular case illustrates clearly how the choice of initial data leads the collapse to
a naked singularity and how it is stable under small perturbations of initial data in
an appropriate mathematical sense.

6. Discussion and conclusions

1. Our main conclusions in the paper are the following:

(a) Given a C2-mass function M(r, v) and a C1-function h(r, v), on any v =
constant surface, we find a C1-energy distribution function b(r) such
that the collapse ends in a naked singularity.

(b) With physically reasonable conditions put on mass function M, and with
C1-function h(r, v), the initial data consisting of (M, h(r, v)) leading the
collapse to a naked singularity forms an open subset of the space X×Y .
This establishes stability of naked singularity with respect to initial data.

2. Similar analysis for the case χ(0) < 0 (that is B(0, v) > 0 for all v in [0, 1])
shows that the set G×H of ‘true’ initial data (M, h(r, v)), leading the collapse
to a black hole forms an open set and it is neither dense nor nowhere dense
in the space of all initial data. Thus, occurrence of black hole is stable but
not generic.

3. Our analysis is carried out with the given initial data on a constant v-surface.
Hence, the role of M and b(r) can be interchanged (refer eq. (35)) such that
the mass function would evolve in the continuous gravitational collapse.

4. The conditions w > 0 and w1 > 0 which occurred in our stability analysis
of NS (general case) can yield some information about the function ν. For
simplicity, let us consider these conditions on the initial surface t = ti. For
w > 0, we obtain ν,r > −2/r for all r ∈ [0, rc]. This means ν,r ∈ (−2/rc,∞).
Next, for w1 > 0, we get [−(2+ r)ν,r] > 0. This implies ν,r ∈ (−∞, 0). Thus,
common domain of ν,r is (−2/rc , 0). Therefore, ν is a decreasing function of
r in [0, rc] for sufficiently small rc.

The case [2 + rη,R] > 0 yields η,r ∈ (−2/rc,∞), and therefore, η(r) is
a decreasing function of r in [0, rc]. Since, the above said condition can be
written as [6(pr + pθ)− rp′r] > 0, it means C1-stability of occurrence of NS is
associated with initial data pr and pθ such that [6(pr + pθ) − rp′r] > 0. It is
this choice of data that gives rise to stable NS.

5. The space X used in the analysis is an infinite-dimensional Banach space, and
as such, is not locally compact. It is not therefore, straightforward to define
a measure on this space. Hence, we cannot say whether the set G is of zero
measure or not. However, as mentioned earlier, G is not meagre, and thus, it
is a substantially ‘big’ set. Similar argument is applicable to the set G × H
in the product space X × Y . We believe that rigorous analysis that we have
done shall help further in understanding the gravitational collapse of Type I
matter fields.
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