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Droplet dynamics on patterned substrates

A DUPUIS and J M YEOMANS
The Rudolf Peierls Centre for Theoretical Physics, University of Oxford,
1 Keble Road, Oxford OX1 3NP, UK
E-mail: yeomans@thphys.ox.ac.uk

Abstract. We present a lattice Boltzmann algorithm which can be used to explore the
spreading of droplets on chemically and topologically patterned substrates. As an example
we use the method to show that the final configuration of a drop on a substrate comprising
hydrophobic and hydrophilic stripes can depend sensitively on the dynamical pathway by
which the state is reached. We also consider a substrate covered with micron-scale posts
and investigate how this can lead to superhydrophobic behaviour. Finally we model how
a Namibian desert beetle collects water from the wind.
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1. Introduction

A droplet in contact with a substrate will try to spread to an equilibrium shape
determined by a balance of surface tensions. This shape, and the droplet’s ability
to reach it, will be affected by any chemical or topological heterogeneities on the
surface. Until recently such disorder was usually regarded as a nuisance. However,
with the advent of microfabrication techniques it has become possible to control
the chemical or topological patterning of a surface on micron length scales, leading
to the possibility of exploring new physics and to novel applications.

An interesting natural example is the Namibian desert beetle which collects water
on its back from a fog-laden wind [1]. The beetle’s back is bumpy and covered with
alternating hydrophobic and hydrophilic regions. Large drops of water condense
onto the hydrophilic bumps. The size of the drops then allows them to roll against
the wind into the beetle’s mouth.

A second example is the lotus leaf which has a surface covered with microscale
asperities. These lead to the leaf being superhydrophobic and allow it to shed water
droplets easily.

Increasingly, ink-jet printing is becoming an important technique, not only for
producing images, but also for device design. For example circuits can be printed
using a polymer ink [2], three-dimensional structures can be built up from successive
printed layers [3]. The droplets involved in printing typically have length scales of
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tens of microns and it is important to understand how their spreading depends on
the properties of the substrate onto which they are printed. Experimental work
on such mesoscopic drops is difficult and expensive because of the length and time
scales involved. Therefore there is a need for numerical modelling both to investi-
gate the underlying physics and to help design the experiments.

Therefore in this paper we describe a lattice Boltzmann algorithm which can
be used to investigate the dynamics of droplets evolving on patterned substrates.
Lattice Boltzmann is a particularly appropriate approach in that it solves the
Navier–Stokes equations but also inputs the thermodynamics information, such as
the surface tensions and wetting angles, needed to describe the droplet behaviour.

In §2 we summarise the algorithm and, in particular, the boundary conditions
needed to correctly impose a chosen contact angle at the surfaces. Section 3 shows
results for surfaces patterned with alternate hydrophobic and hydrophilic stripes.
We find that the final droplet shape depends on the point at which the drop impacts
the substrate. In §4, we show how the algorithm can be used to handle surfaces with
topological patterning and, in particular, to reproduce superhydrophobic behaviour.
A simulation reproducing the way a Namibian desert beetle collects water on its
back is presented in §5. This is a lovely example combining both chemical and
topological patterning.

2. The lattice Boltzmann algorithm

2.1 Thermodynamics

We consider a liquid–gas system of density n(r) and volume V . The surface of the
substrate is denoted by S. The equilibrium properties are described by the free
energy

Ψ =
∫

V

(
ψb(n) +

κ

2
(∂αn)2

)
dV +

∫

S

ψc(n) dS. (1)

ψb(n) is the free energy in the bulk. We choose a van der Waals form

ψb(n) = pc (νn + 1)2 (ν2
n − 2νn + 3− 2βτw), (2)

where νn = (n − nc)/nc, τw = (Tc − T )/Tc and pc = 1/8, nc = 7/2 and Tc = 4/7
are the critical pressure, density and temperature respectively and β is a constant
typically equal to 0.1. The bulk pressure

pb = pc(νn + 1)2(3ν2
n − 2νn + 1− 2βτw). (3)

The derivative term in eq. (1) models the free energy associated with an interface.
κ is related to the surface tension. ψc(ns) = φ0 − φ1ns + · · · is the Cahn surface
free energy [4] which controls the wetting properties of the fluid.

The lattice Boltzmann algorithm solves the Navier–Stokes equations for this
system. Because interfaces appear naturally within the model it is particularly
well-suited for looking at the behaviour of moving drops.
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Figure 1. Topology of a D3Q15

lattice. The directions i are num-

bered and correspond to the veloc-

ity vector vi.

2.2 The numerical scheme

The lattice Boltzmann approach follows the evolution of partial distribution func-
tions fi on a regular, d-dimensional lattice formed of sites r. The label i denotes
velocity directions and runs between 0 and z. DdQz +1 is a standard lattice topol-
ogy classification. The D3Q15 lattice we use here has the following velocity vectors
vi: (0, 0, 0), (±1,±1,±1), (±1, 0, 0), (0,±1, 0), (0, 0,±1) in lattice units as shown
in figure 1. The lattice Boltzmann dynamics are given by

fi(r + ∆tvi, t + ∆t) = fi(r, t) +
1
τ

(f eq
i (r, t)− fi(r, t)) , (4)

where ∆t is the time step of the simulation, τ the relaxation time, and f eq
i

the equilibrium distribution function which is a function of the density n =∑z
i=0 fi and the fluid velocity u, defined through the relation

nu =
z∑

i=0

fivi. (5)

The relaxation time tunes the kinematic viscosity as [5]

ν =
∆r2

∆t

C4

C2

(
τ − 1

2

)
, (6)

where ∆r is the lattice spacing and C2 and C4 are coefficients related to the topology
of the lattice. These are equal to 3 and 1 respectively when one considers a D3Q15
lattice.

It can be shown [6] that eq. (4) reproduces the Navier–Stokes equations of a
non-ideal gas if the local equilibrium functions are chosen as

f eq
i = Aσ + Bσuαviα + Cσu2 + Dσuαuβviαviβ + Gσαβviαviβ , i > 0,

f eq
0 = n−

z∑

i=1

f eq
i , (7)
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where Einstein notation is understood for the Cartesian labels α and β and where
σ labels velocities of different magnitude. A possible choice of the coefficients is [7]

Aσ =
wσ

c2

(
pb − κ

2
(∂αn)2 − κn∂ααn + νuα∂αn

)
,

Bσ =
wσn

c2
, Cσ = −wσn

2c2
, Dσ =

3wσn

2c4
,

G1γγ =
1

2c4

(
κ(∂γn)2 + 2νuγ∂γn

)
, G2γγ = 0,

G2γδ =
1

16c4
(κ(∂γn)(∂δn) + ν(uγ∂δn + uδ∂γn)) , (8)

where w1 = 1/3, w2 = 1/24 and c = ∆r/∆t.

2.3 Wetting boundary conditions

The major new challenge in dealing with patterned substrates is to handle the
wetting boundary conditions correctly. For flat substrates a boundary condition
can be established by minimising the free energy (1) [4]

ŝ · ∇n = −φ1

κ
, (9)

where ŝ is the unit vector normal to the substrate. It is possible to obtain an
expression relating φ1 to the contact angle θ as [8]

φ1 = 2βτw

√
2pcκ sign

(π

2
− θ

) √
cos

α

3

(
1− cos

α

3

)
, (10)

where α = cos−1(sin2 θ) and the function sign returns the sign of its argument.
Equation (9) is used to constrain the density derivative for sites on a flat part

of the substrate. However, no such exact results are available for sites at edges or
corners. We work on the principle that the wetting angle at such sites should be
constrained as little as possible so that, in the limit of an increasingly fine mesh,
it is determined by the contact angle of the neighbouring flat surfaces. Details can
be found in [9,10].

Finally we note that the usual no-slip boundary condition is imposed on the
velocity [7].

3. Chemical patterning

As an example of chemical patterning we consider surfaces formed by alternating
hydrophobic and hydrophilic stripes. Figure 2 shows such a substrate, where hy-
drophilic stripes, which correspond to a contact angle 5◦ are shown in dark grey
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Figure 2. Droplet spreading on a chemically striped surface. Hydrophilic
and hydrophobic stripes appear dark and pale respectively. (a) The point of
impact is closer to the hydrophobic stripe center. (b) It is closer to the stripe
boundary. The other parameters are identical in (a) and (b).
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and hydrophilic stripes which correspond to a contact angle 64◦ are shown in light
grey. The ratio of stripe widths is 4 : 7.

The figure shows, top to bottom, the time evolution of a drop jetted on the
substrate. The only difference between the left-hand and right-hand sequences in
the figure is the initial point of contact: it is apparent that changing this can
lead to a very different final state. If the drop lands close to mid-way between
two hydrophilic stripes, and is able to reach both of them as it spreads, its final
shape is a butterfly-like configuration. If, however, it lands sufficiently close to one
stripe that it never reaches the neighbouring stripe it prefers to lie predominantly
on a single hydrophilic stripe. Both final configurations have similar free energies,
however the global equilibrium is the butterfly shape. These equilibrium shapes
were found to quantitatively match experiments [11]. The final configuration is
also influenced by the jetting velocity [11]: as expected a higher impact velocity
favours the butterfly configuration.

The following lattice Boltzmann parameters were used. The initial droplet radius
R0 = 30 lattice sites. The droplet was initialised with a vertical velocity equal to
U0 = 0.02. The lattice geometry was Lx×Ly×Lz where Lx and Ly were chosen large
enough to not affect the behaviour of the droplet and Lz = 40. The relaxation time
τ = 0.63. The surface tension related parameter κ = 0.0012. The temperature
T = 0.4 which leads to two phases of density nl = 4.128 and ng = 2.913. The
simulations were run for 400,000 iterations. If these values are mapped onto the
physical viscosity, surface tension and density of water then the drop sizes are of
the order of microns.

4. Topological patterning

We now apply the algorithm to topological patterning in order to reproduce the
superhydrophobic behaviour of a drop on a substrate patterned by square posts.

Figure 3 shows the final state attained by the droplet for different substrates
and initial conditions. For comparison, figure 3a shows a planar substrate. The
equilibrium contact angle is θa = 110o = θinput as expected [7]. In figure 3b the
substrate is patterned and the initial velocity of the drop is zero. Now the contact
angle is θb = 156o, a demonstration of superhydrophobic behaviour. Figure 3c
reports an identical geometry but a drop with an initial impact velocity. Now the
drop is able to collapse onto the substrate and the final angle is θb = 130o. These
angles are compatible with the ones reported in [12] where similar parameters are
considered.

For the parameter values used in these simulations the state with the droplet
suspended on the posts has a slightly higher free energy than the collapsed state.
The suspended state is a metastable state but the droplet, with diameters smaller
than the capillary length, needs an impact velocity to reach the true thermodynamic
ground state. For macroscopic drops gravity will also be important in determining
whether the drop remains suspended on top of the posts [13].

The size of the domain is Lx × Ly × Lz = 80 × 80 × 80 and the height, spacing
and width of posts are h = 5, d = 8 and w = 4 respectively. A spherical droplet
of radius R = 30 is initially centered around the point (x; y; z) = (41; 41; 36). The
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Figure 3. Final states of a spreading droplet. The right column reports
cuts at y = 41. (a) The substrate is flat and homogeneous. (b) The sub-
strate is decorated with posts and the initial velocity of the droplet is 0. (c)
Same geometry as (b) but the droplet reaches the substrate with a velocity
0.01∆r/∆t. Each of these simulations ran for approximately 8 h on eight
processors on a PC cluster.

contact angle θinput = 110o is set on every substrate site. The surface tension and
the viscosity are tuned by choosing parameters κ = 0.002 and τ = 0.8 respectively.
The liquid density nl and gas density ng are set to nl = 4.128 and ng = 2.913 and
the temperature T = 0.4. Gravity is not considered.
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5. Water capture by a desert beetle

As an example combining both chemical and topological patterning, we consider
the process by which a beetle species living in the Namibian desert collect drinking
water on its back from a fog-laden wind [1].

The beetle’s back is covered by tiny peaks of diameter ∼ 0.5 mm. The whole
structure except the top of the peaks is coated in wax which forms a bumpy hy-
drophobic surface, whereas the top of the peaks are hydrophilic.

By tilting its body forward into the wind, the beetle collects water from dense
fog. The water condenses into droplets which settle at the top of the peaks. Once
the droplets collected are large enough they spread beyond the peaks and may
eventually coalesce with a neighbour to form a larger drop. This drop is then
heavy enough to roll downwards against the wind to reach the mouth of the beetle.

We demonstrate the ability of our model to deal with patterned substrates by
considering a domain of size Lx×Ly×Lz = 50×50×30 covered by four lx×ly×lz =
10× 10× 5 peaks. The minimum distance between the centers of the peaks is 20.
The equilibrium contact angle is set to 70o on every surface site apart for those
located at the top of the peaks where it is equal to 35o. The surface tension and
the viscosity are tuned by choosing parameters κ = 0.002 and τ = 0.8 respectively.
The liquid density nl and gas density ng are set to nl = 4.128 and ng = 2.913 and
the temperature T = 0.4. The system is initialised with a gas density greater than
the equilibrium value (n0

g = 3.07) and a body force G = (0, 0, 8 · 10−8) is imposed
to play the role of gravity.

Simulation results are presented in figure 4. Fluid initially condenses at the top
of the peaks because of their hydrophilic nature. Due to the high water saturation,
the droplets continue to spread beyond the hydrophilic area until they coalesce to

t = 0 t = 1000 t = 3500

t = 5000 t = 10 000 t = 20 000

Figure 4. Fog condensing on a beetle’s back. The top of the posts are
hydrophilic, the remainder of the substrate is hydrophobic. t labels the time
in simulation units.
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form a bumpy ring. Surface tension causes the ring to shrink and eventually to
form a single droplet which may be sufficiently large to roll into the wind to reach
the beetle’s mouth.

6. Conclusions

We have described a lattice Boltzmann model able to follow the behaviour of drops
spreading on topologically and chemically patterned substrates. The algorithm
gives us the capability to explore a wide variety of droplet behaviours on novel
substrates and in microfluidic devices. For example, we are interested in gaining
a greater understanding of how drops move across superhydrophobic surfaces [9].
Moreover there is interesting work to be done exploring the dynamics of wetting in
wedges.
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