
PRAMANA c© Indian Academy of Sciences Vol. 64, No. 6
— journal of June 2005

physics pp. 981–989

Polymer mixtures in confined geometries:
Model systems to explore phase transitions
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Abstract. While binary (A,B) symmetric polymer mixtures in d = 3 dimensions have
an unmixing critical point that belongs to the 3d Ising universality class and crosses over
to mean field behavior for very long chains, the critical behavior of mixtures confined into
thin film geometry falls in the 2d Ising class irrespective of chain length. The critical
temperature always scales linearly with chain length, except for strictly two-dimensional

chains confined to a plane, for which Tc ∝ N5/8 (this unusual exponent describes the
fractal contact line between segregated chains in dense melts in two spatial dimensions,
d = 2). When the walls of the thin film are not neutral, but preferentially attract one
species, complex phase diagrams occur due to the interplay between capillary condensation
and wetting phenomena. For ‘competing walls’ (one wall prefers A, the other prefers
B) particularly interesting interface localization–delocalization transitions occur, while
analogous phenomena in wedges are related to the ‘filling transition’.
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1. Introduction

Symmetric binary (A,B) polymer blends are model systems for the theoretical and
experimental study of phase separation, since the chain length NA = NB = N can
(in principle) be varied over a wide range, and variation of this control parameter
changes the entropy but does not affect the enthalpic forces between the monomers.
In addition, the large size of the polymer coils (measured by the gyration radius
Rg ≈ a

√
N/6 where a is the size of an effective monomer) allows us to apply addi-

tional experimental techniques; e.g., nuclear reaction analysis allows us to measure
the concentration profile across unmixed polymer films [1,2].

The enthalpic forces between the atoms of the two species in a polymer mixture
are similar to a mixture of small molecules while the entropy of mixing is down by a
factor of N [3–5]. Therefore the critical temperature Tc of the unmixing transition
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scales linear with chain length, kBTc ≡ zcNε, where (for a lattice model such as
the bond fluctuation model [6] on the simple cubic lattice [7]) ε is the strength
of the (square-well) potential between the effective monomers and zc the effective
coordination number [8–10]. This linear scaling has been nicely confirmed both by
computer simulations in d = 3 dimensions [8,9,11,12] and by experiment [13].

For N → ∞ even the prefactor in the relation between Tc and N is accurate
[8–10], while for finite N there are 1/

√
N -type corrections [8,9] due to the ‘cor-

relation hole effect’ [4] and concentration fluctuations neglected in the mean field
theories. The fact that the Flory–Huggins mean field theory [3–5] becomes quan-
titatively accurate is due to the strong interpenetration of the Gaussian polymer
coils: since within the volume (V ≈ 4πR3

g/3) that one coil occupies the density of its
own monomers ρ scales as ρ = N/V ∝ N−1/2, each chain interacts with N1/2 other
chains in a dense melt. The situation is similar to an Ising model with a large range,
R, of the interaction [14], and as in the latter model, one can observe an interesting
cross-over in the critical behavior from mean field-like (if the reduced distance |t|
from Tc, t = 1− T/Tc, exceeds by far the ‘Ginzburg number’ Gi, |t| À Gi [14,15])
to the 3d Ising universality class [17], for |t| ¿ Gi. Note that Gi ∝ 1/N for binary
polymer mixtures [16]. The cross-over scaling [14] has been tested successfully for
polymer mixtures both in simulations [12] and in experiment [18].

However, the situation changes completely when we consider polymer blends
confined in thin films, mean field theory loses its validity, critical behavior of the 2d
Ising universality class and interesting cross-over behavior occur [10,19,20]. This
problem is considered in the following sections.

2. Strictly two-dimensional polymer blends

Since no two monomers can sit on top of the other, in d = 2 chains cannot cross,
and hence in dense melts in d = 2 chains are well-segregated from each other. While
in the dilute case one has Rg ∝ Nν and ν = 3/4 in d = 2 [4], in a dense melt one
still has Rg ∝ N1/2, but unlike the case of d = 3 only monomers at the outer
contour of a coil can have contacts with monomers of the other chains, while (for
short-range interactions) monomers in the interior of a coil have only intrachain
contacts, which do not contribute to phase separation, and no interchain contacts.
While in d = 3 each chain has zcN interchain contacts and for N → ∞, zc tends
to a finite constant, we expect that zc ∝ N−x in two dimensions, where x is an
exponent that is discussed below, and hence we expect that Tc ∝ N1−x. If the coils
in d = 2 were simply compact disk-like objects, we would expect that the outer
contour scales like R ∝ N1/2 and hence also [10] x = 1/2. However, this picture is
too simple, and actually one can show that the outer contour of a chain in a dense
melt is a fractal object [21] of length ` ∝ N5/8, and hence x = 3/8. This yields the
prediction Tc ∝ N5/8 in d = 2.

In order to study this problem numerically, the bond fluctuation model on the
simple cubic lattice in the L×L×D geometry is considered. In this model, each effec-
tive monomer blocks all the eight sites of an elementary cube, and these monomers
are connected by bond vectors ~b which may have the lengths b = 2,

√
5,
√

6, 3
and

√
10, respectively. We measure all lengths in units of the lattice spacing. The
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Figure 1. (a) Effective coordination number zc plotted vs. N−1/2. The
dash–dotted line shows the approximation [10] appropriate for segregated com-
pact coils, zc = 2πρd3

ε/(3
√

6Rg). However, the best fit to all data points yields
an effective power law [10] zc ∝ N−0.43. For d = 3 [8] zc = 2.1 + 2.8/

√
N .

(b) Log–log plot of the critical temperature kBTc/ε plotted vs. chain length
N . The straight lines indicate the power laws Tc ∝ N and Tc ∝ N1/2, re-
spectively. However, the best fit to all 2d data yields an effective power law
Tc ∝ N0.65 [10]. The inset presents the mapping of the normalized order pa-
rameter distribution at criticality onto the universal curve which characterizes
the 2d Ising universality class [24]. From Cavallo et al [10].

chain length N is varied from 16 to 256, and the linear dimensions chosen are
L = 256 for N ≤ 128 and L = 512 for N = 256, while D has the minimum value,
D = 2. So the film is strictly two-dimensional, choosing hard impenetrable but
neutral walls at z = 0 and z = D + 1 = 3, while in x and y directions periodic
boundary conditions are used. We choose a volume fraction ρ = 0.5 of occupied
sites, as in the case d = 3 [7–9,11,12]. The number of chains is then ρL2/4N . As
interaction between monomers, we use the most symmetric square well potential
εAA = εBB = −εAB = −ε of range dε =

√
5 as in previous work in d = 3. For

planar configurations, this choice comprises 12 lattice sites instead of 54 as in d = 3.
Monte Carlo simulations were carried out [10,20] in the semi-grandcanonical en-

semble [8,9,11,12], i.e., both ρ and T are fixed, as well as the chemical potential
difference ∆µ between the two species. Chain configurations were updated by the
‘random hopping’ and ‘slithering snake’ algorithms [22], while the relative con-
centration of A chains, which constitutes the order parameter of the unmixing
transitions, is relaxed by randomly attempted interchanges of A and B labels at
fixed polymer conformation [5,9,10,22]. Initial configurations were generated by the
‘configurational bias’ method [23].

Figure 1a shows a plot of the effective coordination number zc vs. N−1/2,
defining zc from the intermolecular pair correlation function g(~r ) via zc =
(ρ/4)

∫
r≤dε

d2~r g(~r ). The best fit to the data yields [10] zc ∝ N−0.43, interme-
diate between the geometric estimate [10] zc ∝ N−1/2 and the prediction [21]
zc ∝ N−3/8 = N−0.375. Figure 1b shows the results for the critical temperature.
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While in d = 3 the asymptotic linear scaling Tc ∝ N is clearly seen, for d = 2
a weaker increase of Tc with chain length occurs. The best fit quoted in [10],
Tc ∝ N0.65, is rather close to the prediction [21] Tc ∝ N5/8 = N0.625. It is
also interesting to note that the critical behavior (tested, e.g., via the universal
order parameter distribution P (m) at criticality [24]) is always nicely compatible
with the 2d Ising class, no cross-over to mean field behavior occurs for which log
P (m) ∝ −m4. This is easily understood from the Ginzburg criterion [12,14,15]: the
Ginzburg number Gi depends on the dimensionality d, i.e., Gi ∝ [N/(ρRd

g)]
2/(4−d),

which yields Gi ∝ 1/N in d = 3 and Gi ∝ N0 = const. in d = 2. This must
be so because the number of chains a reference chain in d = 2 interacts with be-
comes independent of its length. As a result we find that in d = 2 mean field
theory for polymer mixtures and related approximations (like the ‘random phase
approximation’ [4,5]) fail qualitatively.

3. Cross-over between ddd = 2 and ddd = 3 in films with neutral walls

Experimentally, a strictly two-dimensional polymer blend would be difficult to
prepare; it is much easier to prepare nanoscopically thin polymer films on sub-
strates, choosing molecular weights and film thicknesses such that Rg À D. In
the opposite limit, Rg ¿ D, the two neutral walls have only a weak effect on Tc,
but for any finite value of D the critical behavior very close to the film falls in
the 2d Ising class, since only in x, y directions can the correlation length grow to
infinity.

Figure 2a shows now the analog of figure 1a but for film thicknesses 2 ≤ D ≤
19. It is clearly seen that already for D = 4 one obtains a non-zero zc(N →
∞), although zc is much depressed in comparison with the bulk behavior. Only
when the film thickness is smaller than the excluded volume screening length, D <
ξev, we can expect that for large N no other chains interact with the interior
monomers of the quasi-two-dimensional coil, and zc(N → ∞) → 0, recovering the
behavior of the previous section. For dense melts, ξev is comparable to the monomer
size, and hence this regime is hardly detected here. When ξev ¿ D ¿ Rg, each
monomer of a considered chain has some neighbors from other chains, and hence
zc(N → ∞) is non-zero. Note, however, that a chain takes a volume of order
V = πR2

gD and hence the density ρ = N/V of monomers of that chain in this
volume remains non-zero for N →∞ (remember R2

g ∝ N here). Hence each chain
interacts only with a finite number of other chains in the thin film, when N →∞,
in contrast to the bulk, where the number of other chains in the same volume
increases like N1/2. As a consequence, in thin films the ratio kBTc/(εNzc) does not
converge to its mean field limit (kBTc/εNzc = 1) for N →∞, unlike the bulk (see
figure 2b). The decrease of zc and the decrease of this ratio together imply that
in the thin film geometry the compatibility of polymers is dramatically enhanced
in comparison to the bulk (e.g., for D = 7, N = 256 Tc is reduced by almost a
factor 2.4).

Although for D > ξev we have a scaling Tc ∝ N as predicted by the Flory–
Huggins mean field theory, there is no mean field critical behavior even if N →∞,
the behavior stays 2d Ising-like [19,20]. However, for rather thick films (D > Rg),
an interesting cross-over behavior is predicted [19]. Remember that in the bulk the
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Figure 2. (a) Effective coordination number zc plotted vs. N−1/2 for films
with neutral walls, choosing film thickness 2 ≤ D ≤ 19. The bulk behavior
is included for comparison. (b) Normalized critical temperature kBTc/(εNzc)
plotted vs. N−1/2 for 2 ≤ D ≤ 19. The bulk behavior is included for compar-
ison. From Cavallo et al [20].

cross-over between mean field and 3d Ising behavior occurs for |t|/Gi of order unity,
i.e., a correlation length ξ of order ξcross = Rg

√
N . If Rg < D < ξcross, one observes

cross-over from mean field critical behavior to 2d Ising behavior when ξ becomes
of order D, i.e., (ξMF ∝ Rg|t|−1/2) for |t| = (Rg/D)2. If D > ξcross, however, one
first crosses over from mean field to 3d Ising behavior at ξ = ξcross (like in the
bulk) and only when ξ = D one observes a cross-over from 3d Ising behavior to 2d
Ising behavior. While these multiple cross-overs have been analysed phenomeno-
logically [19], in practical cases one often cannot resolve these limiting behaviors,
but rather observes ‘effective exponents’ intermediate between the 2d and 3d Ising
behavior [19].

4. Thin films with both the walls preferentially attract the same species

In practice the assumption of a polymer mixture confined between ‘neutral’ walls
(no preferential attraction of one of the species) clearly will be an idealization,
and it is of interest to consider the case that both walls preferentially attract, say,
species A. When the temperature is decreased below the bulk unmixing critical
temperature, A-rich layers gradually form at the walls. At low enough temperatures
then a transition occurs to a state with laterally segregated phases (see figure 3) [25].
While in the bulk the critical composition of a symmetric (A,B) mixture occurs for
φcrit = 1/2 by symmetry, in the thin film it is shifted to the A-rich side (as shown in
figure 4a) [26]. Similarly, while in the bulk phase coexistence occurs for a chemical
potential difference ∆µ = 0, in the thin film it occurs along a (non-trivial) curve
∆µcoex(T ) < 0 (see figure 4b). This is the analog of ‘capillary condensation’ of
undersaturated gases in slit pores for binary mixtures. The shape of the coexistence
curves near the critical point reflects the corresponding order parameter expon-
ent β, namely |φcoex−φcrit| ∝ (1−T/Tc)β , with β ≈ 0.325 [14] (bulk: 3d Ising
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Figure 3. Monte Carlo results for the composition profiles of the interface be-
tween two coexisting phases in a thin film with symmetric surface interactions,
for chain length N = 32 and film thickness D = 48. A-rich regions are shaded
light, B-rich regions are shaded dark, and contours of constant relative con-
centration φ = ρA/ρ of A φ = 0.9, 0.8, . . . , 0.1 (from the walls towards the film
interior in the left part) are shown; (a) corresponds to a temperature above
the wetting transition temperature Twet of a semi-infinite mixture, namely
T ≈ 3.5 Twet: there are A-enrichment layers in the B-rich region, and the
AB interface does not approach the wall; (b) corresponds to a temperature
below Twet, namely T = 0.89 Twet. There is only a negligibly small surface
enrichment of A in the B-rich phase, and the AB interface makes a finite angle
with the wall (for D →∞ this would be the contact angle). From Müller and
Binder [25].

universality class) and β = 1/8 [17] (thin film: 2d Ising universality class), respec-
tively. While in the semi-infinite system the model exhibits first-order wetting [25]
and a prewetting line [27], the only remnant of these transitions in the thin symmet-
ric film with D = 48 is a ‘bulge’ in the coexistence curve near kBT/ε ≈ 20. Finally,
we mention that for this model rather direct evidence for the renormalization of
the effective interface potential by capillary wave fluctuations could be obtained
[25,26].

5. Thin films with competing walls: Interface localization–delocalization
transitions

In this section we consider the situation where the left wall attracts the A-
component of the mixture with the same strength as the right wall attracts the
B-component. The phase diagram for this situation for D = 48 was already included
in figure 4: the transition that occurs in the bulk for kBT/ε = 69.3 is rounded
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Figure 4. (a) Phase diagram of a binary polymer blend (A,B) described
by the bond fluctuation model for NA = NB = N = 32. The upper curve
shows the coexistence curve in the infinite system, ending in a critical point
at φcrit = 1/2 and kBTc/ε = 69.3. The middle one (broken curve) corresponds
to a thin film of thickness D = 48 and symmetric boundary fields εw = 0.16,
which both ‘prefer’ species A. The arrow marks the location of the wetting
transition (kBTwet/ε = 14.1 [25]). The lower curve also corresponds to a thin
film of thickness D = 48, but with ‘antisymmetric surfaces’ (see §5). There
occurs a triple point at φtrip = 1/2, Ttrip ≈ Twet, and two critical points at

Tc ≈ 16, φ
(1)
crit ≈ 0.09 and φ

(2)
crit ≈ 1−φ

(1)
crit, respectively. (b) Coexistence curves

in the (T, ∆µ) plane, for the same cases as in part (a). Circles mark critical
points, and the diamond marks the location of Twet (and Ttrip). From Müller
and Binder [26].

off, since an interface between an A-rich domain at the left wall and a B-rich
domain at the right wall forms gradually as T is lowered through Tc, from the
corresponding enrichment layers that are already present above Tc [28]. For D →∞
the unmixing transitions starting at Tc(D) turn into the prewetting transitions,
while the transition at ∆µ = 0, Ttrip(D) becomes the wetting transition [28,29].
While with Monte Carlo methods only films with D ≤ 48 layers could be studied,
the self-consistent field (SCF) method has allowed to study much thicker films and
hence substantiate the above statements. However, the SCF method near critical
points always yields mean field behavior only (β = 1/2) and also does not include
capillary wave-type effects.

A particularly interesting phenomenon occurs for antisymmetric films which
are sufficiently thin, i.e., the two critical points in figure 4 and the triple point
merge at a special, tricritical film thickness Dtri, and one finds a tricritical in-
terface localization–delocalization transition [26,29]. For D < Dtri, the interface
localization–delocalization transition is of second order, as studied for the sim-
ple Ising model [30,31]. A detailed analysis of the various cross-overs that oc-
cur near this tricritical point in the mean field description and beyond has been
given [26] and tested by Monte Carlo methods [26]. Unfortunately, in real sys-
tems one can never expect perfect antisymmetry between the surface fields of the
two walls, and then a tricritical point is no longer expected: rather one moves
from a phase diagram with two (not symmetric) critical points and a triple point
to a phase diagram with a single critical point (when the other critical point

Pramana – J. Phys., Vol. 64, No. 6, June 2005 987



K Binder et al

and the triple point merge). This pattern of behavior has been demonstrated by
SCF methods also [32]. However, in the weakly asymmetric case when the two
walls prefer different phases with unequal strength one can still expect to see for
Twet < T < Tc the ‘soft mode phase’ with a strongly fluctuating interface un-
bound from the walls [33]. Indeed, a signature of such a phase, namely an anom-
alous dependence of the average interfacial width on film thickness [34], has been
detected in experiments on polymer interfacial mixtures confined in a thin film
geometry [2].

Very recently, these theoretical studies have been extended to polymer mixtures
confined to an antisymmetric double wedge geometry [35]. An anomalous interface
localization–delocalization transition, that occurs when the L × L cross-section of
the wedge diverges at fixed generalized aspect ratio L3/Ly = const. (Ly being the
linear dimension for the direction along the wedge) is observed. It has first been
seen for the Ising model [36] and related to the wedge filling transition discussed
by Parry et al [37] and is characterized by a very unusual set of critical exponents
(β = 0, γ = 5/4, ν⊥ = 1/4, ν = 3/4).

In conclusion, simulations and various theoretical calculations have unraveled an
incredible wealth of phase transitions and critical phenomena for polymer mixtures
in confined geometry. It is hoped that this work will stimulate more experimental
efforts along these lines.
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at the NIC Jülich, the HLRS Stuttgart, and the computing center of the University
of Mainz is gratefully acknowledged.

References

[1] A Budkowski, Adv. Polym. Sci. 148, 1 (1999)
[2] T Kerle, J Klein and K Binder, Eur. Phys. J. B7, 401 (1999)
[3] P J Flory, Principles of polymer chemistry (Cornell University Press, New York, 1953)
[4] P G de Gennes, Scaling concepts in polymer physics (Cornell University Press, New

York, 1979)
[5] K Binder, Adv. Polym. Sci. 112, 181 (1994)
[6] I Carmesin and K Kremer, Macromolecules 21, 2819 (1988)
[7] H-P Deutsch and K Binder, J. Chem. Phys. 94, 2294 (1991)
[8] M Müller and K Binder, Macromolecules 28, 1825 (1995)
[9] M Müller, Macromol. Theory. Simul. 8, 343 (1999)

[10] A Cavallo, M Müller and K Binder, Europhys. Lett. 61, 214 (2003)
[11] H-P Deutsch and K Binder, Europhys. Lett. 17, 691 (1991)
[12] H-P Deutsch and K Binder, J. Phys. France II 3, 1049 (1993)

988 Pramana – J. Phys., Vol. 64, No. 6, June 2005



Polymer mixtures in confined geometries

[13] M D Gehlsen, J H Rosedale, F S Bates, G D Wignall and K Almdal, Phys. Rev. Lett.
68, 2452 (1992)

[14] K Binder and E Luijten, Phys. Rep. 344, 179 (2001)
[15] V L Ginzburg, Sov. Phys. Solid State 1, 1824 (1960)
[16] P G de Gennes, J. Phys. (Paris) Lett. 38, L441 (1977)

J-F Joanny, J. Phys. A11, L117 (1978)
K Binder, Phys. Rev. A29, 341 (1984)

[17] M E Fisher, Rev. Mod. Phys. 46, 587 (1974)
[18] D Schwahn, G Meier, K Mortensen and S Janssen, J. Phys. France II 4, 837 (1994)
[19] Y Rouault, B Dünweg, J Baschnagel and K Binder, J. Stat. Phys. 80, 1009 (1995)
[20] A Cavallo, M Müller and K Binder, in preparation
[21] A N Semenov and A Johner, Euro. Phys. J. E12, 469 (2003)
[22] K Binder (ed.), Monte Carlo and molecular dynamics simulations in polymer science

(Oxford Univ. Press, New York, 1995)
[23] D Frenkel and B Smit, Understanding molecular simulation: From algorithms to

applications (Academic Press, San Diego, 1996)
[24] A D Bruce and N B Wilding, Phys. Rev. Lett. 68, 193 (1992)
[25] M Müller and K Binder, Macromolecules 31, 8323 (1998)
[26] M Müller and K Binder, Phys. Rev. E63, 021602 (2001)
[27] M Müller and L G MacDowell, Macromolecules 33, 3902 (2000)
[28] K Binder, M Müller and E V Albano, Phys. Chem. Chem. Phys. 3, 1160 (2001)
[29] M Müller, E V Albano and K Binder, Phys. Rev. E62, 5281 (2000); Int. J. Mod.

Phys. B15, 1867 (2001)
[30] K Binder, D P Landau and A M Ferrenberg, Phys. Rev. E51, 2823 (1995)
[31] K Binder, R Evans, D P Landau and A M Ferrenberg, Phys. Rev. E53, 5023 (1996)
[32] M Müller, K Binder and E V Albano, Europhys. Lett. 49, 724 (2000)
[33] A O Parry and R Evans, Physica A181, 250 (1992)
[34] A Werner, F Schmid, M Müller and K Binder, J. Chem. Phys. 187, 8175 (1997)
[35] M Müller and K Binder, J. Phys. Condens. Matter 17, S333 (2005)
[36] A Milchev, M Müller, K Binder and D P Landau, Phys. Rev. Lett. 90, 13160 (2003);

Phys. Rev. E68, 031601 (2003)
[37] A O Parry, C Rascon and A J Wood, Phys. Rev. Lett. 83, 5535 (1999)

Pramana – J. Phys., Vol. 64, No. 6, June 2005 989


