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Abstract. This paper reviews the derivation of equations for slow dynamical processes
in a variety of systems, including rotating rigid rotors, crystalline solids, isotropic and
nematic elastomers, gels in an isotropic fluid background, and nematic liquid crystals. It
presents a recent derivation of the Leslie—Ericksen equations for the dynamics of nematic
liquid crystals that clarifies the nature of the nonhydrodynamic modes in these equations.
As a final example of the phenomenological approach to slow dynamical processes, it
discusses the dynamics of a driven nonequilibrium system: a two-dimensional gas of chiral
‘rattlebacks’ on a vibrating substrate.
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1. Introduction

Many if not most of the dynamical phenomena in condensed-matter systems, like
the air currents and the propagation of sound, that we see in everyday life involve
collective motions and changes that are slow on the scale of microscopic collision
times. They can be described by phenomenological equations for collective vari-
ables that are far simpler than the equations describing the microscopic dynamics
of all constituent particles. These equations, of which the Navier—Stokes equa-
tions for a fluid are the first example, are generally derived from symmetries and
conservation laws, and they contain thermodynamic parameters and transport co-
efficients that either have to be measured or calculated from more microscopic
theories. Several methods [1-4] have been developed over the past few decades to
derive phenomenological equations governing the slow dynamics of any equilibrium
system given its symmetry and conservation laws. The research frontier has shifted
to investigations of whether the same techniques that have been so successful in
describing equilibrium systems like simple fluids and liquid crystals can be extended
with appropriate modification to manifestly nonequilibrium systems like granular
gases under shear [5-8|, flocking birds [9], or bacterial baths [10]. This article will
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4. Nematodynamics

Nematic liquid crystals are uniaxial fluids. They form via spontaneous symmetry
breaking from an isotropic fluid phase. Since the direction of uniaxial order, like
that of the models of rotors on a lattice discussed in §2, is specified by the Frank unit
director n with two independent degrees of freedom, a nematic liquid crystal has two
broken symmetry hydrodynamic variables in addition to the five conserved variables
of an isotropic fluid. A nematic liquid crystal thus has 5 + 2 = 7 hydrodynamic
modes, one of which is a heat diffusion mode, which we will ignore. There are two
different approaches to the derivation of dynamical equations for a nematic liquid
crystal. In the first approach, used by Leslie and Ericksen (LE) in their seminal
papers [15-17] on the subject, the nematic liquid crystal is viewed as a system of
hard rods, like those in rotor model discussed earlier, that align to form the nematic
state and whose centers-of-mass are free to move like atoms in a classical fluid. In
this approach, kinetic energy is divided into rotational energy of rods about their
centers-of-mass and translational energy of their centers-of-mass. In the second
approach, used both in the ‘Harvard’ derivation [18,19] and in a different form
in the book by de Gennes and Prost [20], uniaxial order is not tied specifically
to the alignment of objects that have a well-defined rotational energy, and the
kinetic energy is viewed as the translational energy of all mass points (including
in the case of rigid rods the points on the rods that rotate about their centers-of-
mass). The second approach yields purely hydrodynamical equations with exactly
seven expected hydrodynamic modes. The first approach necessarily includes non-
hydrodynamic modes, which as we shall see were not fully treated in the Leslie—
Ericksen papers. In the hydrodynamic limit, however, in which nonhydrodynamic
modes are removed, the Leslie-Ericksen approach yields the same hydrodynamic
equations as the first approach. We will outline here the derivation of the equations
of nematodynamics using both approaches.

4.1 The ‘Harvard’ formalism

As discussed above, the momentum density g in this approach arises from all mass
points, and the kinetic free energy density is %(g2 /p). The static free-energy density
fIn, pl = filp] + fuln, p] (at constant temperature) depends on the director n and
the density p. The Frank free-energy density, measuring the energy of director
distortions, is

£ = %Kl(v )% + %Kg[n- (V x n)]? + %K3[n x (V x n))?, (24)

where the splay, twist, and bend elastic constants K7, Ko, and K3 in general depend
on p. The total free energy is thus F' = [ d*z{%(¢g?/p)+f[n, p]}. The hydrodynamic
variables are p, g, and n. The Poisson bracket of n with p is zero, and so the only
new Poisson bracket we need is {g;(x),n;(x')} = A\i;x0kd(x — x’). The reactive
coefficient A;j;, satisfies n;A;;5 = 0 because Oyn; is perpendicular to n;. It can be
broken up into a symmetric and an anti-symmetric part in jk. The coefficient of
the anti-symmetric part is fixed by the requirement that under a uniform rotation
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of the system at angular velocity ! =V x v/2,n will rotate with angular velocity
I . The coefficient A of the symmetric part is undetermined:

(0% — 8%n,) + 57 (s + 6ny). (25)

DN | =

Aijk =

The hydrodynamic equations for a nematic liquid crystal are, thus,

16F
O = \ijrOpv; — Pl (26)
OF
0rg; = —0ip+ 8j <>\kij5nk> + ajaéj, (27>
where
01 = Mijr1 Akl (28)

with Ay, = (Okv; + Ojvg)/2 the symmetric part of the spatial derivative of the ve-
locity. 7;jk1 is a uniaxial viscosity with five independent components. These equa-
tions predict two longitudinal sound modes with isotropic velocity but anisotropic
damping, two fast predominantly transverse-velocity diffusive modes with fre-
quency w ~ —i(n/p)q® and two slow predominantly director diffusive modes with
w ~ —i(K/v)q?. Note that there is no propagating director mode as present in the
rotors-on-a-lattice model.

4.2 Rigid-rod nematodynamics

If the molecular constituents of a nematic are rigid rods [21], they, like their
counterparts in the lattice model of §2, have a spin-angular momentum density
li(x) = I;;Q;(x) arising from their spinning about their centers-of-mass, where
Iij = Iynynj + I1(d;; — nyny) is the moment of inertia density and €(x) is the
spin angular velocity. In addition, they have a conserved center-of-mass mo-
mentum with associated momentum density g(x). The total angular momentum
L=/ d®z[x x g + ] is also conserved. The free energy is

1 9 E\QI & d
F:f/ddx T —|—/dxfn, , 29
5 (p 1,1 [, p] (29)

where /| =n-" and "| = n x (" xn). There are now 6 + 3 = 9 independent
variables, only six of which are hydrodynamic. We, therefore, expect to find three
nonhydrodynamic modes, presumably associated with the relaxation of the spin
angular velocity €2 to the local center-of-mass angular velocity ! . The Poisson
bracket between ¢; and n; is {£;(x),n;(x')} = —€;xni(x)d(x — x’). The other new
Poisson brackets such as {¢;(x),¢;(x’)} contribute to the full nonlinear equations
but do not contribute to the linearized equations we consider here, and we will ignore
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them. Their inclusion, however, leads to fully consistent nonlinear equations. The
equations of rigid-rod nematodynamics are thus

1
Oy = €68y + ;hiv (30)

Ol; = eijknjhk + Vijklajalﬂk — F”(Qj — w]')

1
- §FA(€ijlnlnk + €irinuing) Ajk, (31)
Orgi = — ip+5j(02§‘+0'/fj)v (32)

where v;;1; is the analog of the friction coefficient v;; in the rotors on a rigid lattice
model of §2, the symmetric and anti-symmetric dissipative parts of the stress tensor
are, respectively,

5
o'5; = Mijki At
Al LA, A A
0= iﬁijkrkl(Ql —w) + 5T (nj Aipnp — niAjpny), (33)
and h; = —0F/on;. Note that eq. (30) is the rotational analog of permeation

(eq. (19)) that allows O;n to differ from € x n.

If g is locked to zero, both w; and A;; are zero, and the equations for = and
n reduce to those (eqs (10)—(12)) of the model of rigid rotors on a lattice with
friction coefficient I'. When A;; is zero, but w; is not, the spin angular velocity will
decay to ! rather than zero. This is analogous to the velocity u of the gel in a
fluid decaying to the fluid velocity v. When A;; is nonzero, there is an additional
dissipative contribution to 9, with friction coefficient I'4. The anti-symmetric part
of the stress tensor is fixed by the requirement that the total angular momentum
be conserved.

We can now cast these equations in various forms. (2| decouples from the other
variables and decays in time I'||/I}| to wj;. We will not give further attention to it.
The v4110;0,Q% term is subdominant compared to the others in eq. (31), and we
will now drop it. The equations for n and €2, can now be written in a compact
vector form that makes comparison with the original Leslie-Ericksen equations
more straightforward:

1
On =0 xn+ —h, (34)
Y

1,0, =nxh+v,VQ, -T, (2, ! |)-T%A:n)xn, (35

where (A : n); = A;;n;. We can now either use eq. (34) to solve for  x n and
use the result in eq. (35) to obtain a dynamical equation for n that is close to that
obtained by Leslie and Ericksen, or we can solve eq. (35) for € x n and use it in
eq. (34) for n to obtain the Harvard equations in the hydrodynamic limit. Let us
begin with the first approach:

1.
I(nxﬁ—7h>:anx(h+71A:n+72N), (36)
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where

r 1 1 1 r4
04<1+L>; il VQZ*H’)@E*)\’YL (37)
This reduces identically to the original LE equations [15-17], with an inertial term
proportional to n x i, when 7 — oo. Thus the LE equations are equations for
a rigid-rod nematic in which €@ x n is locked to O:n, i.e., in which there is no
rotational permeation. LE equations also ignore the possibility of any component
of angular momentum parallel to the director: they effectively set I} = 0. Note
that both the full equations and the LE equations have two nonhydrodynamic
modes with characteristic frequencies w ~ —il'; /I, in the ¢ — 0 limit. In the
hydrodynamic limit, eq. (37) reduces to h = 97 A : n 4+ 1N independent of the
value of . There are two contributions to the coefficient 7 ': the first T'[! arises
from the friction torque on a rotating anisotropic particle and the second from
rotational permeation. Calculations of ; generally ignore the second contribution
[22].

In the second approach, we solve eq. (35) to obtain @ xn = (h+T,! xn+
I'A :n)/I'} in the hydrodynamic limit. Using this result in eq. (34), we obtain
the Harvard equation

1 1
on=2xn+-h=! xn+ —h+AMA:n (38)
v gt

To obtain the complete equations for nematodynamics, we need to treat the stress
tensor. We refer the reader to [21] for further details.

5. Nematic elastomers

Nematic elastomers [23] are cross-linked rubber networks that develop nematic or-
der. They thus combine the unusual elastic properties of rubber with the anisotropy
of a nematic liquid crystal. At high temperature, there is no nematic order, and
the rubber is macroscopically isotropic. When nematic order develops, it sponta-
neously breaks the isotropic symmetry. In general, the spontaneous breaking of a
continuous symmetry brings with it a soft Goldstone mode, which is manifested
by a free energy that vanishes in the spatially uniform limit. Thus, for example,
the Frank free energy is a manifestation of spontaneous symmetry breaking of a
standard nematic liquid crystal. The soft mode of a nematic elastomer is more
subtle. The nematic phase of the elastomer is uniaxial. Usually a uniaxial solid is
characterized by five independent elastic constants [24]. In an ideal nematic elas-
tomer, coupling between director and strain is such that the elastic constant Cs,
measuring the energy of shear strains in planes containing the anisotropy axis, van-
ishes when the director relaxes to its local value in the presence of strain [25-27].
In practice, it is impossible to produce a monodomain nematic elastomer without
the imposition of an external aligning field (e.g. strain) during the cross-linking
process [28]. Thus experimental nematic elastomers are at best semi-soft with a
small but nonvanishing Cj.
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The harmonic elastic energy of a nematic elastomer [29] in terms of strain wu;
and deviation dn = n — ng, where ngq is along the z direction for the director from
a uniform equilibrium value is

F=F,+F,+Fy_., (39)

/ |: Cluzz + CottyUgq + C’3u” + C4’LL o T C’5ua2:| s (40)

1 1
= /d3:L’ |: 8 na) + §K2(6abaanb)2 + 2K3(8an)2} R (41)
3 (1 2
Fu—n = d’z §D1Qa + D2Qauaz ’ (42)
where a,b = z, y labels directions perpendicular to z and Q, = n, — %(@ua —0qu).
In equilibrium, Q, = —Dsu,. /D3, and the effective free energy in terms of strain
only is [30]

eff 3 1 2 1 2
F = | d°x iCluzz + CotizpUgq + §C’3uii (43)

1 1
+Claugy + C5lug, + S K1 (qus)? + S K3 (02ua)?| (44)

where CEI)% = C5 - D%/(2D1), K{% = [(Dl + DQ)/(2D1)]2K1, and K§ = [(Dl —
D»)/(2D1)P K.

The natural dynamic variables for a nematic elastomer are the director n, the
displacement variable u, the density p and the momentum density g for a total of
2434143 =9 variables. An elastomer is a tethered solid, so we can replace dp/p
by —V -u. This leaves us with eight variables. In the low-frequency hydrodynamic
limit, the director will relax to its equilibrium value in the presence of strain,
eliminating two more variables and leaving us with six hydrodynamic variables just
as in a traditional tethered solid. Thus, the true hydrodynamic equations for a soft
or semi-soft elastomer are identical to those for standard tethered solid (eq. (21))
with the free energy replaced by FS. Dynamical equations including the director
follow from our previous ‘Harvard’ derivation of the equations for nematics and for
tethered solids. They are [30]

10F

— = 4
8tn1 )\ZJkakU] ~ (577,2', ( 5)
F 1
U = — = —G;, 46
9 Pg (46)
6F oF
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Figure 1. Schematic polar plot (arbitrary units) of the sound velocities c1,
c2, and ¢; of a nematic elastomer. The ce-mode is predominantly longitudinal
with a nonvanishing velocity at all angles, the ci-mode is like that of a smectic
liquid crystal, and the c¢;-mode is like a columnar mode.

These equations have also been derived using a modification of the Leslie—
Ericksen approach [23]. In the hydrodynamic limit they reduce to

SFC
- (5; —&-mjklaji?wk. (48)

pli; =

In the soft case in which CF is zero, these equations yield six sound modes, two
with a velocity ¢y that is nonzero for all directions of propagation, two ‘smectic-
A’ modes with a velocity ¢; that vanishes for propagation direction both along z
and perpendicular to z, and two ‘columnar’ modes with velocity ¢; that vanishes
for propagation direction along z. This mode structure is identical to that of a
columnar liquid crystal [20]. The three sound velocities are plotted in figure 1.
Along the symmetry directions where the sound velocities are zero, there are slow
and fast diffusive modes similar to those of a nematic liquid crystal with respective
frequencies ws = —i(K/n5)q* and wy = —i(n5/p)g>.

6. A chiral granular gas

So far, we have considered only equilibrium systems. Some of the general methods
we have developed can however be applied to driven nonequilibrium systems. In this
section we will develop equations for the dynamics of a two-dimensional granular
gas of chiral objects on a vibrating substrate that keeps them in a state of constant
agitation [11]. This system is similar in many ways to a liquid crystal in its isotropic
state. The chiral objects comprising the gas are inspired by rattlebacks, which are
toys that can be purchased in most science museums. They spin in a preferred
direction on a hard substrate; if they are spun in the opposite direction, they will
wobble and then eventually reverse their direction of spin to the preferred direction.
The Russian rattleback provides insight into the properties necessary to produce
a preferred direction of rotation. It is shaped like a boat with a symmetric hull
and a flat deck on which there are two turtles placed symmetrically at either end.
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The orientation of the turtles can be changed. If the turtles face each other at
the center of the boat, the rattleback will rotate in either direction; if they face in
opposite directions perpendicular to the long axis of the boat, the rattleback will
spin preferentially in the direction of the turtle’s heads. The second configuration
is chiral, whereas the first, without a preferred spin direction, is not.

These observations suggest that essentially any chiral object might have a pre-
ferred spin direction. They inspired experiments [11] carried out in Jerry Gollub’s
lab at Haverford in which first a single bent-wire, depicted schematically in figure 2,
was vibrated on a vertically oscillating platform and then a collection of 400 nearly
identical bent-wires were vibrated on the same oscillating platform. The single wires
spun about their centers-of-mass with an angular frequency of order 1 Hz and a
direction that changed as the sign of their chirality changed. Individual wires in the
collection of wires, which formed a two-dimensional chiral granular gas, spun at a
slower rate about their centers-of-mass, and their centers-of-mass rotated about the
center of the platform at a rate that increase rapidly with distance r from the center.

A phenomenological theory for the collective behavior of the chiral granular gas
can be derived using the principles outlined in this article. The relevant dynamical
variables are the momentum density g = pv and the spin angular momentum
density = = I, where as before I is the moment of inertia and §2 is the spin rotation
frequency. The vibration of the platform provides a continuous input of energy that
endows the gas with an average kinetic energy (or granular temperature), which we
take to be constant, and a pressure p. The platform exerts a friction force —I'*v
to the gas that breaks Galilean invariance. As in a nematic liquid crystal, there is
a friction force favoring )} = w, and there is a complementary term in the stress
tensor to enforce conservation of total angular momentum when there is no friction
with the platform. There is of course, friction with the platform, and this gives
rise to a dissipative torque —I'*Q) that slows the spin to zero in the absence
of any external torques. The unique property of the chiral gas is that the vibrating
platform imparts an average spin to the particle. We model this by adding an

A b) (©)

Figure 2. Schematic representations of bent-wire chiral objects made from
a central stem and two arms. (a) Chiral wire with angle o > 0, defined
as the angle by which the second arm rises out of the plane formed by the
stem and first arm (marked with a vertical line). (b) Mirror image of (a),
formed by reflection through a plane perpendicular to the central stem, for
which the angle « is defined to be negative. In both cases, the curved arrows
indicate the direction of spin under vibration. (c) Configuration used in the
gas experiments with « = —37/4. In general the spin direction is such that
the raised arm moves in the direction of its projection on to the plane of the
vibrating surface so that the bent-wire in (c) rotates in the counterclockwise
direction.
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40
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02 04 06 08 1

Figure 3. Plot of v(r)/r calculated from eqgs (49) and (50).

external torque 7 to the equation of motion for 7. The resulting equations for g
and ¢ are

Ol = —0;(lvj) —T9Q —T(Q — w) + v V3Q + 7, (49)
1
Orgi = —0j(giv;) — ip + nV2v; — T, + ieijajr(g - w), (50)

where ¢;; is the anti-symmetric tensor in two dimensions.

To make contact with the Haverford experiments, we seek solutions to eqgs (49)
and (50) in which = Q(r) depends only on the distance r from the origin at
the center of platform, and v = v(r)e, points in the azimuthal direction e per-
pendicular to the radius vector r from the origin. To find a solution, we need
to specify boundary conditions. Two boundary conditions are that 2 and w are
nonsingular at the origin. A third condition follows from the observation that the
particles slide along the outer wall with their long axes parallel to it. This im-
plies that the spin rate about the particles’ centers-of-mass is equal to the angular
velocity of the particles about the sample center: Q(R) = v(R)/R. Finally, a fric-
tion force on the particles proportional to the tangential velocity at the outer wall
with a friction coefficient I'g imposes the boundary condition o4, = —I'gv on the
mixed tangential (¢) — radial (r) component of the stress tensor. This condition
is equivalent to the condition 8,v = —I~'v on the tangential velocity at r = R,
where |71 = [4T's — (I'/R)]/(4n + T) is an inverse slipping length [31]. A solu-
tion to eqs (49) and (50) for v(r)/r with these boundary conditions along with
experimentally observed average values in three bins is shown in figure 3. The
theory does predict that the velocity increases significantly with r in agreement
with experiments. The experiments and theory together clearly establish that the
local spin angular momentum induced by the vibrating substrate gets converted to
center-of-mass angular momentum about the origin.
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