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Space curves, anholonomy and nonlinearity
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Abstract. Using classical differential geometry, we discuss the phenomenon of anholon-
omy that gets associated with a static and a moving curve. We obtain the expressions for
the respective geometric phases in the two cases and interpret them. We show that there
is a close connection between anholonomy and nonlinearity in a wide class of nonlinear
systems.
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1. Introduction

Space curves appear in many diverse branches of science. A trajectory in the
phase space of a dynamical system [1], a vortex filament in a fluid [2], a polymer
chain such as DNA [3], a twisted optical fiber [4], and a slender elastic rod [5] are
obvious examples of static space curves. Less obvious an example is the spin vector
configuration along a classical magnetic spin chain, where the magnetic moment
vector at each point on the chain can be regarded as defining the local tangent to
some space curve [6,7]. Clearly, it is possible to have moving space curves as well.
This happens when a vortex filament, a polymer or an elastic rod is in motion.
Again, as one changes some parameters in a dynamical system, a given phase
trajectory will shift, in general, thus forming a moving curve in phase space. The
time evolution (under some Hamiltonian) of a spin chain also leads to a moving
curve. Interestingly, the differential equations associated with such systems turn
out to be generically nonlinear. Therefore, the study of static and moving space
curves is of considerable interest in many applications of nonlinear science.

Another phenomenon that occurs in diverse contexts is an anholonomy [8] (called
a holonomy by mathematicians) or a geometric phase [9]. This arises when the evo-
lution of a system is such that the value of a quantity in a given state is dependent
on the path along which the state has been reached, so that the quantity fails
to recover its original value when the parameters on which it depends are varied
round a closed path. First introduced by Berry [8] in quantum mechanics as an
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anholonomic change in the phase of the energy eigenfunction during an adiabatic
cyclic evolution of the Hamiltonian in parameter space, the concept has been gen-
eralized [10] to include both non-adiabatic and non-cyclic evolutions. Furthermore,
it has been recognized [4] that this phase can arise in a purely classical system.
Two types of phases can be defined in this regard. The first is the Hannay angle
[11] which appears as the direct classical analogue of the Berry phase. It is the an-
holonomic change in the angle variable conjugate to an action variable during the
adiabatic, cyclic evolution in parameter space of a finite-dimensional, integrable,
classical Hamiltonian system. The second type of phase is the classical analogue of
the Aharonov–Anandan phase [12]. It is purely the effect of the geometry of the
evolution of the system in configuration space, and typically appears as the angle
of rotation of an appropriately oriented set of axes associated with the evolving
system. In contrast to the Hannay angle, the presence of time-dependent external
parameters and the feature of integrability are not necessary conditions for this
phase to exist. Hence this second type of phase may be expected to occur in more
general classical evolutions.

In view of the above, it is pertinent to ask if a static space curve can be asso-
ciated with a geometric phase. As we shall see, the answer is in the affirmative,
and we determine the phase. This, in turn, enables us to find the expression for
the anholonomy underlying a moving space curve. We show that there is a close
relationship between anholonomy and nonlinearity in a wide class of systems.

2. A static space curve

We start by considering a curve γ embedded in three-dimensional space, generated
by the vector x(α) = (x1(α), x2(α), x3(α)), where α is a parameter that could rep-
resent time, or any other parameter, depending on the application concerned. The
local tangent to the curve, defined as t(α) = xα, need not be a unit vector. (Sub-
scripts will stand for the corresponding partial derivatives.) It is more convenient
to use the arclength parameter s, defined using the relation |xα| = sα. Thus for
the space curve x(s) parametrized by s, the tangent t = xs is clearly a unit vector.

Let n and b denote, respectively, the unit normal and binormal vectors on the
curve. The orthogonal right-handed triad (t(s),n(s),b(s)) satisfies the Frenet–
Serret (FS) equations [13]

ts = κn, ns = −κ t + τ b, bs = −τ n. (1)

The curvature κ and the torsion τ are functions of s that determine the local
geometry of the curve. It can be shown that [13]

κ(s) = |ts| (2)

and

τ(s) = t · (ts × tss)/|ts|
2. (3)

The curvature measures the departure of a curve from a straight line, while the
torsion is a measure of the degree to which it twists out of a plane.
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As t is a unit vector, it can be represented in spherical polar coordinates as

t = (sin θ cos ϕ, sin θ sin ϕ, cos θ), (4)

where θ and ϕ represent, respectively, the polar angle and the azimuthal angle
of t. Using eq. (4) in eqs (2) and (3), we have

κ =
(

ϕ2
s sin2 θ + θ2

s

)1/2
(5)

and

τ = ϕs cos θ +
dχ

ds
, (6)

where

χ = tan−1

(

ϕs sin θ

θs

)

. (7)

Equations (1) may be rewritten in the unified form Ls = ξ×L, where L stands for
any of the vectors t, n, or b, and ξ ≡ κb+τt is called the Darboux vector. It plays
the role of an angular velocity of the FS triad. As one moves on the curve x(s),
the FS triad (t, n, b) rotates with an angular velocity ξ, with κ and τ representing
the magnitudes of the angular velocities around the axes b and t, respectively.

3. Fermi–Walker parallel transport

We now introduce the concept of the Fermi–Walker parallel transport [14] of any
vector P moved along the curve x(s). One first defines the Fermi–Walker derivative
of P along the curve as

DP

Ds
= Ps − κ (b×P). (8)

A vector P is parallel transported according to the Fermi–Walker rule if DP/Ds =
0. To construct a ‘non-rotating’ frame specified by a unit triad (t, U, V), we define
two orthonormal unit vectors (U,V) in the (n,b) plane according to

U = n cos β − b sin β and V = n sin β + b cos β, (9)

and specify β appropriately: it is easily verified that the choice βs = τ ensures that

Dt

Ds
=
DV

Ds
=
DU

Ds
= 0. (10)

In contrast to this, n and b can be shown to satisfy

Dn

Ds
= τ b,

Db

Ds
= −τ n. (11)
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Hence the (n , b) plane rotates around the t-axis with an angular velocity τ . As one
moves from s to s+ds, this plane rotates by an angle τds. Thus a total geometric
phase

Φ =

∫

γ

τ ds (12)

develops between the natural frame (n , b) and the non-rotating frame.
The total anholonomy Φ can also be interpreted in another way. Substituting

eq. (6) in eq. (12) yields Φ = 2π −
∫∫

γ
sin θ dθ dϕ. For a closed curve, the second

term is just the solid angle subtended by the area enclosed by the closed path γ(s)
traced out by the tangent indicatrix on the unit sphere S2. The same result holds
good for an open curve as well, since it can always be closed using a geodesic on
the sphere [10].

Such a geometric phase Φ is precisely what appears as a rotation in the plane
of polarization of light propagated along a helical optical fibre [15] regarded as a
static curve. A short calculation shows that it also appears in the spin evolution
of an isolated classical spin in a constant magnetic field as a certain solid angle, on
identifying the spin vector with the tangent to a space curve. More recently, it has
emerged as a useful characterizer of the geometry of phase trajectories in a class of
nonlinear dynamical systems [16].

The natural question that arises now is: what happens to the above anholonomy
if the space curve has one more degree of freedom – for example, if an isolated spin
is replaced by a chain of interacting spins, or if a vortex filament in a fluid moves
in a certain way, dictated by kinematics? To answer this, we must extend the idea
of Fermi–Walker parallel transport to the case of a moving space curve.

4. General curve evolution equations

Let us now consider a space curve that evolves in time, so that x = x(s, u), where
we have used u to denote the time in order to avoid any confusion with the tangent
vector. In addition to the Frenet–Serret equations (1), where κ and τ are now
dependent on both s and u, we must also write down the corresponding equations
governing the kinematics of the time evolution of the triad (t, n, b). These can be
written quite generally in a form similar to the Frenet–Serret set [17]:

tu = g n + hb, nu = −g t + τ0 b, bu = −h t− τ0 n. (13)

The scalars g, h, and τ0 (which are functions of both s and u), along with appro-
priate boundary conditions, completely determine the motion of the curve. Note
that there is an additional term in the b direction in the time derivative of t. The
reason for the absence of such a term in the space derivative is that one has the
freedom to align ts in the direction of the normal n. But once this is done, the
time derivative can have components along both n and b in general.

We may again rewrite eq. (13) in a unified form as Lu = η×L, where L stands for
any of the vectors t, n, or b, and η = g b−hn+τ0 t is the ‘temporal’ Darboux vector
analogous to the Darboux vector ξ introduced earlier in the spatial case. Once
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again, we may introduce the concept of Fermi–Walker transport along the ‘temporal
curve’ parametrized by u. From eq. (13) we obtain the following analogues of eqs
(8) and (11):

DP

Du
= Pu − (g (b− hn)×P) (14)

and

Dt

Du
= 0,

Dn

Du
= τ0 b,

Db

Du
= −τ0 n. (15)

Hence, as one moves from u to u + du (for a fixed s), the (n, b) plane rotates by
an angle τ0 du.

5. Anholonomy of a moving curve

In order to find the anholonomy, we use the concept of Fermi–Walker transport
described in §3 to determine the angle of rotation of the (n,b) plane as we move
from a point a = (s, u) to the point c = (s + ds, u + du), but using two different
paths. Path 1 goes from a to c via b = (s + ds, u), while path 2 goes from a to c
via d = (s, u + du). Clearly, if the angle of rotation is different for the two paths
connecting a and c, then there is an underlying geometric phase or anholonomy
arising due to the path dependence. It can be verified that the rotation angles for
paths 1 and 2 are given respectively by [17]

Φ1 = τ(s, u) ds+ τ0(s+ ds, u) du (16)

and

Φ2 = τ0(s, u) du+ τ(s, u+ du) ds. (17)

On using Taylor expansions in ds and du and retaining terms up to second order,
we find that the phase difference δΓ = (Φ1 − Φ2) is given by

δΓ = ((τ0)s − τu) dsdu ≡ ρ(s, u) dsdu. (18)

In other words, if we start with a given direction of the vector n (or b) at the
point a, and execute the closed circuit abcda, n does not come back to its original
direction. Instead, it rotates around the direction of t by the angle δΓ. This implies
a local anholonomy density or geometric phase density ρ(s, u).

Relationship of the anholonomy with the Pontryagin index

The expression in eq. (18) has another interesting interpretation, in terms of
the Pontryagin index that classifies maps S2 → S2. We first note that, for
non-stretching curves, the FS triad satisfies the compatibility conditions tus =
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tsu,nus = nsu, and bus = bsu. With straightforward manipulations, these condi-
tions can be shown to lead to the relations

(τu − (τ0)s) = κh, (κu − gs) = −τ h, τ0 = (hs + τ g)/κ. (19)

Using the first of the three relations above in eq. (18), we get

ρ(s, u) = −κh = t · (tu × ts), (20)

where we have used eqs (1) and (13) to write the last equality. It is immediately
seen that the anholonomy density ρ(s , u) is just the density associated with the
Pontryagin index in certain cases: if t(s , u) is such that it takes on the same value
at the boundaries at infinity, then the total anholonomy or geometric phase becomes

Γ =

∫

ρ(s, u) dsdu = 4πn, (21)

where n is the Pontryagin index of the map, i.e., the number of times S2 wraps
around S2.

Anholonomy density as the magnitude of a non-closure vector

The anholonomy density δΓ can be viewed in yet another way. Determine the
value of a unit vector P (where P stands for t, n, or b) when it is Fermi–Walker
transported along the path abc (path 1) and the path adc (path 2), respectively.
(These paths have been defined in the beginning of this section.) These values are
given by

P1(s+ ds, u+ du) = P(s+ ds, u) +
DP

Du
(s+ ds, u) du,

P2(s+ ds, u+ du) = P(s, u+ du) +
DP

Ds
(s, u+ du) ds. (22)

Using Taylor expansion and retaining terms up to second order, we get

δP = (P1 −P2) =
D2P

DsDu
−

D2P

DuDs
. (23)

A non-vanishing δP means that P does not regain its original value when it is
Fermi–Walker parallel transported along a closed path abcda in configuration space.
The anholonomy or geometric phase is simply the ‘non-closure’ vector δP associated
with the P-indicatrix on the unit sphere. Thus the incompatibility of Fermi–Walker
cross derivatives is a measure of non-closure.

On the other hand, we can show that this incompatibility is related to the an-
holonomy density ρ(s, u). Using eqs (11) and (15), we obtain

δt =
D2t

DsDu
−

D2t

DuDs
= 0, (24)
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δn =
D2n

DsDu
−

D2n

DuDs
= ((τ0)s − τu)b = −κhb = ρb, (25)

and

δb =
D2b

DsDu
−

D2b

DuDs
= −((τ0)s − τu)n = κhn = −ρn. (26)

Thus the anholonomy density ρ(s, u) is a measure of the non-closure of the normal
indicatrix (or binormal indicatrix) on the surface S2 of the unit sphere, when n (or
b) is Fermi–Walker transported along the infinitesimal closed circuit abcda in (s, u)
space.

6. Connection between anholonomy and nonlinearity

In this section we present examples of two nonlinear systems that exhibit a close
connection between the anholonomy of moving curves and nonlinearity.

A. Landau–Lifshitz equation

Spin vector dynamics in a classical Heisenberg ferromagnetic chain in the continuum
limit is described by the Landau–Lifshitz equation [18]

Su = S× Sss. (27)

Identifying S with the unit tangent to a curve, we see that the Landau–Lifshitz
equation describes a moving space curve whose tangent vector satisfies

tu = t× tss. (28)

Imposing the moving curve compatibility conditions Psu = Pus (where P stands
for t, n or b), it can be shown [19] that eq. (28) takes the form of two coupled
nonlinear partial differential equations for κ and τ , respectively. In terms of the
Hasimoto function [2]

ψ = κ exp

{

i

∫ s

τ ds

}

, (29)

these coupled equations can be combined and mapped to the nonlinear Schrödinger
equation (NLSE) for ψ:

i ψu + ψss +
1

2
|ψ|2 ψ = 0. (30)

We consider the anholonomy density for the system. Using eqs (2), (20), (28) and
(29), a short calculation shows that the anholonomy density of the moving curve
underlying the nonlinear evolution equation (30) is just

ρ(s, u) = t · [ts × (t× tss)] =
1

2
(κ2)s =

1

2
(|ψ|2)s . (31)
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Integrating over s, we get
∫

ρ(s, u) ds = Γu =
1

2
|ψ|2. (32)

This immediately shows that the coefficient of ψ in the nonlinear term of the NLSE
for ψ (eq. (30)) is just the time derivative of the total anholonomy of the mov-
ing curve associated with the NLSE. This establishes a close connection between
nonlinearity and anholonomy in the continuous ferromagnetic chain, which is an
inherently nonlinear system.

B. Belavin–Polyakov equation

It has been shown recently [20] that a sector of the effective low-energy dynamics of
the classical isotropic antiferromagnetic chain is described by the Belavin–Polyakov
equation [21]

tu = t× ts, t2 = 1, (33)

where t(s, u) stands for the ‘staggered’ spin field on the chain. The appearance of
the first-order spatial derivative on the right-hand side is noteworthy, in contrast
to the second derivative which appears in the ferromagnetic case (eq. (28)). This
leads to several dissimilarities in the dynamics of the two systems.

At a given instant of time u, the unit vector t(s, u) may be associated with the
unit tangent t of a space curve. This curve evolves in time. Then, using eq. (1)
in eq. (33), imposing compatibility conditions and following the same procedure as
before, we obtain [22]

iqu + qs + q

∫ s

|q|2ds = 0, (34)

where the complex function q is once again a Hasimoto function, defined analogous
to ψ as in eq. (29).

We compute the anholonomy density in this case with the help of eqs (33) and
(20) to get

ρ(s, u) = t · (ts × (t× ts)) = κ2 = |q|2, (35)

where we have used eqs (2) and (29) and replaced ψ by q. Therefore Γ =
∫ s
|q|2 dsdu. Hence, as in the previous case, the coefficient of q in the nonlin-

ear term of the Lamb equation (eq. (34)) is just the time derivative of the total
anholonomy of the moving curve associated with it. We thus have a connection
between nonlinearity and anholonomy in the continuous antiferromagnetic chain as
well.

7. Conclusions

We have shown how the concept of anholonomy gets closely linked to nonlinearity.
While we have worked out two examples explicitly for the sake of illustration, some
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general results indicating this connection have also been obtained [23], by starting
with the general curve evolution equations (13) and imposing the compatibility
conditions. For certain choices of g and h as functionals of κ and τ , these lead
to integrable, soliton-bearing equations [24]. It is also possible to determine [23]
the total anholonomy Γ explicitly for a sub-class of general AKNS-type [25] soliton
equations. As in the two examples above, a term related to the time-derivative of
this geometric phase (or anholonomy) appears in the partial differential equation
for the Hasimoto function, for this wide class of moving curves as well. We also find
that for a particular kind of evolution of the moving curve for which the associated
partial differential equation becomes linear, the anholonomy density vanishes iden-
tically. This suggests that nonlinearity is essential for the existence of a non-trivial
anholonomy. In the light of these results, it would be interesting to study possible
anholonomy–nonlinearity relationships in non-integrable systems as well.
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