PRAMANA © Indian Academy of Sciences Vol. 64, No. 4
— journal of April 2005
physics pp. 483-502

Complex networks: Dynamics and security

YING-CHENG LAI', ADILSON MOTTER?, TAKASHI NISHIKAWA?3,
KWANGHO PARK* and LIANG ZHAQ?

!Department of Electrical Engineering, Arizona State University, Tempe,
Arizona 85287, USA

2Max-Planck Institute for Physics of Complex Systems, Nothnitzer Strasse 38,
01187 Dresden, Germany

3Department of Mathematics, Southern Methodist University, Dallas,

TX 75275-0156, USA

4Department of Mathematics and Statistics, Arizona State University, Tempe,
Arizona 85287, USA

SInstitute of Mathematics and Computer Science, University of Sao Paulo, Brazil
E-mail: yclai@Qchaosl.la.asu.edu; motter@mpipks-dresden.mpg.de;
tnishi@chaos6.la.asu.edu; kpark@chaos21.eas.asu.edu; zhao@math.la.asu.edu

Abstract. This paper presents a perspective in the study of complex networks by fo-
cusing on how dynamics may affect network security under attacks. In particular, we
review two related problems: attack-induced cascading breakdown and range-based at-
tacks on links. A cascade in a network means the failure of a substantial fraction of the
entire network in a cascading manner, which can be induced by the failure of or attacks
on only a few nodes. These have been reported for the internet and for the power grid
(e.g., the August 10, 1996 failure of the western United States power grid). We study a
mechanism for cascades in complex networks by constructing a model incorporating the
flows of information and physical quantities in the network. Using this model we can also
show that the cascading phenomenon can be understood as a phase transition in terms
of the key parameter characterizing the node capacity. For a parameter value below the
phase-transition point, cascading failures can cause the network to disintegrate almost
entirely. We will show how to obtain a theoretical estimate for the phase-transition point.
The second problem is motivated by the fact that most existing works on the security
of complex networks consider attacks on nodes rather than on links. We address attacks
on links. Our investigation leads to the finding that many scale-free networks are more
sensitive to attacks on short-range than on long-range links. Considering that the small-
world phenomenon in complex networks has been identified as being due to the presence
of long-range links, i.e., links connecting nodes that would otherwise be separated by
a long node-to-node distance, our result, besides its importance concerning network effi-
ciency and security, has the striking implication that the small-world property of scale-free
networks is mainly due to short-range links.
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1. Introduction

Complex networks [1] such as the internet, the electrical power grid, the trans-
portation network etc., are an essential part of a modern society. The security of
such a network under random or intentional attacks is of great concern. Recently,
an interdisciplinary field among information science and engineering, statistical
and nonlinear physics, applied mathematics, and social science has emerged, which
brings novel concepts and approaches to the study of complex networks. Issues
such as the characterization of the network architecture, dynamics on complex net-
works, and the effect of attacks on network operation have begun to be addressed.
A central point of this review is that the flows of information and other physical
quantities in the network can be critically important for network security. This
dynamical aspect of the security problem, despite its highly practical relevance,
has not been addressed adequately so far. Here, we shall present our initial results
in this direction.

Two key concepts in the characterization of complex networks are the small-world
[2] and the scale-free [3,4] properties. Large natural or man-made networks are
always evolving in that nodes and links are continuously added to and/or deleted
from the network. Networks are growing if, on average, the numbers of nodes and
links increase with time. Most large networks are sparse, that is, the average number
of links per node is much smaller than the total number of nodes in the network. The
small-world concept is static in the sense that it does not describe the growth of the
network typically seen in nature. Two statistical quantities characterizing the small-
world property are the clustering coefficient C' and the average network distance L,
where the former is the probability that any two nodes are connected to each other,
given that they are both connected to a common node, and the latter measures
the average minimal number of links connecting any two nodes in the network.
Regular networks have high clustering coefficients and large network distances,
and random networks are at the opposite of the spectrum of architecture with
small network distance and low clustering coefficients [5]. Small-world networks
fall somewhere in between these two extremes [2,6]. In particular, a network is
small-world if its clustering coefficient is as high as that of a regular network but
its average network distance is as small as that of a random network with the
same parameters. Watts and Strogatz demonstrated that a small-world network
can be constructed by adding to a regular network a few additional random links
connecting otherwise distant nodes. The scale-free property, on the other hand, is
defined by an algebraic behavior in the probability distribution P(k) of the random
variable K, which measures the number of links at a node in the network:

P(k) ~ k™7, (1)

where v > 0 is the scaling exponent. The scale-free property is dynamic because it
is the consequence of the natural evolution of the network. The ground-breaking
work by Barabdsi and Albert [3] demonstrates that the algebraic distribution in the
connectivity of a scale-free network arises due to the two basic mechanisms in the
evolution of the network: growth and preferential attachment, where the former
means that the number of nodes in the network increases with time on average
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and the latter stipulates that the probability for a new node to be connected to an
existing node is proportional to the number of links that this node already has.

A convenient way to address the security of a complex network is to examine
how the average network distance, which is somewhat related to the efficiency of
communication (or information flow) within the network, is changed under random
or intentional attacks [7-10]. Generally, the average distance will not be affected
by the removal of a random subset of nodes, but it will increase significantly if the
removed nodes are among the most connected ones [7-11]. Most existing studies
on network security address mainly static properties, i.e., the effect of different net-
work architectures on the connectivity under attacks. Our concern is that network
architecture represents only one aspect of the security problem. How attacks affect
the functions of a network, when the flows of information and other physical quan-
tities in the network are taken into consideration, is important and may be more
relevant to real-world situations. In particular, we speculate that for many physi-
cal networks, the removal of nodes can have a much more devastating consequence
when the intrinsic dynamics of flows of physical quantities in the network are taken
into account. In a power transmission grid, for instance, each node (power station)
deals with a load of power. The removal of nodes, either by random breakdown or
by intentional attacks, changes the balance of flows and leads to a global redistri-
bution of loads over all the network. This can trigger a cascade of overload failures
[12,13], as the one that happened on August 10, 1996 in the western United States
power grid [14,15]. Another example is the Internet [16-18], where the load rep-
resents the amount of information a node (e.g., a router) is requested to transmit
per unit of time, and overloads correspond to congestion [19]. Internet collapses
caused by congestion have been reported since its very beginning [20]. We will first
introduce a model for avalanching failures in complex networks and show that it
is applicable to realistic networks such as the Internet and power grids. We will
then address theoretically and numerically the fundamental mechanism of cascading
breakdown. To make analysis amenable, we focus on scale-free networks and inves-
tigate cascades triggered by attack on a single node. We will show that cascading
breakdown in scale-free networks can be understood in terms of a phase transition.
In particular, let « be the tolerance parameter characterizing the capacity of nodes
in the network. Cascading breakdown due to attack on a single node is possible
only when « is below a critical value a.. By making use of the degree distribution
of scale-free networks and the concept of betweenness [21,22] to characterize the
load distribution, we are able to derive a theoretical formula for estimating the
phase-transition point ., which is verified by numerical experiments. In terms
of practical utility, our result enables a possible implementation of predicting and
preventing mechanism for cascading breakdown in scale-free networks.

Most existing works on the security of scale-free networks consider attacks on
nodes rather than on links (exceptions are refs [23] and [24], to our knowledge).
We believe that attacks on links are as important for the network security as those
on nodes, and therefore deserve a careful investigation. As we will show, studying
the effect of attacks on links can provide an understanding to the fundamental
question of why scale-free networks are typically highly efficient. In particular, the
efficiency of a scale-free network is determined by the average network distance
between nodes. It has been assumed that long-range connections are responsible
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for the small average network distance observed in these networks. The intuition is
then that scale-free networks are much more sensitive to attacks on long-range than
those on short-range links. We will show that in fact, the opposite is true. Thus,
the small-world property of scale-free networks is caused by short-range links.

This review is organized as follows. In §2, we introduce a simple model to address
the issue of attack-induced avalanches in complex networks [25]. In §3, we present
a theory and numerical support to place the cascading phenomenon in the context
of phase transition. Range-based attacks on links and the origin of the small-world
property in scale-free networks [26] are detailed in §4. A discussion is presented
in §5.

2. Attack-induced avalanches in complex networks

Complex networks such as the world-wide web (WWW), the Internet, and electrical
power grids, present a surprisingly small average distance between nodes and a
highly organized distribution of links per node [2,3,7]. The existence of a giant
connected component in the network, however, does not depend on the presence
of highly connected nodes. For instance, the WWW has homepages with many
thousands of hyperlinks and can remain well-connected after the removal of all
homepages with five or more hyperlinks [11]. In addition, the giant component
itself is typically a small-world network [6] even after the removal of all highly
connected nodes [27]. These pioneering studies on network security address mainly
static properties, i.e., the effect of different network architectures. They suggest that
the network connectivity, and hence its functionability, is robust against random
failure of nodes [7-9] and to some extent is even robust against intentional attacks
[11,27]. However, when the intrinsic dynamics of flows of physical quantities in the
network is taken into account, attack on a few or even a single node can cause the
connected nodes to fail in a cascading manner. We have recently introduced [25] a
model for avalanching failure in complex networks and shown that it is applicable
to realistic networks such as the Internet and power grids.

For a given network, suppose that at each time step one unit of the relevant
quantity, which can be information, energy, etc., is exchanged between every pair of
nodes and transmitted along the shortest path connecting them. The load at a node
is then the total number of shortest paths passing through the node [21,22,28,29].
The capacity of a node is the maximum load the node can handle. In man-made
networks, the capacity is severely limited by cost. Thus, it is natural to assume
that the capacity C; of node j is proportional to its initial load L,

Cj:(1+a)Lj, j::l.,2,...,]\/v7 (2)

where the constant « > 0 is the tolerance parameter and N is the initial number
of nodes. When all the nodes are on, the network operates in a free-flow state
insofar as a > 0. But, the removal of nodes in general changes the distribution of
shortest paths. The load at a particular node can then change. If it increases and
becomes larger than the capacity, the corresponding node fails. Any failure leads to
a new redistribution of loads and, as a result, subsequent failures can occur. This
step-by-step process is what we call a cascading failure. It can stop after a few

486 Pramana — J. Phys., Vol. 64, No. 4, April 2005



Complex networks: Dynamics and security

steps but it can also propagate and shutdown a considerable fraction of the whole
network [29a]. A fundamental question is: under what conditions can such a global
cascading process take place?

Here we focus on cascades triggered by the removal of a single node. If a node
has a relatively small load, its removal will not cause major changes in the balance
of loads, and subsequent overload failures are unlikely to occur. However, when
the load at the node is relatively large, its removal is likely to affect loads at
other nodes significantly and possibly starts a sequence of overload failures. Our
results are the following: global cascades occur if (1) the network exhibits a highly
heterogeneous distribution of loads; (2) the removed node is among those with
higher load. Otherwise, cascades are not expected. The distribution of loads is in
turn highly correlated with the distribution of links: networks with heterogeneous
distribution of links are expected to be heterogeneous with respect to load so that
on average, nodes with larger number of links will have higher load [29]. This result
confirms the robust-yet-fragile property of heterogeneous networks, which was first
observed in [7] for the attack on several nodes. The avalanching effect is important,
however, because a large damage can be caused in this case by the attack on a single
node. While a network with more links can be more resistant against avalanching
failures, in practice the number of links is limited by cost.

We study cascades triggered by random breakdown and by intentional attacks.
To simulate the former, we choose a trigger at random among all the nodes of the
network, as can occur in networks such as power grids [14]. In the case of attack the
targeted node is selected from those with highest loads or largest degrees (number
of links at a node). We consider heterogeneous networks with algebraic (scale-
free) distribution P of links, as observed in real systems [3,4,30,31] and compare
them with an equivalent homogeneous configuration. These networks are generated
according to the procedure in refs [26,32], where the nodes are connected randomly
for a given degree distribution, and self- and repeated links are forbidden. The
damage caused by a cascade is quantified in terms of the relative size G of the
largest connected component

G = N'/N, (3)

where N and N’ are the number of nodes in the largest component before and after
the cascade, respectively.

Figure 1 shows the relative size G of the largest component after a cascade, as
a function of the tolerance parameter «, for a scale-free network. We see that
on average G remains close to unity in the case of random breakdowns but it
is significantly reduced under intentional attacks, even for unrealistically large a.
Indeed, the size of the largest component is reduced by more than 20% for o = 1,
i.e., for a capacity as large as two times the capacity required for the system to
operate when all the nodes function normally. This result is in agreement with
intuition, because in the case of random breakdown the trigger is probably one
of the many nodes with small load, while in the case of intentional attack it is a
node with very large load. The damage is larger for smaller values of «, as it is for
load-based attacks when compared with degree-based attacks. For instance, in the
load-based attack for o« = 0.2, more than 60% of the nodes are affected. For the
5000-node networks used in our simulations, it means that a cascade triggered by
the attack on a single node shuts down and disconnects more than 3000 others!
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Figure 1. Avalanching failure in scale-free networks, as triggered by the
removal of a single node chosen at random (squares), or among those with
largest degrees (asterisks) or highest loads (circles), where « is the tolerance
parameter and G the relative size of the largest connected component. Each
curve corresponds to the average over 5 triggers and 10 realizations of the
network. The error bars represent the standard deviation. The networks are
generated according to the algebraic distribution (1). For the computations
shown we set v = 3 and 5000 < N < 5100. The average degree in the largest
component is (k) ~ 2.0.
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Figure 2. Avalanching failure in homogeneous networks. All nodes are set
to have the same degree k = 3 and N = 5000. In the inset, the networks are
generated according to the algebraic distribution (1) for £ > 2, v = 3, and
N = 5000. The resulting average degree is (k) =~ 3.1. The legends and other
parameters are the same as in figure 1.

Figure 2 shows the corresponding results for a homogeneous network with the
same number of nodes and exactly three links per node. To make a meaningful
comparison we display in the inset results for an algebraic network with about the
same average degree (actually larger, which strengthens our conclusions). The ho-
mogeneous network does not experience avalanching failures due to either random
breakdown or intentional attacks for a as small as 0.05. For the heterogeneous
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(scale-free) network, for the same value of «, cascades triggered by the attack on
a key node can reduce the largest connected component to less than 10% of the
original size, as shown in the inset. Therefore, homogeneous networks appear to
be more robust against attacks than the heterogeneous ones. This conclusion does
not rely on the particularities of these models, as the same was also observed for
classes of networks with exponential and Poisson-like distributions of degrees (e.g.,
the Erdés-Rényi model [33]): their homogeneity makes them relatively resistant to
cascades triggered by attacks. The networks corresponding to the inset of figure 2
are generated according to the same scaling distribution of those in figure 1, except
that in this case the minimal number of links at a node is set to be 2. Therefore,
this inset shows that the fragility of scale-free networks is due to their heterogene-
ity and does not rely on the presence of nodes with degree one, which are easily
disconnectable. Naturally, the increase of the average degree reduces the damage
of the cascade, as can be seen from a comparison between figure 1 and the inset of
figure 2.

Many real-world networks are heterogeneous and as such are expected to undergo
large-scale cascades if some vital nodes are attacked, but rarely in the case of ran-
dom breakdown. As an example we consider the Internet at autonomous system
level [34], which displays an algebraic distribution of links [7]. The damage caused
by triggers of higher load or degree is much larger than that by random breakdown,
as shown in figure 3. The avalanching failures are rarely triggered by random break-
down for o > 0.05, but more than 20% of the nodes can be disconnected with the
intentional attack on only one node for a < 0.4. We have also considered the elec-
trical power grid of the western United States [35]. The degree distribution in this
network is consistent with an exponential [36] and is thus relatively homogeneous.
The distribution of loads, however, is more heterogeneous than that displayed by
semi-random networks [26,32] with the same distribution of links, indicating that
the power grid has structures that are not captured by these models. As a result,
global cascades can be triggered by load-based intentional attacks but not by ran-
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Figure 3. Avalanching failure in the Internet at autonomous system level
[34]. The network has N = 6474 nodes and (k) ~ 3.88 links per node, on
average. Each curve corresponds to the average over 5 triggers for attacks and
50 for random breakdown. The legends are as defined in figure 1.
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Figure 4. Cascading breakdown in the western US power transmission grid
[35], which has N = 4941 and (k) ~ 2.67. The average is obtained via 5
triggers for attacks and 50 for random breakdown. The legends are the same
as in figure 1.

dom or degree-based removal of nodes, as shown in figure 4. We see that the attack
on a single node with large load reduces the largest connected component to less
than a half of its initial size, even when the network is highly tolerant (e.g., a = 1).

3. Theory: Phase transition and cascades

To obtain an analytic estimate of the critical value of the tolerance parameter, we
focus on the situation where cascading failures are caused by attack on the node
with the largest number of links and the failures lead to immediate breakdown of
the network. That is, G becomes close to zero after one redistribution of the load.
For a node in the network, its load is a function of the degree variable k. For
scale-free networks, we have [29,37,38]

L(k) ~ k", (4)

where 77 > 0 is a scaling exponent. To proceed, we write the degree distribution as
P(k) = ak™" and the load distribution as L(k) = bk", where a and b are positive
constants. Let ky.x be the largest degree in the network. Before the attack, we
have

krnax kxnax
/ P(k)dk =N and / P(k)L(k)dk = S, (5)
1 1
where S is the total load of the network. These two equations give
1—~)N S
azi(l_ 7) and bz—ﬁ 5> (6)
[ mal - 1] (1(1 - kmax)

where § = v —n — 1. After the removal of the highest degree node (it is only the
first step of the whole cascading process), the degree and load distributions become
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P'(k) = a/k™" and L/(k) = 0'k", respectively. Since only a small fraction of
nodes are removed from the network, we expect the changes in the algebraic scaling
exponents of these distributions to be negligible. We thus write P’'(k) ~ a'k™7
and L'(k) =~ b'k", where the proportional constants a’ and b’ can be calculated
in the same way as for a and b. We obtain o’ = (1 —v)(N — 1)/[kL.) — 1] and

max

b = BS'/a'(1—k;5.), where S’ is the total load of the network after the attack. For
nodes with & links, the difference in load before and after the attack can be written
as AL(k) = (V) —b)k" = (% —1)L(k). Given the capacity C(k), the maximum load
increase that the nodes can handle is C'(k) — L(k) = aL(k). The nodes still function
if a > (% — 1) but they fail if o < (% —1). The critical value a. of the tolerance

parameter is then

2
/N
Ll I
L
o
= ET
X ClEw
~_—
A/
wn| @
~—
|
—_

/
~ {1 - (k;‘lg}( - kr:lfx’)} <S§> -1

-B
- Emax S’
e () )JGE) e

where the third line of eq. (7) is obtained from the second line by using the fact
(k17 —1)/(kl~7 — 1) &~ 1. This is so because both k7, and kL~ approach zero

max’ max max max

when N — oo and v > 1. In the limit N — oo, we have k/};'gx' ~ 0, kmax/Kmax ~
constant, and S’/S — 1, so a, = 0, indicating that an infinite scale-free network
cannot be brought down by a single attack if & > 0. On the other hand, for finite-
size network, since k;lfx, > 0, we have a. > 0, suggesting that breakdown can occur
for o < ae. The practical usage of eq. (7) is that it provides a way to monitor the
state of (finite) network to assess the risk of cascading breakdown. In particular,
the critical value a. can be computed in time and comparison with the pre-designed
tolerance parameter value o can be made. If o, shows a tendency of increase and
approaches «, early warning can be issued to signal an immediate danger of network
breakdown.

To provide numerical support for the theoretical prediction (eq. (7)), we generate
scale-free networks using the standard Barabdsi-Albert model [3], as detailed in
ref. [39]. The shortest paths and the load L(k) are computed using the algorithm
developed by Newman [21,22]. Figure 5a shows the algebraic scaling of the load
for a scale-free network. The scaling exponent of the degree distribution P(k) is
v &~ 3 (not shown) and the average number of links in the network is (k) = 4.
The open circles in figure 5 indicate the values of the load for the original network.
Apparently L(k) follows the expected algebraic distribution, with exponent 7 ~ 1.6.
Figures 5b and 5c show the exponents 7 in relation to system size before and after
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Figure 5. (a) Algebraic scaling of the load L(k) for a scale-free network of
N = 10,000 nodes, v = 3, and (k) = 4. The open circles and the asterisks
denote the load values before and after an intentional attack that removes
the node with the maximum number of links. We have ' = n =~ 1.6. (b,c)
Algebraic scaling exponents of the load in relation to network size, before and
after the nodes with the largest degree are removed, respectively. For each
network size IV, the resulting data were averaged over 25 realizations.

the highest degree node is removed, respectively. In both cases, we obtained n’ =
n = 1.6(2). Computer simulations show that the load distribution and cascading
behavior observed above holds for various (k). To simulate an intentional attack, we
remove the node with the maximum number of links (kyax = 81 for the realization
of the network shown in the figure). The distribution of the load is recalculated
after the network stabilizes itself. That is, after the attack the load on the removed
node is redistributed to the network and new load to every node is recalculated.
Any node with load exceeding its capacity is removed and load is recalculated,
and so on, until the process reaches a new equilibrium. The new values of the
load are denoted by the asterisks in figure 5. We see that the distribution still
follows a power law with approximately the same scaling exponent. This justifies
the approximation 1’ &~ n used in our theory.

As N is increased, we expect kpax to increase following an algebraic scaling law
[39]. This behavior is shown in figure 6a. After the attack and redistribution of
load, we find that the ratio kmax/kl ., Where k. is the new value of the maximum
number of links, is constant, regardless of the network size. We also numerically
observed that the load ratio S’/S (before and after the attack) is approximately
one for large N, as shown in figure 6b.

Figure 7a shows cascading failures when a single node with different degree is
removed from the network. We see that, when a node with small degree is removed,
the G value remains close to one except when « is close to zero. However, when
the node with the largest degree (in this case k = 81) is removed, nearly total
breakdown of the network, as represented by values of G close to zero, occurs when
a < 0.1. The phase-transition point . is thus about 0.1. With numerical values of
Emax = 81, K/, =60, S ~ 1.86 x 107 and S’ ~ 1.91 x 107, theoretically predicted

max
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Figure 6. (a) Algebraic scaling of kmax with N. For each network size N,
5000 realizations are averaged. (b) Load ratio S’/S vs. 1/N. For each network
size N, 25 realizations were averaged.
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Figure 7. Cascading failure in scale-free network in relation to the tolerance
parameter a. (a) Removal of the nodes with different number of links for
N = 2000. In the case of the removal of the node with the highest degree,
the phase-transition point is a. =~ 0.1, meaning that for a < a., the networks
disintegrate almost entirely under intentional attack on a single node. (b)
Phase transitions for networks of different sizes. The resulting data points
were averaged over 25 realizations.

value of . in eq. (7) gives a. = 0.1, which is consistent with numerics. This phase
transition phenomenon seems to be robust for different sizes of network, as shown
in figure 7b, G vs. « for N = 1000, N = 2000 and N = 5000, respectively.

What about attacks that target more than one node? In this case, we expect
that the phase transition will occur for higher values of the tolerance parameter,
because it becomes more difficult for the network to maintain its integrity at lower
tolerance, as compared with the case of attack on a single node. Figure 8 shows
G vs. both a and Niigger, the number of nodes that an attack targets. Here
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Figure 8. For a scale-free network of N = 2000 nodes under attack targeting
multiple nodes, G vs. a and Nirigger, the number of targeted nodes. For each
parameter value, GG is averaged over 30 realizations.

the removed nodes are those with the highest numbers of links. We see that, as
Nirigger is increased, the phase-transition point o, also increases. Roughly we have
0 ~ Nirigger- Note that the number of targeted nodes, while more than one, is still
far small compared to the total number of nodes in the network. Practically, this
means that, even if the network is designed to have a high tolerance by stipulating
high capacities for its nodes, cascading failures triggered by attack on a very small
subset of nodes are capable of bringing down the entire network.

4. Range-based attacks on links in complex networks

Many real networks have been identified to have an amazingly small average shortest
path since Watts and Strogatz (WS) [2] introduced their model of small-world
networks. This model is constructed from a sparse regular network by rewiring a
small fraction of links at random. Watts [6] introduced the concept of range to
characterize different types of links: the range of a link /;; connecting nodes ¢ and
j is the length of the shortest path between nodes 7 and j in the absence of [;;
(see also ref. [40]). In this sense, typically, local connections are short-range links
but rewired connections are long-range links. A key feature in the WS model is
that it clearly identifies the small shortest paths observed in locally structured,
sparse networks as being due to long-range connections, while short-range links are
responsible for high clustering. This remarkable observation matches very well with
the known results for the Erdés-Rényi (ER) model of random graphs [33], where
almost all links are long-range connections and the average shortest path increases
only logarithmically with the number N of nodes [5]. In regular networks, on the
other hand, all the links have small range and the average shortest path increases
with a power of N.

The WS and ER models explain some important features of real networks, such
as the small-world phenomenon. However, since these models are homogeneous,
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their connectivity distribution P(k), where k is the number of links connected to
a node, has an exponential tail, in contrast to the algebraic one that characterizes
scale-free networks recently discovered in a variety of real-world situations [3,4].
Scale-free networks are heterogeneous as their connectivity can vary significantly
from node to node and a considerable number of links can be associated with a
few highly connected nodes. As most scale-free networks possess the small-world
property, it has been tacitly assumed that long-range connections are responsible
for the small average shortest path exhibited by these networks. In addition to the
insights provided by the WS model, the main argument for this comes from the
observation that the removal of a link /;; of range R increases the length of the
shortest path between nodes ¢ and j by R — 1. The length of the shortest path
between nodes connected by a short-range link is then robust against the removal
of the link because the second shortest path between these two nodes is still short.
But this is not true for long-range links, as they connect nodes that would otherwise
be separated by a long shortest path.

Our goal here is to understand the contribution of short-range links to the small-
world property in scale-free networks, by analysing the impact of attacks on short-
range links vs. those on long-range links. Attack here is defined as the deliberate
removal of a subset of selected links. Different aspects of attacks on complex net-
works have been analysed recently [7,9-11,40-42]. However, to our best knowledge,
almost all the previous works consider attacks on nodes rather than on links, with
very few exceptions [23,24].

To study range-based attacks on links, we consider the following models of scale-
free networks: (1) semi-random model [32]; (2) BA model [3] and its generalization
with aging [43]. In each case we generate scale-free networks with the small-world
property and a tunable scaling exponent. Because of the small-world property, one
might intuitively think that these networks are much more sensitive to attacks
on long-range than on short-range links. Surprisingly, our analysis and numerical
computation show exactly the opposite for many scale-free networks. This result has
an unexpected implication: short-range links are vital for efficient communication
between nodes in these networks. Our findings are based on the observation that
the average shortest path is a global quantity which is mainly determined by links
with large load, where the load of a link is defined as the number of shortest paths
passing through the link [29,44]. For scale-free networks with exponent v in a
finite interval about 3, due to heterogeneity, the load is on average larger for links
with shorter range, making the short-range attack more destructive. For very large
values of v, the corresponding networks become homogeneous and, as a result, the
opposite occurs.

For a given network, our strategy of attack on links is as follows. We first compute
the range for all the links. We then measure the efficiency of the network as links are
successively removed according to their ranges: for short-range attacks, links with
shorter ranges are removed first; for long-range attacks, links with longer ranges are
removed first [44a]. In both cases, the choice among links with the same range is
made at random. The efficiency is measured by the shortest paths between pairs of
nodes. The shortest path between two given nodes ¢ and j is defined as the minimal
number d;; of links necessary to follow from one node to the other. A convenient
quantity to characterize the efficiency is then

Pramana — J. Phys., Vol. 64, No. 4, April 2005 495



Ying-Cheng Lai et al

. ‘ ‘ ‘
10° pnat

Averaged Product
of Connectivities

0 2 4 6 8

Figure 9. Averaged product of connectivities as a function of the shortest
path, range, and load for v = 3, where the load is binned and normalized by
10*. Each curve corresponds to the average over 10 realizations for N = 5000,
kmin = 3, and kmax = 500.
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where the sum is over all N(N —1)/2 pairs of nodes. The network is more efficient
when it has small shortest paths, which according to our definition corresponds to
large E. Definition (8) was introduced in ref. [45] to generalize the concept of small
world, as it applies to any network regardless of its connectedness.

We first consider the semi-random model, as follows. We start with N nodes
{1,2,...,N} and a list of N integers representing their connectivities, i.e., the
number of end-links of each node: {k1,ko,...,kn}, where k; < N —1 and Zf\il k;
is even. In the case of scale-free networks, this connectivity sequence is generated
according to the algebraic distribution (1). Next, we pick up pairs of end-links
at random and connect them to form a link and repeat this process until the last
pair is connected, prohibiting self- and repeated links. In order to have non-trivial
networks in the limits of small and large v, we bound the connectivity so that
kmin < ki < kmax for i = 1,2,..., N, where ki, and knyax are constant integers.
For v — o0, the network becomes a regular random graph, which is homogeneous
with all the nodes having the same connectivity k. For v — 0, most of the
links are associated with nodes with connectivity on the order of kp.x, and the
network becomes densely connected. The most interesting regime corresponds to
intermediate values of -, because in this case the network is highly heterogeneous
but still sparse, having the number of links much smaller than N (N —1)/2. Consider
then this case.

Employing the generating function formalism of ref. [32], we have derived an ex-
pression for the expected value of the shortest path between nodes with connectivity
ki and ]Cj, i.e.,

ln(Nzl/kzkj)

dij = =
ln(ZQ/Z1)

where z; and z; are the average numbers of first and second neighbors, respectively.

Accordingly, nodes with larger connectivity are on average closer to each other than
those with smaller connectivity. The remarkable property of eq. (9) is that d;

+1, 9)
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Figure 10. Normalized efficiency for short- and long-range attacks as a func-
tion of the fraction of removed links. All the parameters other than ~ are the
same as in figure 9.

depends only on the product of the connectivities k; and k;. This relation suggests
that the range is also correlated with the product of the connectivities [45a] so that
short-range links tend to link together highly connected nodes, while long-range
links tend to connect nodes with very few links. Moreover, links between nodes
with large connectivities are expected to be passed through by a large number of
shortest paths. That is, on average these links should possess a higher load [24] than
those connected to nodes with few links. These have been confirmed numerically,
as shown in figure 9 for v = 3, where we plot the product of connectivities averaged
over all pairs of nodes separated by a given shortest path length, or connected by
a link with a given range or load.

Combining the above analyses for range and load, we observe that high load
should be associated mainly with short-range links. With the understanding that
links with higher load should contribute more to the shortness of the paths between
nodes, this correlation between load and range implies that attacks on short-range
links are more destructive than those on long-range links, in contrast to what one
might naively think.

Now we present numerical verification of our main result concerning the effect of
attacks on links. In figure 10 we show the efficiency (normalized by its initial value)
for both short- and long-range attacks, for different values of +. Notably, short-
range attacks are more destructive than long-range ones for intermediate values
of ~, as shown in figures 10a and 10b for v = 3 and v = 5, respectively. The
corresponding relation between the average load and range, plotted in figure 11
for v = 3 (open circles), confirms that higher load on links with shorter range
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Figure 11. Comparison between heterogeneous and homogeneous networks:
averaged load as a function of the range for v = 3 and v = oco. All the
parameters other than + are the same as in figure 9.

is the mechanism underlying this phenomenon. Long-range attacks become more
destructive only for networks with sufficiently small or large values of . In figures
10c and 10d we show the results for v = 2.5 and v = oo, respectively. The exchange
of the roles of attacks on short- and long-range links for networks with small values
of 7y is due to the appearance of a densely connected subnetwork of nodes with large
connectivity. In this case there are so many redundant short-range connections that
the removal of one will not increase the average shortest path by much because,
for a given pair of nodes, there are in general more than one path of minimal
length which pass through different short-range links. For networks with large
values of ~, switching of the roles of short- and long-range attacks is caused by
the homogenization of the network. In a homogeneous network all the nodes have
approximately the same connectivity. Therefore, links with higher load are precisely
those between distant nodes, i.e., those with larger range, as shown in figure 11 for
v = oo (open squares).

To demonstrate the generality of our results, we turn next to dynamic models
of scale-free networks, where the algebraic scaling results from growth with prefer-
ential attachment, as observed in many realistic networks [3,4]. For concreteness,
we consider the BA model [3] and its generalization with aging of nodes due to
Dorogovtsev and Mendes [43]. The model is constructed as follows. We start at
t = 0 with Ny nodes and zero links. At each successive time step we add a new
node with m < Ny links so that each new link is connected to some old node i with
probability II; ~ 7, “(k; 4+ 1), where 7; is the age of the node i and k; is its connec-
tivity. The standard BA model with scaling exponent v = 3 is recovered by taking
a = 0. In general, scale-free networks with v > 2 are generated by choosing values
of a in the interval (—oo, 1] [43], where v approaches the value of 2 as & — —o0
and becomes infinite as o — 1.

Most of the arguments and conclusions presented for the semi-random model
are also valid for the growth model. In particular, the short-range attack is still
expected to be more destructive than the long-range one at intermediate values
of v, while the opposite is expected for sufficiently large . However, there is an
important difference for 2 < v < 3. Since new links come with new nodes, the
subnetwork of highly connected nodes must be sparse. Accordingly, for this model
there will be no switching concerning the effect of short- vs. long-range attacks at
a small value of ~.
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Our predictions are confirmed by numerical simulations, as shown in figure 12
for different values of o (7). Indeed, short-range attacks are more destructive for
a =0 (y = 3) and also for « = —2 (y =~ 2.3), while long-range attacks are
more destructive for &« = 1 (y = o00). In all cases the best strategy of attack is
consistent with the correlation between load and range, as shown in the insets of
figures 12a—c.

It is instructive to compare the results for scale-free networks with those for
homogeneous networks with Poisson-like distribution of connectivities. In figure
12d we show the efficiency for the ER random model. In this model we start with IV
nodes and zero links. Then for each pair of nodes, with probability p, we add a link
between them. The resulting network has on average z; = p(N — 1) links per node.
This network is more sensitive to attacks on long-range links because of the strong
concentration of load on links with range infinity (see the inset). Incidentally, the
long-range attack is also more destructive in the WS model [2], where the rewired
connections tend to have higher load. The same tendency displayed in figures 10
and 12 was observed for any fraction of removed links. In particular, short-range
attack is still the most effective one for scale-free networks with scaling exponent
around 3. We observe, however, that the removed fraction shown in these figures
is already unrealistically large for many practical situations.
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5. Discussions

In this paper, we have addressed two problems concerning attacks on and security
of complex networks. The importance of studying attacks on complex networks is
two-fold. Firstly, it can identify the vulnerabilities of real-world networks, which
can be used either for protection (e.g., of Internet) or for destruction (e.g., of
metabolic networks targeted by drugs). Secondly, it provides guidance in designing
more robust artificial networks (e.g., power grids).

Our result on cascading process in complex networks indicates that many nat-
ural and man-made networks, while being naturally evolved to be quite resistant
to random failure of nodes, are vulnerable to the presence of a few nodes with
exceptionally large load: the attack on a single important node (one of those with
high load) is likely to trigger a cascade of overload failures capable of disabling the
network almost entirely. Such an event has dramatic consequences on the network
performance, because the functionability of a network relies on the ability of the
nodes to communicate efficiently with each other. From the perspective of security,
an effective attack relies on identifying vulnerabilities and is far from being random.
Our society is geographically distributed in a way that natural hazards are by no
means random [46]. An example is the crowding of people, communication, trans-
portation and financial centers around seismic areas, like the Pacific Rim. Natural
disasters and intentional attacks can then have devastating consequences on the
complex networks underlying the society. These consequences will be more severe
if the damage on one or few nodes is capable of spreading over the entire network.
In this sense a cascade-based attack can be much more destructive than any other
strategies of attack previously considered [7,9-11,24,26,41,42].

We have also shown that for a wide interval of the scaling exponent ~, scale-free
networks are more vulnerable to short- than long-range attacks, which results from
a higher concentration of load on short-range links. In contrast to the load-based
strategies of attacks considered in ref. [24], which are based on global informa-
tion, short-range attacks are quasi-local in that, for a given range R, they require
information only up to the (R — 1)th neighbors. Our findings have important im-
plications that go beyond the issue of attack itself, as they provide insights into the
structure and dynamics of scale-free networks. In particular, they show that short-
range links are more important than long-range links for efficient communication
between nodes, which is the opposite to what one might expect from other classes
of small-world networks. For instance, in the network of sexual contacts, which is
known to be scale free [47], this means that the rapid spread of a disease may be
mainly due to short-range contacts between people with large number of partners,
in sharp contrast to its homogeneous counterpart [40].
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