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Abstract. Forecasting, for obvious reasons, often become the most important goal to
be achieved. For spatially extended systems (e.g. atmospheric system) where the local
nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to
have a simple diagnostic tool to identify regions of predictable behaviour. In this paper,
we discuss the use of the bred vector (BV) dimension, a recently introduced statistics,
to identify the regimes where a finite time forecast is feasible. Using the tools from
dynamical systems theory and Bayesian modelling, we show the finite time predictability
in two-dimensional coupled map lattices in the regions of low BV dimension.
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1. Introduction

Spatially extended systems often arise in a variety of contexts in physical, biological
and ecological sciences. In most of the cases these systems often exhibit highly
complex type of evolutions such as high dimensional or spatio-temporal chaos. They
are characterized by a large number of positive Lyapunov exponents which measures
the exponential divergence of neighbouring trajectories. As a consequence, it is
almost impossible to know precisely the long-term behaviour of these systems as
they evolve. One can visualize the extended systems by considering a collection
of a large number of sub-systems coupled either locally or globally which are very
useful to understand the various features associated with spatio-temporal chaos. In
this connection, coupled map lattices (CML) provide a prototype model to study
chaos in spatially extended systems. In general, they occur in a variety of fields
involving spatio-temporal complexity.
In this connection, the bred vector (BV) dimension or local dimension introduced

recently in the atmospheric science literature [1] provides a better understanding
of the dynamics, at least, in the local sense.
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The aim of this paper is to study the bred vector dimension and its connection to
the predictability in coupled map lattices. This paper is organized as follows: In §2,
we present a rather brief overview of the bred vector (BV) dimension that is applied
in the context of spatially extended systems. By considering coupled map lattices,
we study the nature of BV dimension and its connection to predictability with the
aid of a simple prediction tool and cluster weighted modelling in §3. Summary and
conclusions are given in §4.

2. Bred vector dimension

The bred vectors are constructed in a similar way as Lyapunov vectors but in prac-
tical applications bred vectors are different in two aspects. Firstly, for bred vectors
there is no global orthonormalization and secondly, they are finite-amplitude, finite-
time vectors. In the following, we discuss how one can formulate BV dimension for
spatio-extended systems.
Consider a 2D spatially distributed system whose state at a given time t1 is

defined over a collection of points (i, j). Here we take M −1 nearest neighbours for
each point (i, j) in a square lattice with M = 25, as illustrated in figure 1. Logistic
maps are one-variable dynamical systems and in order to specify the corresponding
state at a point including its neighbours we need an M -dimensional state vector
called bred vector. Now generate k distinct perturbations of the state starting at
t0 < t1 to obtain k local bred vectors. The k×k covariance matrix of the system is
just C = BTB, where B is the M × k matrix of local bred vectors each normalized
to unity. In this paper we will fix k = 5. We order the eigenvalues of the covariance
matrix as λ1 ≥ λ2 ≥ · · · ≥ λk and define the singular values of B as σi =

√
λi.

Here the connection with factor analysis is clear [2], since the eigenvalues of the
covariance matrix give an idea of the local linear independence of the k local bred
vectors. An effective dimension of the space of bred vectors can be obtained by
fixing a threshold value corresponding to the highest l eigenvalues, as is done in
principal components analysis. Thus an approximation of the data, supposing zero
average for simplicity, is contained in the product FL were F = BLT is called the
factor and L the loading matrix of dimension l×k. The rows of the loading matrix
are the components of the eigenvectors corresponding to the dominant eigenvalues.
Clearly there is an arbitrariness in the stipulation of l and this ambiguity is absent
when using the concept of BV dimension.
The eigenvalues λi represent the amount of variance in the set of k unit bred

vectors. In order to estimate unambiguously the value of the threshold, one defines
the following statistic [1]:

ψi,j(σ1, σ2, . . . , σk) =

(

∑k
l=1 σl

)2

∑k
l=1 σ

2
l

. (1)

As each of the k bred vectors is normalized to unity, ψ assumes values in the
interval (0, k). Examples of the values of this statistic for several distributions
of bred vectors can be found in [1]. A property of the statistic just defined is
its robustness under noise or numerical errors. It can be used to determine the
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Figure 1. Schematic diagram showing the choice of the nearest neighbours
at site (i, j) for local dimension. The bred vectors are the dynamical variables
associated with these sites.

dominant eigenvalues l: just take it to be the smallest integer bigger than ψ. In
this sense an approximation to the bred vectors is obtained as a product of the
corresponding factor and the loading matrix.

3. Local dimension in coupled map lattices

We consider the case of two-dimensional coupled map lattices consisting of logistic
maps [3].

x
i,j
n+1 = (1− ε)f(xi,j

n ) +
ε

4
[f(xi−1,j

n ) + f(xi+1,j
n ) + f(xi,j−1

n )

+f(xi,j+1
n )], (2)

with

f(x) = µx(1− x), x ∈ (0, 1), µ ∈ (0, 4), (3)

where i, j = 1, 2, . . . , N and ε represents the coupling strength. Here, we use
N = 50, µ = 4, ε = 0.4 and periodic boundary conditions. The reference spatial
variables xi,j , i, j = 1, 2 . . . , N , are obtained by evolving system (2) from random
initial conditions. The number of iterations is chosen to be 5015 so that transients
are removed. We generate additional spatial variables by adding small perturba-
tions to the reference variables at time 5000 to measure the local instability of the
coupled maps. Thus at time 5015 we have spatial distributions corresponding to
the reference variable and four distinct perturbations. The local dimension at the
spatial points are computed at this time value using the statistic defined in eq. (1)
as discussed in the previous section. Figure 2 illustrates the results of the logistic
maps (2) calculations where dark regions correspond to low dimensions and bright
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Figure 2. Gray scale plot showing the regions of low (dark) and high (bright)
local dimensions for the coupled logistic maps (2).

regions represent high dimensions. We found that the local dimension has a min-
imum value, ψ = 1.0323, at i = 2, j = 37 and a maximum value, ψ = 2.3636, at
i = 28, j = 7. We note that the maximum and minimum values at the spatial points
(i, j) are practically constant under evolution of system (2), a few steps forward or
backward.

3.1 Simple nonlinear prediction

In order to establish a relation between dimension and predictability, we analyse
the time series at the lattice points (2, 37) and (28, 7) discussed above. For a chaotic
time series {xj}L

j=1, one can define a simple prediction as an average over futures
of the neighbours, Un [4],

x̃n+1 =
1

| Un|
∑

xj∈Un

xj+1. (4)

A point xj belongs to Un if |xn−xj | ≤ δ. Here |Un| denotes the number of elements
of the neighbourhood Un. Then the prediction error is given by

η =
∣

∣

∣
x

i,j
orig − x

i,j
pred

∣

∣

∣
. (5)

We apply the simple prediction algorithm during the interval from n = 5015 to
n = 5040. Figure 3 shows the prediction errors for x2,37 and x28,7 with δ = 0.05.
It is evident that the prediction error is small at the lattice point (2, 37) where the
local dimension is low, and large at the point (28, 7) where the local dimension is
maximum. In addition, similar results were obtained for points with other local
dimension values. We found that the prediction error is consistently low in regions
of low local dimension and high in the regions of relatively high local dimension.
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Figure 3. Simple finite prediction error for the coupled logistic maps. The
error remains minimum for x2,37 (low BVD point) (a) and high for x28,7 (high
BVD point) (b).

3.2 Cluster-weighted modelling

In order to characterize the time series data at the lattice points where the local
dimensions are low or high, we use a more powerful technique known as cluster-
weighted modelling. This method is based on the probability density estimation
approach developed by Gershenfeld, using probabilistic dependence of local mod-
els [5]. The cluster-weighted modelling technique essentially estimates the func-
tional dependence of time series in terms of delay coordinates. The main task of
this approach is to find the conditional forecast by estimating the joint probability
density.
Let {yn, ~xn}N

n=1 be the N observations in which ~xn are the known inputs and yn

are the corresponding outputs. By knowing the joint probability density p(y, ~x),
we can derive the conditional forecast, the expectation value of y, given ~x, 〈y|~x〉.
We can also deduce other quantities such as the variance of the above estimation.
Actually, the joint density p(y, ~x) is the expanded terms of clusters which describe
the local models. Each cluster contains three terms, namely, the weight p(cm), the
domain of influence in the input space p(~x|cm), and finally the dependence in the
output space p(y|~x, cm). Thus the joint density can be written as [5]

p(y, ~x) =

M
∑

m=1

p(y|~x, cm) p(~x|cm) p(cm), (6)

where M corresponds to the number of clusters. Once the joint density is known,
the other quantities can be derived from p(y, ~x). For example, the conditional
forecast is given by

〈y|~x〉 =
∫

y p(y|~x) dy =
∑M

m=1 f(~x, βm) p(~x|cm) p(cm)
∑M

m=1 p(~x|cm) p(cm)
. (7)

Here f(~x, βm) describes the local relationship between ~x and y. The parameters
βm are found by maximizing the cluster-weighted log-likelihood. The simplest
approximation for the local model is with linear coefficients of the form
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Figure 4. Prediction of time series for the coupled logistic maps by using
cluster-weighted modelling. The original (filled circles) and predicted values
(circles with error bars) of the time series at (a) low BVD location (2, 37) and
(b) high BVD location (28, 7).

f(~x, βm) =
I
∑

i=1

βm,i fi(~x). (8)

The method just described above provides more insights into the predictability
issue of the present problem. For the present problem, we consider the average
prediction 〈y|~x〉 using the conditional distribution obtained from the joint distri-
bution p(y, ~x) given in (6). Using the time series data at the lattice points at each
site for definiteness, y the value to be predicted is taken as x(n + 2τ) (e.g. with
embedding dimension m = 3 and delay τ), given the vector of delayed components
~x = {x(n), x(n+ τ), n}; here we take τ = 1. Figure 4 presents a series of predicted
values, using always the two most recent original values, and the corresponding
variance. In most cases analysed, we found the following behaviour. Lattice sites
with high BV dimension result in predicted values with larger variances than those
with low BV dimension, or either the prediction tend to fall outside the confidence
interval defined by the variance of the future value. These facts are shown in figures
4a and 4b for the low and high BV dimensions, 1.0323 and 2.3636, respectively. In
this case the simple prediction results are more compelling than the CWM since
the difference between the highest and lowest BV dimension is not big enough. In
this case the conclusion that the uncertainty in prediction is related to dimension
is even more forceful.

4. Summary and conclusions

In the present paper, we have considered the issue of forcasting based on the BV
(local) dimension for spatially extended systems. In particular, we have shown
that the BV dimension has direct relation with the finite time predictability. By
considering two-dimensional coupled map lattices and with simple nonlinear predic-
tion tools, we pointed out that the spatial points of small BV dimension are more
predictable than the regions of high BV dimension. If the dimension changed sub-
stantially during the short time evolution then the relationship between dimension
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and prediction could not be maintained. In this work predictions are made over
intervals of 20 or 25 units of time units and under such circumstances the value of
BV dimension is practically constant.
For deterministic evolution some systems are more predictable than others and

this can be measured by Lyapunov exponents. However, these exponents are well
defined only asymptotically and are not unique for finite time calculations [6–9]. In
such cases bred vectors are the proper tool to use and in this paper we provided
the relation between predictability and the value of the BV dimension.
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