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Abstract. We have studied five-dimensional homogeneous cosmological models with
variable G and bulk viscosity in Lyra geometry. Exact solutions for the field equations
have been obtained and physical properties of the models are discussed. It has been
observed that the results of new models are well within the observational limit.
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1. Introduction

The possibility that space-time has more than four dimensions has attracted many
researchers to the field of higher dimension [1]. Study of higher-dimensional space-
time is also important because of the underlying idea that the cosmos at its early
stage of evolution might have had a higher-dimensional era. The extra space re-
duced to a volume with the passage of time which is beyond the ability of ex-
perimental observation at the moment. Attempts have been made to explain why
the universe presently appears to have only four space-time dimensions, if it is
dynamically evolving (4 + k)-dimensional manifolds (k being the number of extra
dimensions). It has been claimed that the solutions to Einstein’s equation for (4+k)
dimension indicate that there is an expansion of four-dimensional space-time while
fifth dimension contracts or remain constant [2]. Further, it has been reported
that during contraction process, extra dimensions produce large amount of entropy
which provides an alternative resolution to the flatness and horizon problem, as

937



G P Singh, R V Deshpande and T Singh

compared to usual inflationary scenario [3,4]. Marciano [5] has suggested that the
experimental observation of fundamental constant with varying time could produce
the evidence of extra dimensions.

One of the outstanding problem of standard cosmology is that of large entropy per
baryon ratio. It has been widely discussed in the literature that during the evolu-
tion of the universe, bulk viscosity could arise in many circumstances and could lead
to an effective mechanism of galaxy formation [6]. The possibility of bulk viscosity
leading to inflationary-like solutions in general relativistic FRW models is discussed
by Padmanabhan and Chitre [7]. Johri and Sudharsan [8] have pointed out that the
bulk viscosity leads to inflationary solution in Brans—Dicke theory (BDT). The pos-
sibility of bulk viscosity-driven inflationary solutions of full Israel-Stewart theory in
different cases are discussed by Zimdahl [9]. Many more efforts [10] have been made
to obtain cosmological solutions for a fluid with bulk viscosity in BDT, because of
the inflationary solutions due to the presence of bulk viscosity. Recently, Singh
et al [11] have studied all the FRW (flat, open and closed) cosmological models
with causal viscous fluid in BDT. In the context of open thermodynamic systems,
Bianchi-type cosmological models with bulk viscosity and particle production have
been studied in ref. [12].

Einstein’s idea of geometrizing gravitational field in the form of general theory
of relativity (GTR) motivated physicists to geometrize other physical fields. Weyl
[13] suggested a non-Riemannian geometrical theory of gravitation and electromag-
netism. But, because of the non-integrability of the length transfer of a vector
under parallel transport, this theory was never studied seriously. Lyra [14] removes
this non-integrability condition of the length of a vector under parallel transport
by introducing a gauge function into the modified Riemannian geometry. Sen [15]
proposed a new scalar—tensor theory of gravitation based on Lyra geometry. Sub-
sequently, cosmological theory within the framework of Lyra geometry was studied
by Halford [16], who had pointed out that the vector field ¢; in Lyra geometry plays
similar role of cosmological term A in the GTR with a cosmological constant. The
scalar—tensor treatment based on Lyra geometry [17] predicts the effects which are
within the observational limits, as in Einstein’s theory. Several authors [18] have
studied cosmological models based on Lyra geometry with a constant displacement
field without any prior reason. Soleng [19] has identified that the cosmology based
on Lyra geometry with a constant gauge vector ¢ will either include a creation field
and be equal to Hoyle’s creation field cosmology [20] or contain a special vacuum
field which together with gauge vector may be considered as cosmological term.
Singh and Singh [21] have discussed Bianchi Type I, ITI, Kantowshi Sachs and a
new class of models with a time-dependent displacement field. They have made
a comparative study of Robertson-Walker models with a constant deceleration
parameter in Einstein’s theory with a cosmological term and in the cosmological
theory based on Lyra geometry (for a review of Lyra geometry and cosmology,
please refer [22]). Isotropic and homogeneous FRW models of the universe have
been studied in the presence of a bulk viscous fluid within the framework of Lyra
geometry [23].

Motivated by the above investigations, we have considered the present study
of higher-dimensional cosmological models with gravitational constant and bulk
viscous fluid in Lyra geometry.
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2. Field equations

We consider spatially flat five-dimensional space-time geometry of the universe with
the line element

ds? = dt? — A?%(t)(da? 4 da? + dx2) — B2(t)dy?, (1)

where u® = 68, u’ = 0, for i = 1,2,3,4.
The Einstein’s field equations based on Lyra geometry in normal gauge may be
written as

1 3 3
Rij = 5910+ 50id; — Zgij¢k¢k = —8nGTj;, (2)

where ¢; is the displacement vector field and other symbols have their usual
meaning as in Riemannian geometry. The displacement vector ¢; is defined as
¢i = (6a0a0a0)0)'

The energy—momentum tensor has the form
Tij = (p + p)uiv; — pgi;. (3)

Here p, p, and u; are respectively, the energy density, equilibrium pressure, and four
velocities of the cosmic fluid distribution.

The field equations (2) together with (3) for the space-time metric (1) lead to
the following set of equations:

iz AB 3
i A& AB B 5
A A2 3
3 <Z + ﬁ) = —87TGp— 15 N (6)

where overhead dot denotes differentiations with respect to t.

Equations (4)-(6) bear a close resemblance to equations of relativistic cosmol-
ogy based on Riemannian geometry with % (32 playing the role of the cosmological
constant A.

3. Cosmological solutions

We have only three basic equations (4)—(6) and six unknowns, viz. A, B, G, p,p and
B. In order to obtain exact solutions, we require three more physically reasonable
relations (conditions) amongst the variables. In the following sections we consider,
in turn, uniform energy density and bulk viscosity energy density law for further
investigations. Subtracting eq. (6) from (5), we get
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Equation (7) on integration yields the solution

(i — ;i) A*B =K, (8)

where K is a constant of integration.
Now, assuming a power law relation A ~ B™ between metric coefficients A and
B, eq. (8) suggests

n n/(3n+1)
) 0

A=A | —
o4

£\ 1/GntD)
B =B, (—) , (10)
to
where Ay and By are values of A and B at t = tg.
Further, eqs (4)—(6) along with (9) and (10), give
3 3, 3nn+1) 1
87Gp+ =3 =81Gp+ = =l —. 11
R T e P e (11)

It can be seen that eq. (11) yields Zeldovich condition p = p for the superdense
model of the universe.

Let us now turn our attention to variability of displacement vector field 32 and
gravitational constant G. A number of authors have studied cosmological models
with ansatz A ~ H? (please refer [24] and references therein). It has been pointed
out in the literature that 32 = —(4/3)A gives complete equivalence between the
cosmological models in Lyra geometry and general relativity [16,25]. Considering
the above results, we assume

_ 5

= H? 12
g (12)

62

where H is defined as H = (A/A)+(1/3)(B/B) and 3y, Hy are representing present
values of § and H respectively. Now by using eqs (9) and (10), eq. (12) reduces to

to)’
2= (%) (13)
Further, we now assume a power law form for G as in the literature [26], of the
type

G(t) = Go (i)m (14)

to

with G being the present value of G.

940 Pramana — J. Phys., Vol. 63, No. 5, November 2004



Higher-dimensional viscous cosmological model in Lyra geometry

Again, from eqgs (11)—(14), we obtain

1
P:P0m7 (15)

where

o [3nn+1)
~ 81Gy | (3n + 1)2

Equation (15) suggests that the condition on the energy density p > 0 requires
B2 < 4n(n+1)/(3n +1)%t2. Tt can be easily checked from eqgs (9) and (10), that in
the first case where n > 0 the rate of expansion of A is faster than B while in the
second case where n < —1, A is expanding and B is contracting with the evolution
of the universe.

Further, m > —2 ensures that energy density is a decreasing function of time.
In this model, energy density (p) and displacement vector field § are decreasing
whereas variable G(t) is increasing with the evolution of the universe.

3
Po - Zﬁgt%

4. Cosmological model with bulk viscosity

In this case, we have considered the effect of bulk viscosity on the evolution of
universe. The effect of bulk viscosity on the cosmological evolution of the universe
has been discussed by many authors [27]. In fact it is the only dissipative mechanism
that can be incorporated in an isotropic cosmological model. In the presence of bulk
viscous stress the energy—-momentum tensor takes the form

Tij = (p+ Peg)uiuj; — Perrgij, (16)
where P.g stands for effective pressure which may be defined as
Py =p+11. (17)

Here p is the equilibrium pressure and II is the bulk viscous pressure.
In the presence of bulk viscosity, the set of field eqs (4)—(6) may be rewritten as

iz A 3,

A A* 24B B 3 52
QZ+E+E+§_—87TG(}9+H)—15, (19)

A A2 3
3 (Z—i_ﬁ) :—87TG(p+H)—ZﬁQ. (20)

Maartens [27] has suggested the causal evolution equation for the bulk viscous
pressure.
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# & T
3H+——>— =
+7' & T

erll

Tﬁ+11:43§H477?7 . (21)

It has been found that the solution for A and B are the same as the solution of the
previous section. The set of equations (18)—(20) along with the equation of state

p=(O—-1p, 1<7<2 (22)

suggests

II=(2-7)p. (23)

In the following subsections we shall consider, in turn, the behavior of bulk viscosity
in truncated theory and full causal theory separately.
Case I: Model in truncated causal theory

In the truncated causal theory, second term on the right-hand side of eq. (21) is
negligible and hence it reduces to

T+ 11 = —3¢H. (24)
It is already suggested that the phenomenological relation
£
r=2 25
p (25)

is one way of ensuring that viscous signal do not exceed the speed of light in the
truncated theory [27].
Equations (23)—(25) suggest
1
§= §Oma (26)
where

po(2 —7)
2y +my—2m — 3’

o =

Equation (26) indicates that the bulk viscosity coefficient £ is decreasing with evolu-
tion of the universe. Many authors have used the truncated causal theory in various
types of investigations. However, truncated theory implies a drastic contradiction
on temperature. On equating to zero, the second term on the right of eq. (21)
gives

T="_R3 (27)
§

Equations (25) and (26) suggest £ o< 8™ and 7 o« H™!, i.e. the viscosity is deter-
mined by the expansion rate, 7 is determined by the cosmic time. From eqs (25)
and (27), we get T oc R3/p. This means that temperature rises during expansion
of the universe, which violates the physical conditions. It has been suggested by
Maartens [27] that in order to overcome the abovementioned problem, one should
consider Israel-Stewart [28] full (non-truncated) causal thermodynamics, which is
considered as the best currently available theory for analysing dissipative process
in the universe.
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Case II: Model in full causal theory

In this case we consider € = 1 and hence eq. (21) may be rewritten as

. I
7H+H=—35H—T7

syt ot L
-

i (28)

Maartens [29] has pointed out that the Gibbs integrability condition suggests that
equation of state for the pressure and temperature are not independent. If the
equation of state for pressure is barotropic then equation of state for temperature
should be barotropic and may be written as

Txexp | —, 29
p+Dp (29)

which with the help of eq. (22) yields
T — Top(’Y—l)/’Y. (30)

Here Tj is the integration constant.
Now with the help of an expression of H, egs (15), (23), (24) and (30), one can
easily obtain £ from eq. (28) as

1
§= flm, (31)
where
_ 6(y —2)vpo
129y =392 =32 —9)(2+ m)

which shows that the bulk viscosity coefficient £ is decreasing with the expansion
of the universe. Further, using eq. (15), the temperature 7" can be obtained from
eq. (30) as

&1

1

_ (v=1)/~
T'=Topy D m /A

(32)

5. Discussion

In the present paper we have investigated the effect of bulk viscosity and time
varying gravitational parameter G on the evolution of a five-dimensional model of
the universe within the framework of Lyra geometry. The dimensional reduction
is depending on the choice of the constant n. Equations (9) and (10) suggest that
(i) for n > 0 the rate of expansion of the metric coefficient A is faster than B,
(i) for n < —1/3, A is expanding and B is contracting, (iii) for all values of n
lying in the interval (—1/2,—1/3), we get inflationary expansion in A while B is
decreasing with time. This indicates that for this model extra dimension is either
expanding at very slow rate or collapsing while three others continued to expand
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with evolution of the universe. The principle observational upper limits on G /G
have been suggested by several authors based on different observations. Anderson
et al [30] used Mariner 10 data and radar ranging to Mercury and Venus to obtain
G/G < 0.0+£2.0x 10712 yr~! (for detailed review of observational upper limits on
G/ @, please refer Barrow and Parsons [31]). Equation (14) with the upper limits
on G /G and m > —2 suggests that the gravitational parameter G can be considered
as decreasing or increasing function of cosmic time ¢. In both the truncated and
full causal theory the evolution equation of bulk viscosity coefficient is related to
the gravitational parameter G. Assuming the age of the universe tg ~ 100 yr
~3x10'7 s, v =4/3 and the estimated value of m < 04 0.02, eq. (32) suggests
Ty ~ 1079 MeV ~1 K, which is in fair agreement with the present measured value
of thermal radiation in the universe [32] .
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