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Abstract. The equations of motion of two point masses in harmonic coordinates are
derived through the third post-Newtonian (3PN) approximation. The problem of self-
field regularization (necessary for removing the divergent self-field of point particles) is
dealt with in two separate steps. In the first step the extended Hadamard regularization is
applied, resulting in equations of motion which are complete at the 3PN order, except for
the occurrence of one and only one unknown parameter. In the second step the dimensional
regularization (in d dimensions) is used as a powerful argument for fixing the value of this
parameter, thereby completing the 3-dimensional Hadamard-regularization result. The
complete equations of motion and associated energy at the 3PN order are given in the
case of circular orbits.
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1. Introduction

The third post-Newtonian approximation of general relativity (in short 3PN)! be-
came famous in recent years because of its frightening or, depending on one’s state of
mind, fascinating intricacy. In particular, the study of this approximation reached
a somewhat paroxysmic stage when it was realized that the usual self-field regular-
ization, based on Hadamard’s concept of ‘partie finie’ [2,3], although having proved
to be very efficient up to the 2PN order, fails to provide a complete answer to the
problem at the 3PN order. Indeed it seems to inexorably yield the appearance of
some numerical coefficients which cannot be determined within the regularization.

Working at such a high approximation level as the 3PN one does not rep-
resent a purely academic exercise. The current network of laser-interferometric

'Following the standard practice [1], we refer to nPN as the terms of the order of 1/c*"
in the equations of motion, relatively to the Newtonian acceleration.
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gravitational-wave detectors (notably the large-scale ones: LIGO and VIRGO) will
soon make possible the study of the inspiral and coalescence of binary systems of
neutron stars and black holes. To extract useful information from the gravitational
waves, theoretical general-relativistic wave-forms are used as templates in these ex-
periments, and it has been demonstrated that these must be extremely accurate,
which means probably as accurate as the 3PN approximation [4-6]. To construct
the 3PN templates one needs to control both the binary’s equations of motion, at
the 3PN order relative to the Newtonian acceleration, and the gravitational radi-
ation field, also consistent at 3PN order but with respect to the famous Einstein
quadrupole formula, corresponding to the ‘Newtonian’ order in the wave-form.

In this paper we focus our attention on the problem of motion of a point mass
binary system. The undetermined parameters which appear, due to Hadamard
self-field regularization, are several, but, in fact, once one has invoked physical
arguments to compute some of them, there remains one and only one unknown
coefficient, the so-called ‘static’ ambiguity parameter ws in the 3PN Hamiltonian
in ADM coordinates [7,8], or, equivalently, the parameter denoted A in the 3PN
equations of motion in harmonic coordinates [9,10]. (We mean by physical argu-
ments the requirement of invariance under global Poincaré transformations, and
the demand that the equations of motion should be derivable from a Lagrangian
(neglecting the 2.5 PN radiation reaction term).) These parameters are related to
each other by [9,11,12]

1
B 1)
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On the other hand, concerning the radiation field, three other parameters, &, &
and ¢, coming from the Hadamard regularization of the 3PN quadrupole moment,
appear [13]. There is, however, a single parameter which enters the orbital phase of
inspiralling compact binaries, in the form of a linear combination of 8 = £ + 2k + (
and \. (Notice that A enters the radiation field because of time differentiations
of the 3PN quadrupole moment and replacement of the accelerations by the 3PN
equations of motion.)

The regularization ‘ambiguities’, say wg or A, are not real physical ambigui-
ties, which would arise, for instance, from some fundamental failure of the post-
Newtonian expansion to approximate the physics of black holes at high order. Sim-
ply, they reflect some inconsistency, of mathematical origin, in the Hadamard reg-
ularization scheme, when it is applied to the computation of certain integrals at
the 3PN order. Alternatively, one can say that this regularization, when ‘literally’
pushed to its maximum (in the way proposed in [14,15]), reveals some ‘incomplete-
ness’ in making physical predictions, which can or cannot be removed by external
physical arguments. Fortunately, we shall see that the ambiguity constant (1) can
be resolved once one disposes of the appropriate mathematical tools for performing
the regularization.

An improved version of the Hadamard regularization, defined in [14,15], is based
on: (i) systematic use of ‘partie-finie’ pseudo-functions to represent the functions
in the problem which are singular at the location of the particles; (ii) specific dis-
tributional derivatives generalizing those of the standard distribution theory [3] in
order to differentiate the latter pseudo-functions; (iii) ‘Lorentzian’ way of perform-
ing the regularization, defined by the Hadamard partie finie calculated within the

A=
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Lorentzian rest frame of the particles. We shall refer to that regularization [14,15]
as the ‘extended’ Hadamard (EH) one.

The EH regularization constitutes the first step of a complete calculation of the
3PN equations of motion [14,15]. The second step, aimed at removing the incom-
pleteness A, consists of going to d-dimensional space and using complex analytic
continuation in d, in what is known as the dimensional regularization (henceforth
abbreviated as ‘dimreg’)2. For the moment it is not possible to derive the 3PN
equations of motion in any d dimensions, i.e. not necessarily of the form d = 3 + ¢,
where ¢ — 0. This is why one still has to rely on the 3-dimensional calculation
of the equations of motion by means of EH regularization. This second step (di-
mensional continuation in d) has already been achieved in the context of the 3PN
Hamiltonian in ADM coordinates, with result [17]

ws = 0. (2)

In the present contribution we describe our own application of dimreg (so to say
‘on the top’ of Hadamard’s regularization) to the derivation of the 3PN equations
of motion, in the framework of harmonic coordinates, based on recent work in
collaboration with Damour and Esposito-Farese [18].

2. Hadamard regularization of Poisson-like integrals

Let us start by giving some reminders of the way we compute the Hadamard reg-
ularization of some potentials having the form of Poisson or Poisson-like integrals.
Let F(x) be a smooth function on R3, except at the value of two singular points
y1 and ys, around which it admits some Laurent expansions of the type (VN € N)

Fx)= Y rfifplm)+o(r]), 3)

po<p<N

where r1 = [x —y1| — 0, and the 1 f,(n;)’s denote the coefficients of the various
powers of r1, which are functions of the positions and velocities of the particles, and
of the unit direction ny = (x—y1)/r1 of approach to singularity 1 (we also have the
same expansion corresponding to the singularity 2). The powers of r; are relative
integers, p € Z, bounded from below by some typically negative py depending on
the function F.

We shall discuss the prescription (taken in [14]) to define the ‘value at x' = y;’
of the singular Poisson integral P(x’) of the source function F(x). The potential
P(x’) is defined, at any field point x’ different from the singularities, in the sense
of the Hadamard partie-finie (Pf) of an integral, i.e.

nooL /d‘q’ix
PO) = =Pl | il 6. (4)

2Dimreg was invented as a means to preserve the gauge symmetry of perturbative quan-
tum gauge field theories [16].
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This ‘partie finie’ involves two constants, s; and so, which parametrize some log-
arithmic terms, and are associated with the characteristics of the regularizing vol-
umes around the two particles, which have been excised from R3 in order to define
the partie finie by means of the limit, when the size of these volumes tends to zero,
of the integral external to the volumes.

The value at x’ = y; of the function P(x’) is defined by the Hadamard partie
finie in the singular limit x’ — yj, given as usual by the angular average of the
coefficient of the zeroth power of ] = |x' —y1| when r{ — 0. Notice first that P(x’)
does not admit an expansion when 7} — 0 of the same type as in eq. (3), since it
also involves a term proportional to the logarithm of r}. Thus we shall have, rather
than a power-like expansion,

P(x)= Y " Lgp(my) + thy(ny) nri] + (V) ()

Po<p<N

where the coefficients 1 g, and 1h, depend on the angle n}, and also on the constants
s1 and sg, in such a way that when combining together the terms in (5) the constant
r} always appears in ‘adimensionalized’ form like in In(r}/s1). Then we define the
Hadamard partie finie at point 1 in the standard way (taking the spherical average
of the zeroth-order power of ), except that we include the contribution linked to

the logarithm of 77, which is possibly present in that coefficient. More precisely, we
define

(P)1 = (190) + (1ho) In7y (6)

where the brackets denote the angular average, over the solid angle element dQ2(n/)
on the unit sphere. Let us emphasize that in (6) we have introduced in fact a new
regularization scale denoted by 7], which can be seen as some ‘small’ but finite
cut-off length scale (so that In7} in eq. (6) is a finite, but ‘large’ cut-off dependent
contribution). To compute the partie finie one must apply the definition (6) to
the Poisson integral (4), which involves evaluating correctly the angular integration
therein. The result, proved in Theorem 3 of [14], reads

(P), = —%Pfsm / X o) + [m <ﬁ> - 1} (1f-2). (1)

T1 S1

The first term is simply the value of the potential at point 1, namely P(y;), which
would in fact constitute a ‘naive’ way to implement the regularization, but would
not yield 3PN equations of motion compatible with basic physical properties such
as energy conservation. The supplementary term makes the partie finie to differ
from the naive guess P(y;) in a way which was found to play a significant role in
the computations of [10]. The apparent dependence of the result (7) on the scale
s1 is illusory. The sj-dependence of the r.h.s. of eq. (7) cancels between the first
and the second terms, so the result depends only on the constants 1] and sq, and
we have a simpler form of (7), as

3x
(Ph == 3Pl [ S2P00 - (1f2). ®)

688 Pramana — J. Phys., Vol. 63, No. 4, October 2004



Equations of motion of compact binaries

Similarly the regularization performed at point 2 will depend on 74 and s1, so that
the binary’s point-particle dynamics depends on four (a priori independent) length
scales ], s2 and 15, s1. Because we work at the level of the equations of motion
(instead of, say, the Lagrangian), many of the terms we shall need are in the form of
the gradient of a Poisson potential. For the gradient we have a formula analogous
to (8) and given by eq. (5.17a) of [14], namely

1 . ’I”Li 74/ ;
(0:P), = 7EPf51782 /ddxr%F(x) +1In (31> (ni1f-1) (9)
—_Lp / dxL () (10)
T 4y Tv® r? ’

where we have taken into account (in the rewriting of the second line) the always
correct fact that the constant s; cancels out and gets ‘replaced’ by r}.

We must also treat the more general case of potentials in the form of retarded
integrals, but since we have to consider (in §3 below) only the difference between
dimreg and the Hadamard regularization, it will turn out that the first-order retar-
dation (1PN relative order) is sufficient for this purpose. Here we are not interested
in radiation-reaction effects, so we shall use the symmetric (half-retarded plus half-
advanced) integral. At the 1PN order we thus have to evaluate

R(x') = P(x') + %Q(x’) +0 (%4) , (11)

where P(x’) is given by (4), and Q(x’) denotes (two times) the double or ‘twice-
iterated’ Poisson integral of the second-time derivative, still endowed with a pre-
scription of taking the Hadamard partie finie, namely

Q(x') = —4insl’S2 /d?’x |x — x/|8tQF(x) . (12)
s

In the case of Q(x’) the results concerning the partie finie at point 1 were given by
eqs (5.16) and (5.17b) of [14],

1 1
Q) = —4—Pf%752 /d?’xrlafF(x) + =(1k-4), (13)
T 2
1 . 1, .
Q1 = =Pl [ ExniGEF) + 3 (niakoa) (14)

where the 1k,’s denote the analogues of the coeflicients ;f,, parametrizing the
expansion of F' when 7/ — 0, but corresponding to the double time-derivative 92 F
instead of F.

There is an important point concerning the treatment of the repeated time deriva-
tive 92 F(x) in eq. (14). Since we are discussing about Hadamard-regularized in-
tegrals (which excise small balls around both y; and y2), the value of 92 F(x)
can be simply taken in the sense of ordinary functions, i.e., without including
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eventual ‘distributional’” contributions proportional to d(x —y1) or é(x — y2) and
their derivatives. However, we know that such terms are necessary for the con-
sistency of the calculation (without them, for instance, the calculation would be
incorrect already at the 2PN order). In EH regularization, there is a specific
prescription for the distributional derivative which is issued from the generalized
framework of [14]. In dimreg we shall simply use the standard Schwartz dis-
tributional derivatives in d dimensions. (As it turns out, the Schwartz deriva-
tives yield some ill-defined (formally infinite) expressions in three dimensions —
this is why a generalization of the Schwartz distributional derivative defined in
[14] was found to be necessary — but the latter expressions are proved to be rig-
orously zero when computed in d dimensions.) Therefore, in our computation
of the difference between dimreg and Hadamard regularization in the next sec-
tion, we must also include the difference between the different prescriptions for
the distributional derivatives in d and in three dimensions. We refer to [18] for
details.

3. Difference between the dimensional and Hadamard regularizations

In dimreg the computation of the regularized value of Poisson or Poisson-like in-
tegrals is very simple [18]. First of all, the generalization of the function F in
d dimensions will be some F(® when r; — 0 which admits a more complicated
expansion, namely (VN € N)

FOx)= Y o/ ng) + o(r]), (15)
po<p<N
g0 <q<q

where p and ¢ are relative integers (p, ¢ € Z), whose values are limited by some po,
go and ¢ as indicated. The expansion (15) differs from the corresponding expansion
in three dimensions, as given in eq. (3), by the appearance of integer powers of 7§

where we denote ¢ = d — 3. The coefficients ; f,ng depend on the unit vector n; in
d dimensions, on the positions and coordinate velocities of the particles, and also
on the characteristic length scale ¢y of dimensional regularization. The latter can
be introduced into the formalism by stating that the constant G in the r.h.s. of
the Einstein field equations is related to Gy, the usual Newton constant in three
dimensions, by G = Gnl§. Because F(@ — F when d — 3 we necessarily have some
constraint on the coefficients ; fz(fq) so that we are in agreement with expansion (3)
in this limit.

Consider now the Poisson integral of F(%)_ in d dimensions, given by the standard
Green’s function for the Laplace operator in d dimensions, namely

PO () = A [FO(x)] =~ / _Ax po), (16)

CArm |x — x/|d—2
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where k is related to the usual Eulerian I-function by?
— e (17)

To evaluate the Poisson integral at the singular point x’ = y; is quite easy in
dimreg, because the nice properties of analytic continuation simply allow to get
[P (x/)]x/=y, by replacing x’ by y; into the explicit integral form (16). So, we
simply have

FW(x). (18)

Similarly, for the twice-iterated Poisson integral, and the relevant gradients of po-
tentials,

QW(y,) = —ﬁ /ddxrilfdafF(d) (x), (19)
k(d—2) ni

i PD(y,) = T / d%x Tf—ilF@ (x), (20)

2QD (y,) = % / dixnir3=192 F¥(x). (21)

The main technical step of our strategy will then consist of computing the dif-
ference between the d-dimensional Poisson-type potentials (18)—(21), and their
‘pure Hadamard—Schwartz’ 3-dimensional counterparts, as given by (8). By pure
Hadamard—-Schwartz (pHS) we mean in some sense the ‘core’ of the Hadamard reg-
ularization, i.e. merely based on the usual notion of the partie finie of a singular
function or a divergent integral, but without the improvements brought about by
the EH regularization (see [18] for more details). For instance, the computations
of §2 belong to the pHS regularization, but the special treatment of distributional
derivatives in three dimensions is specific to the EH regularization. Given the re-
sults (P); and P(?(y,) of the two regularizations, denoting the difference by means
of the script letter D, we thus pose

DP(1) = PD(y1) — (P). (22)

That is, DP(1) is what we shall have to add to the pHS result in order to get the
correct d-dimensional result. Note that, in this paper, we shall only compute the

3We have limg_s k = 1. Notice the following connection to the volume of the sphere
with d — 1 dimensions (i.e., embedded into Euclidean d-dimensional space):

~ 47
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first two terms, a_; e~ ' +ag+O(g), of the Laurent expansion of DP(1) when & — 0.
(We leave to future work an eventual computation of the d-dimensional equations
of motion as an exact function of the complex number d.) This is the information
we need to fix the value of the parameter A\. As we shall see, the difference DP(1)
comes exclusively from the contribution of poles o« 1/¢ (and their associated finite
part) in the d-dimensional calculation. Here we simply state the result without
proof (see [18] for details). We obtain the following closed-form expression for the
difference (valid up to the neglect of higher-order terms O(g)),

DP(1) = — ﬁ Z <61] +ellnr] — 1]) <1f£5§,q>

q0<q<q1

1 1
- el
e 2 <q+1+“82>

q0<q<q1

S O (S ks
X =0 (5= ) (a2 f 5 ,) (23)
P £ 5

which constitutes the basis of all the practical calculations in the work [18]%. Here
we still use the bracket notation to denote the angular average, but now performed
in d dimensions, i.e. over the solid-angle element d€2;_; associated with the (d—1)-
dimensional sphere. Notice that (23) depends on the two ‘constants’ Inr{ and In ss.
Thus Inr} and In s will exactly cancel out the same constants present in the pHS
calculation, so that the dimreg acceleration will be finally free of the constants 7}

and s2. Note also that the coefficients flgi; and o f,gi]) in d dimensions depend on
the length scale ¢, associated with dimreg. Taking this dependence into account
one can verify that r{ and s, in (23) appear only in the combinations In(r} /¢y) and

ID(SQ/K()).
Let us also give the formula for the difference between the gradients of potentials,
ie.

DO;P(1) = 8; P (y,) — (0P, (24)
which is readily obtained by the same method. We have

1 1 -
Do;P(1) = — - Z (— +51nr’1> (n} 1f£1)’q>

q0<9<q1

1 1
S el
c(1+e) > <q+1 te n52>

q0<q<q

“With the same notation as in [18] the multipole expansion in d dimensions reads as

—+oo ¢
_ — 1
7"% 4= ) oL (7) rgnQL

| 14
£=0 ¢ "2
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~ ()" 1 L (o)
X ZT@'L T (n3 25 54)- (25)
=0 12

Equations (23) and (25) correspond to the difference of Poisson integrals. But we
have already discussed that we also need the difference of inverse d’Alembertian
integrals at the 1PN order. To express as simply as possible the 1PN-accurate
generalizations of eqs (23) and (25), let us define two functionals H and H; which
are such that their actions on any d-dimensional function F(% is given by the r.h.s.’s
of egs (23) and (25), i.e., so that

DP(1) = H[FY], (26)
DO P(1) = H;[FW]. (27)
The difference of 1PN-retarded potentials and gradients of potentials is denoted as
DR(1) = R(y1) = (R)1, (28)
DO;R(1) = ;R (y1) — (OiR)1 (29)
where in three dimensions the potential R(x’) is defined by eq. (11) and the reg-
ularized values (R); and (0;R); follow from (8), (10), (14), and in d dimensions
R@(y;) and 9;R(Y (y,) are consequences of eqs (18)—(21). With this notation we

now have our result, that the difference in the case of such 1PN-expanded potentials
reads in terms of the above defined functionals H and H; as

2
DR(1) =H [F(d) + rilafﬂfi)]

2c2(4 —d)
3 1
_@<1k_4> +0 (C—4> ; (30)
2
: — . | p@ _ " 2 12(d)
DO;R(1) = H; [F 22(d = 2)8tF }
1 , 1

These formulae involve some ‘effective’ functions which are to be inserted into the
functional brackets of H and H;. Beware of the fact that the effective functions are
not the same in the cases of a potential and the gradient of that potential. Note the
presence, besides the main terms H[---] and H;[- -], of some extra terms, purely
of order 1PN, in eqgs (30), (31). These terms are the average of some coefficients
1k, of the powers r¥ in the expansion when 1 — 0 of the second-time derivative
of F, namely 0?F. They do not seem to admit a simple interpretation. They are

important to get the final correct result.
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4. Dimensional regularization of the equations of motion

We outline next the way we obtain from the previous computation of the ‘difference’
the 3PN equations of motion in dimreg, and show how they are physically equivalent
to the EH-regularized equations of motion. We start from the end results of [10] for
the 3PN acceleration of the first particle, say al’¥, depending on the two arbitrary
length scales r| and r} (appearing when regularizing Poisson-like integrals in §2),
and on the ‘ambiguity’ parameter \. Explicitly, we define

ap® [A;rf,75] =1.hus. of eq. (7.16) in ref. [10]. (32)

Here the acceleration is considered as a function of the two masses m1 and ms, the
relative distance y1 —ya2 = r12n12 (where nj4 is the unit vector directed from particle
2 to particle 1), the two coordinate velocities vi and vs, and also, as emphasized
in (32), the parameter A as well as two regularization length scales ] and r}. The
latter length scales enter the equations of motion at the 3PN level through the
logarithms In(r12/7}) and In(ri2/r5). They come from the regularization as the
field point x’ tends to y; or ys of Poisson-type integrals (see §2 above). The length
scales rj, 4 are ‘pure gauge’ in the sense that they can be removed by the effect
induced on the world-lines of a coordinate transformation of the bulk metric [10].
On the other hand, the dimensionless parameter A entering the final result (32)
corresponds to genuine physical effects. It was introduced by requiring that the
3PN equations of motion admit a conserved energy (and more generally be derivable
from a Lagrangian). This extra requirement imposed two relations between the two
length scales ], v, and the two other length scales s1, sy entering originally into
the formalism, namely the constants s; and sy parametrizing the Hadamard partie
finie of a Poisson integral as given by eq. (4) above. Recall that s; and so are
associated with the characteristics of the two regularizing volumes (notably their
shape) around the singularities, which are excised in order to define the Hadamard
partie finie of a divergent integral. The latter relations were found to be of the form
m(ﬁ) _ 159 mitmy (33)
S9 308 mo

(and 1 < 2), where the so-introduced single dimensionless parameter A has been
proved to be a purely numerical coefficient (i.e. independent of the two masses). It
is often convenient to insert eq. (33) into (32) and to re-express the acceleration of
particle 1 in terms of the original regularization length scales entering the Hadamard
regularization of a;, which were in fact 7} and sy (as shown, for instance, in eq. (8)).
Thus we can consider alternatively

a]13F [rlla 82] = a]13F [Av 7,/1’ T/Z('SQ’ )‘)} ’ (34)

where the regularization constants are subject to the constraints (33) (we can check
that the A-dependence on the r.h.s. of (34) disappears when using eq. (33) to replace
rh as a function of s and A).

The strategy followed in [18] consists of two steps. The first step consists of
subtracting all the extra contributions to eq. (32), or equivalently eq. (34), which
were specific consequences of the EH regularization defined in [14,15]. As has been
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detailed in [18], there are seven such extra contributions 64a;, A =1,...,7. Sub-
tracting these contributions boils down to estimating the value of a; that would be
obtained by using a ‘pure’ Hadamard regularization, together with Schwartz dis-
tributional derivatives, which is what we have already called the ‘pure Hadamard—
Schwartz’ (pHS) regularization. Such a pHS acceleration was in fact essentially the
result of the first stage of calculation of a;, as reported in the unpublished thesis
[19]. Tt is given by

7
abts [r1,s2] = abBY[r], s9] — Z 5ay . (35)
A=1

The second step consists of evaluating the Laurent expansion, in powers of ¢ = d—3,
the difference between the dimreg and pHS (3-dimensional) computations of the ac-
celeration a;. As we have seen in §3, this difference makes a contribution only when
a term generates a pole ~ 1/¢, in which case dimreg adds an extra contribution,
made of the pole and the finite part associated with the pole (we consistently ne-
glect all terms O(g)). One must then be especially wary of combinations of terms
whose pole parts finally cancel (‘cancelled poles’) but whose dimensionally regular-
ized finite parts generally do not, and must be evaluated with care. We denote the
above-defined difference

Day = Day [e,lo; 7, 52] = Day [g, lo; A, 75 (36)

It depends on both the Hadamard regularization scales r} and s (or equivalently
on A and r{, r4) and on the regularizing parameters of dimreg, namely e and the
characteristic length £y. It is made of the sum of all the individual contributions
of the Poisson or Poisson-like integrals as computed in §3 above (e.g. eqs (23) and
(25)). Finally, our main result will be the explicit computation of the e-expansion
of the dimreg acceleration as

dimreg

o [€a€0] = alleS[

7”/1,82} + Da; [6,50;7“’1,82} . (37)
With this result in hand, we have proved [18] two theorems.

Theorem 1. The pole part < 1/e of the dimreg acceleration (37), as well as of the
metric field g, (x) outside the particles, can be re-absorbed (i.e., renormalized away)
into some shifts of the two ‘bare’ world-lines: yo — ya + Ea, with, say, &, x 1/e
(minimal subtraction (MS)), so that the result, expressed in terms of the ‘dressed
quantities, is finite when € — 0.

The situation in harmonic coordinates is to be contrasted with the calculation in
ADM-type coordinates within the Hamiltonian formalism [17], where it was shown
that all pole parts directly cancel out in the total 3PN Hamiltonian (no shifts of
the world-lines were needed). The central result of the paper is as follows:

Theorem 2. The ‘renormalized (finite) dimreg acceleration is physically equivalent

to the EH-reqularized acceleration (end result of ref. [10]), in the sense that there
exist some shift vectors &€1(e, Lo;r}) and &a(e, Lo; h), such that
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aPf [\, r5) = lim [a]™ 5 [e, fo] + Og(e,toiry o) 1], (38)

(where d¢ a1 denotes the effect of the shifts on the acceleration®, if and only if the
heretofore unknown parameter A entering the harmonic-coordinates equations of
motion takes the value

1987

A=——r—. 39

3080 (39)
The precise shifts &,(e) needed in Theorem 4. involve not only a pole contribution
o 1/e, which defines the ‘minimal’ (MS) shifts considered in Theorem 4., but also
a finite contribution when ¢ — 0. Their explicit expressions read:

1 1=1/2 2
__21n<r1q > 5 7];11\11 and 1< 2, (40)
5

_ 1 G%m3 _
£y 1540

3 S

&

where Gy is the usual Newton’s constant, ay; denotes the acceleration of particle
1 (in d dimensions) at the Newtonian level, and § = 47e® depends on the Euler
constant C = 0.577.. ..

An alternative way to phrase the result (38)—(39), is to combine egs (35) and
(37) in order to arrive at

6Aa1 . (41)

M=

: 1987, s 1 —
lim, {Dal [, €03 = 30553 715 7] + Oe(etosrg.ry) al} =
A=1

Under this form one sees that the sum of the additional terms 6“4 a; differs by a mere
shift, if and only if X takes the value (39), from the specific contribution Da;, which
comes directly from dimreg. Therefore one can say that, when \ = —%, the EH
regularization [14,15] is in fact (physically) equivalent to dimreg. However the EH
regularization is incomplete, both because it is a priori unable to determine A, and
also because it necessitates some ‘external’ requirements such as the imposition
of the link (33) in order to ensure the existence of a conserved energy — and in
fact of the ten first integrals linked to the Poincaré group. By contrast, dimreg
succeeds automatically (without extra inputs) in guaranteeing the existence of the
ten conserved integrals of the Poincaré group, as already found in ref. [17].

In view of the necessary link (1) provided by the equivalence between the ADM-
Hamiltonian and the harmonic-coordinate equations of motion, our result (39) is
in perfect agreement with the result ws = 0 obtained in [17]. (One may wonder
why the value of A is a complicated rational fraction while wg is so simple. This
is because wg was introduced precisely to measure the amount of ambiguities of
certain integrals, while, by contrast, A has been introduced as the only possible

®When working at the level of the equations of motion (not considering the metric out-
side the world-lines), the effect of shifts can be seen as being induced by a coordinate
transformation of the bulk metric as in ref. [10]
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unknown constant in the link between the four arbitrary scales 77,5, s1, s2 (which
has a priori nothing to do with ambiguities of integrals), in a framework where
the use of the EH regularization makes in fact the calculation to be unambiguous.)
Besides the confirmation of the value of wg or A, this result provides a confirmation
of the consistency of dimreg, because our explicit calculations are entirely differ-
ent from the ones of [17]. We use harmonic coordinates (instead of ADM-type
ones), and work at the level of the equations of motion (instead of the Hamil-
tonian), since we use a different form of Einstein’s field equations and we solve
them by a different iteration scheme. Our result is also in agreement with the re-
cent finding of refs [20,21] (see also [22]), where the 3PN equations of motion are
derived in harmonic gauge using a ‘surface-integral’ approach, aimed at describ-
ing extended relativistic compact binary systems in the strong-field point particle
limit.

5. Equations of motion of circular-orbit compact binaries

From a practical point of view, the determination of the value of A allows one
to use the full 3PN accuracy in the analytical computation of the dynamics of
the last orbits of binary systems [23,24]. We assume a circular orbit since most
inspiralling compact binaries will have been circularized at the time when they
enter the frequency bandwidth of the detectors LIGO and VIRGO. In the case
of circular orbits — apart from the gradual 2.5PN radiation-reaction inspiral — the
quite complicated equations of motion, eq. (7.16) in ref. [10], simplify drastically.

We translate the origin of coordinates to the binary’s center-of-mass by imposing
that the binary’s center-of-mass vector, deduced from the Lagrangian formulation
of the 3PN equations of motion, is zero (see e.g. ref. [25]). Then, in the center-
of-mass frame, the relative acceleration a;o = a; — as of two bodies moving on a
circular orbit at the 3PN order is given by

32 G3®mdv 1
ajg = —WQY12 - vam +0 (0—7) ) (42)

where y12 = y1 — y2 is the relative separation (in harmonic coordinates) and w
denotes the angular frequency of the circular motion; the second term in eq. (42),
opposite to the velocity vis = vi — va, is the 2.5PN radiation reaction force. In
(42) we have introduced, in addition to the total mass m = mj +mq, the symmetric
mass ratio

mims

; (43)

v=-—3
which is generally very useful because of its interesting range of variation 0 < v < i,
with v = i in the case of equal masses, and v — 0 in the ‘test-mass’ limit for one
of the bodies. The main content of the 3PN equations (42) is the relation between
the frequency w and the orbital separation ris, that we find to be given by the
3PN-generalized ‘Kepler’s third law [9,10]
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Gm 41
wipy = TT{l +(=3+v)v+ <6+ Vi u2> 52
12

75707 41 12
—1 71?4+ 22In( —
+( 0+[ 340 +647r+ n<r6>}u

19
+7V2 + 1/3) 73} , (44)
in which we employ, in order to display the successive post-Newtonian corrections,

the post-Newtonian parameter (of the order of O(1/c?))

Gm
= . 4
Y 1202 (45)

The acceleration (42)—(45) is entirely specified at the 3PN order except for some
unphysical gauge freedom, parametrized by the length scale r(, appearing in eq. (44),
which is nothing but the ‘logarithmic barycenter’ of the two gauge-constants r| and
rh entering the end results of [10], i.e.

mq mo
Inr, = —1Inr, + —1Inr, . 46
nry - nry + - nry (46)

As for the binary’s energy (in the center-of-mass frame), it is readily obtained
from the circular-orbit reduction of the conserved energy associated with the 3PN
Lagrangian in harmonic coordinates [12]. We find

2

pesry 7 o1 7 49 1 5\ o
Espn = — 1 —— 4+ - —— 4+ — =
3PN 2{+< 4+4u>7+< 8+81/+8y ¥

L (220 (A0 128, | 22 (r2) |
64 ' | 2240 64 3 0\ 7

27 5 5 5\ 5
+32V +64u>7 } (47)

This expression is that of a physical observable E. However it depends on the
choice of a coordinate system, because it involves the post-Newtonian parameter
defined from the harmonic-coordinate separation r15. But the numerical value of E
should not depend on the choice of a coordinate system, so E must admit a frame-
invariant expression, the same in all coordinate systems. To find it we re-express F
with the help of a frequency-related parameter x instead of the separation-related
parameter «y (this is always a good thing to do). We define = to be, like for ~, of
the order of O(1/c?) by posing

z= (G”?”>2/3 . (48)

c3

Then we readily obtain the expression of v in terms of x at 3PN order,
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v 65 9
’Y3PN—${1+(1—§)(E+(1—EV)(E
2203 41 22 r12
1 Eh S — P
+< J{ 2520 102 3 n(rgﬂ”

229 , 1 4\ 4
iy 4
—|—36V +8lu>x ) (49)

that we substitute back into eq. (47), making all appropriate post-Newtonian re-
expansions. As a result we discover that the logarithms together with their associ-
ated gauge constant r{, have cancelled out. Therefore our final result is

2
_ ke 31 RN S
FEspn = 5 {1+< 1 12V>1’+< 3 + 8V 241/ x

< 675 [34445 205 2}
+ T v

64 576 96
155 , 35 3\ 3
- — V"= — . 50
96~ 5184” ) v (50)
In the test-mass limit ¥ — 0, we recover the energy of a particle with
mass g = mv in a Schwarzschild background of mass m, i.e. FEig =

pe? [(1—2x)(1 — 3x)~1/2% — 1], when developed to 3PN order. Of course, the sub-
tleties we have discussed, linked with the self-field regularization, disappear in the
test-mass limit, but, interestingly enough, they affect only the term proportional
to v in the 3PN coefficient of eq. (50); the terms proportional to v and v3 in eq.
(50) have been found to be ‘complete’ in EH regularization.

Finally let us compute the innermost circular orbit (ICO) of point-particle bina-
ries through 3PN order, following [24]. The ICO is defined as the minimum, when
it exists, of the binary’s circular-orbit energy function (50). In particular, we do
not define the ICO as a point of dynamical (general-relativistic) instability (See §6
of [25] for a discussion of the dynamical unstability in the post-Newtonian frame-
work.) In figure 1, we plot Eico versus wico in the case of equal masses (v = i),
and compare the values with the recent finding of numerical relativity, obtained
by means of a sequence of quasi-equilibrium configurations under the assumptions
of helical symmetry and conformal flatness [26,27]. As we can see, the 2PN and
3PN points are rather close to each other and to the numerical value. However,
the 1PN approximation is clearly not precise enough, but this is not very surpris-
ing in the highly relativistic regime of the ICO where the orbital velocity reaches
v/e ~ (Gmuwico/c®)Y? ~ 0.5. A striking fact from figure 1 is that the post-
Newtonian series seems to ‘converge well’, but actually the series could be only
asymptotic (hence divergent), and, of course, still give excellent results provided
that the series is truncated near some optimal order of approximation.

Our conclusions, therefore, are that (1) the post-Newtonian approximation is
likely to be valid and quite accurate in the regime of the ICO (in the equal-mass
case) and (2) it is in good agreement with the result of numerical relativity. Note
that the conclusion (1) contradicts some earlier prejudices about the slow conver-
gence of the post-Newtonian approximation (see e.g. ref. [4]). Furthermore, our
computations are based on the standard post-Newtonian expansion, without using
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Figure 1. Results for Eico in terms of wico for equal-mass binaries (v = i)
The asterisk marks the result calculated by numerical relativity.

any resummation techniques such as Padé approximants and/or effective one-body
method. For recent comparisons of the post-Newtonian and numerical calculations
in the regime of the ICO, including finite-size effects appropriate to neutron-star
binaries, see [28,29].
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