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Abstract. Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model
is investigated. To get a determinate model, we have assumed the conditions σ ∝ θ and
ζθ = constant where σ is the shear, θ the expansion in the model and ζ the coefficient of
bulk viscosity. The behaviour of the model in the presence and absence of magnetic field
together with physical and geometrical aspects of the model are also discussed.
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1. Introduction

The general relativistic treatment of strings was initiated by Letelier [1] and Stachel
[2]. It is interesting to note that magnetic field present in galactic and inter galactic
spaces plays a significant role at cosmological scale. Melvin [3] in the cosmological
solution for dust and electromagnetic field suggested that during the evolution of
the universe, the matter was in highly ionized state and is smoothly coupled with
the field and consequently form a neutral matter as a result of universe expan-
sion. Hence in string dust universe the presence of magnetic field is not unrealistic.
Banerjee et al [4] investigated an axially symmetric Bianchi Type-I string dust
cosmological model in the presence and absence of magnetic field using a sup-
plementary condition α = aβ where α = α(t), β = β(t) and a is a constant. The
string cosmological models with magnetic field are also investigated by Chakraborty
[5] and Tikekar and Patel [6]. Recently Bali and Upadhaya [7] investigated LRS
Bianchi Type-I bulk viscous fluid string cosmological model in General Relativity.
To get a determinate model, it has been assumed that σ ∝ θ where σ is the shear
and θ the expansion in the model. Bali and Upadhaya [8] have also investigated
Bianchi Type-I magnetized string cosmological model in General Relativity.

In this paper, we have investigated Bianchi Type-I magnetized bulk viscous fluid
string dust cosmological model in General Relativity. To get a determinate model,
we have assumed the condition σ ∝ θ and ζθ = constant where σ is the shear, θ
the expansion in the model and ζ the coefficient of bulk viscosity. The behaviour of
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the model in the presence and absence of magnetic field together with geometrical
and physical aspects of the model are also discussed. We consider Bianchi Type-I
metric in the form

ds2 = −dt2 +A2dx2 +B2dy2 + C2dz2 (1.1)

where A, B and C are functions of t alone.
The energy momentum T j

i for string dust is given by

T j
i = εviv

j − λxix
j − ζv`;`(g

j
i + viv

j) + Ej
i (1.2)

together with

vivi = −xixi = −1 (1.3)

and

vixi = 0, (1.4)

where ε = εp + λ is the rest energy density for a cloud of strings. Here εp is
the particle density, λ the string tension density, vi the flow velocity vector, xi

the direction of strings and ζ the coefficient of bulk viscosity. Here Eij is the
electromagnetic field given by Lichnerowicz [9]

Eij = µ̄

[

|h|2
(

vivj +
1

2
gij

)

− hihj

]

, (1.5)

where vi is the flow vector satisfying

gijv
ivj = −1, (1.6)

µ̄ is the magnetic permeability and hi the magnetic flux vector defined by

hi =

√−g

2µ̄
εijk`F

k`vj , (1.7)

where Fk` is the electromagnetic field tensor and εijk` is the Levi Civita tensor
density. We assume the coordinates to be comoving so that

v1 = 0 = v2 = v3, v4 = 1. (1.8)

The incident magnetic field is taken along x-axis so that

h1 6= 0, h2 = 0 = h3 = h4. (1.9)

The first set of Maxwell’s equation

Fij;k + Fjk;i + Fki;j = 0 (1.10)

leads to

F23 = constant = H(say). (1.11)
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Here F14 = 0 = F24 = F34 due to assumption of infinite electrical conductivity.
The only non-vanishing component of Fij is F23. Hence

h1 =
AH

µ̄BC
(1.12)

since

|h|2 = h`h
` = h1h

1 = g11(h1)
2 (1.13)

and

|h|2 =
H2

µ̄2B2C2
. (1.14)

From eq. (1.5)

E1
1 = − H2

2µ̄B2C2
= −E2

2 = −E3
3 = E4

4 . (1.15)

Equation (1.2) leads to

T 1
1 = −λ− H2

2µ̄B2C2
− ζv`;`, (1.16)

T 2
2 =

H2

2µ̄B2C2
− ζv`;`, (1.17)

T 3
3 =

H2

2µ̄B2C2
− ζv`;` (1.18)

T 4
4 = −

(

ε+
H2

2µ̄B2C2

)

. (1.19)

Using (8πG/c4) = 1, the Einstein field equation

Rj
i −

1

2
Rgji = −T j

i (1.20)

the line element (1.1) reduces to

B44

B
+

C44

C
+

B4C4

BC
= λ+

H2

2µ̄B2C2
+ ζv`;`, (1.21)

A44

A
+

C44

C
+

A4C4

AC
= − H2

2µ̄B2C2
+ ζv`;`, (1.22)

A44

A
+

B44

B
+

A4B4

AB
= − H2

2µ̄B2C2
+ ζv`;`, (1.23)
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A4B4

AB
+

B4C4

BC
+

A4C4

AC
= ε+

H2

2µ̄B2C2
, (1.24)

where the suffix 4 after A, B, C denotes ordinary differentiation with respect to
t. Equations (1.21)–(1.24) are four equations in five unknowns A,B,C, λ and ε.
For the complete determination of these equations, we assume two supplementary
conditions: (i) The shear (σ) is proportional to the scalar of expansion θ which
leads to

A = (BC)n (1.25)

and (ii)

ε = λ, (1.26)

i.e. the rest energy density is equal to the string tension density.
From eqs (1.24) and (1.23), we have

A44

A
+

B44

B
− B4C4

BC
− A4C4

AC
= − H2

µ̄B2C2
− ε+ ζv`;`. (1.27)

Equations (1.27) and (1.21), together with condition (1.26) lead to

A44

A
+

2B44

B
+

C44

C
− A4C4

AC
= − H2

2µ̄B2C2
+ 2ζv`;`. (1.28)

From eqs (1.25) and (1.28), we have

n(n− 1)
B2

4

B2
+ n(n− 2)

C2
4

C2
+ (2n2 − n)

B4C4

BC

+(n+ 2)
B44

B
+ (n+ 1)

C44

C

= − K

B2C2
+ 2ζv`;`, (1.29)

where

K =
H2

2µ̄
.

From eqs (1.22) and (1.23), we get

C44

C
− B44

B
=

A4

A

(

B4

B
− C4

C

)

. (1.30)

Applying eq. (1.25) in (1.30), we get

(CB4 −BC4)4
(CB4 −BC4)

= −n
(BC)4
BC

. (1.31)

On integration, it leads to
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C2

(

B

C

)

4

=
L

(BC)n
, (1.32)

where L is the integration constant.
Thus

B2 = µν, C2 =
µ

ν
.

Equation (1.32) leads to

ν4

ν
=

L

µn+1
. (1.33)

Equation (1.29) leads to

(

2n+ 3

2

)

µ44

µ
+

(

4n2 − 6n− 3

4

)

µ2
4

µ2
+

1

4

ν2
4

ν2
+

(n+ 1)

2

µ4ν4

µν
+

1

2

ν44

ν

= −K

µ2
+ 2ζv`;`, (1.34)

where

BC = µ,
B

C
= ν.

Equations (1.33) and (1.34) lead to

(

2n+ 3

2

)

µ44

µ
+

(

4n2 − 6n− 3

4

)

µ2
4

µ2
+

3

4

L2

µ2n+2
= −K

µ2
+ 2ζv`;`.

(1.35)

In special case, if L = 0, eq. (1.35) leads to

(

2n+ 3

2

)

µ44

µ
+

(

4n2 − 6n− 3

4

)

µ2
4

µ2
= −K

µ2
+ 2ζv`;`. (1.36)

Applying the condition

ζθ = constant, (1.37)

eq. (1.36) leads to

(

2n+ 3

2

)

µ44

µ
+

(

4n2 − 6n− 3

4

)

µ2
4

µ2
− β = −K

µ2
(1.38)

which leads to

µµ44 + `µ2
4 − βµ2 = −K, (1.39)

where
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` =
4n2 − 6n− 3

2(2n+ 3)
, β =

4ζv`;`
(2n+ 3)

which leads to

2ff ′ +
2`

µ
f2 = 2βµ− 2K

µ
(1.40)

where

µ4 = f(µ) and f ′ =
df

dµ
.

From eq. (1.40), we have

d

dµ
(f2) +

2`

µ
f2 = 2βµ− 2K

µ
. (1.41)

Equation (1.41) leads to

f2 =
β

`+ 1
µ2 − K

`
+

P

µ2`
, (1.42)

where P is the constant of integration.
To find the solution, we take P = 0. Equation (1.42) leads to

µ =

√

Kα

β`
cosh

(

√

β

α
t+N

)

, (1.43)

where `+ 1 = α and N is the integration constant.
Since L = 0, from eq. (1.33)

ν = b (constant). (1.44)

Therefore metric (1.1) reduces to

ds2 = −dt2 +
(

Kα

`β

)n

cosh2n

(

√

β

α
t+N

)

dx2

+b

√

Kα

`β
cosh

(

√

β

α
t+N

)

dy2

+
1

b

√

Kα

`β
cosh

(

√

β

α
t+N

)

dz2. (1.45)

On applying transformation

α = eβ − 1,

` = a sinK,

t = sin
Kτ

K
,
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metric (1.45) reduces to

ds2 = − cos2 Kτdτ2 +

(

K(eβ − 1)

βa sinK

)n

× cosh2n

(

√

β

eβ − 1

sinKτ

K
+N

)

dX2

+

(

K(eβ − 1)

βa sinK

)1/2

cosh

(

√

β

eβ − 1

sinKτ

K
+N

)

dY 2

+

(

K(eβ − 1)

βa sinK

)1/2

cosh

(

√

β

eβ − 1

sinKτ

K
+N

)

dZ2. (1.46)

In the absence of magnetic field, i.e. K = 0, metric (1.46) reduces to

ds2 = −dτ2 +

(

(eβ − 1)

aβ

)n

cosh2n

(

√

β

eβ − 1
τ +N

)

dX2

+

(

(eβ − 1)

aβ

)1/2

cosh

(

√

β

eβ − 1
τ +N

)

dY 2

+

(

(eβ − 1)

aβ

)1/2

cosh

(

√

β

eβ − 1
τ +N

)

dZ2. (1.47)

In the absence of viscosity, i.e., β = 0, the metric (1.46) reduces to

ds2 = − cos2 Kτdτ2 +

(

K

a sinK

)n

cosh2n

(

sinKτ

K
+N

)

dX2

+

(

K

a sinK

)1/2

cosh

(

sinKτ

K
+N

)

dY 2

+

(

K

a sinK

)1/2

cosh

(

sinKτ

K
+N

)

dZ2. (1.48)

2. Some physical and geometrical features

The density (ε) for model (1.46) is given by

λ = ε =

(

4n+ 1

4

)

√

β

eβ − 1
tanh

(

√

β

eβ − 1

sinKτ

K
+N

)

−βa sinK

(eβ − 1)
sech2

(

√

β

eβ − 1

sinKτ

K
+N

)

. (2.1)

The scalar of expansion (θ) and the expression of shear tensor (σj
i ) for the space-

time (1.46) are given by
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θ = (n+ 1)

√

β

eβ − 1
tanh

(

√

β

eβ − 1

sinKτ

K
+N

)

, (2.2)

σ1
1 =

(

2n− 1

3

)

√

β

eβ − 1
tanh

(

√

β

eβ − 1

sinKτ

K
+N

)

, (2.3)

σ2
2 = σ3

3 =

(

1− 2n

6

)

√

β

eβ − 1
tanh

(

√

β

eβ − 1

sinKτ

K
+N

)

. (2.4)

Thus

σ2 =
1

2
(σijσ

ij),

σ2 =
(2n− 1)2

12

(

β

eβ − 1

)

tanh2

(

√

β

eβ − 1

sinKτ

K
+N

)

. (2.5)

Spatial volume

R3 =

(

K(eβ − 1)

βa sinK

)(n+2)/2

coshn+1

(

√

β

eβ − 1

sinKτ

K
+N

)

. (2.6)

3. Discussion

The expansion in the model (1.46) increases as
(
√

β
eβ−1

sinKτ
K +N

)

increases, i.e.

it represents expanding universe. From (2.1), we find that ε > 0. For τ = 0 we find

ε as a finite quantity. The spatial volume tends to infinity as
(
√

β
eβ−1

sinKτ
K +N

)

tends to infinity. Since limτ→∞
σ
θ 6= 0, the model does not approach iostropy for

large values of τ . For n = 1
2 , model (1.46) represents an isotropic universe.

In the absence of magnetic field, i.e., when K = 0 then the energy density (ε),
string tension (λ), the expansion θ, the components of shear tensor and the spatial
volume (R3) in the presence of bulk viscosity are given by

ε = λ =
(4n+ 1)

4

(

β

eβ − 1

)

tanh

(

√

β

eβ − 1
τ +N

)

, (3.1)

ε = (n+ 1)

√

β

eβ − 1
tanh

(

√

β

eβ − 1
τ +N

)

, (3.2)

σ1
1 =

(

2n− 1

3

)

√

β

eβ − 1
tanh

(

√

β

eβ − 1
τ +N

)

, (3.3)
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σ2
2 = σ3

3 =

(

1− 2n

6

)

√

β

eβ − 1
tanh

(

√

β

eβ − 1
τ +N

)

. (3.4)

Thus

σ2 =
(2n− 1)2

12

(

β

eβ − 1

)

tanh2

(

√

β

eβ − 1
τ +N

)

(3.5)

and

R3 =

(

(eβ − 1)

aβ

)(2+n)/2

coshn+1

(

√

β

eβ − 1
τ +N

)

. (3.6)

In the absence of viscosity, i.e., β = 0 then the above quantities in the presence
of magnetic field are given by

ε =

(

4n+ 1

4

)

tanh

(

sinKτ

K
+N

)

− a sinKsech2

(

sinKτ

K
+N

)

,

(3.7)

θ = (n+ 1) tanh

(

sinKτ

K
+N

)

, (3.8)

σ1
1 =

(

2n− 1

3

)

tanh

(

sinKτ

K
+N

)

, (3.9)

σ2
2 = σ3

3 =
1

3

(

1− 2n

2

)

tanh

(

sinKτ

K
+N

)

. (3.10)

Thus

σ2 =
(2n− 1)2

12
tanh2

(

sinKτ

K
+N

)

(3.11)

and

R3 =

(

K

a sinK

)(2+n)/2

coshn+1

(

sinKτ

K
+N

)

(3.12)

when K → 0 and β → 0 then these quantities are given by

ε = λ =

(

4n+ 1

4

)

tanh(τ +N), (3.13)

θ = (n+ 1) tanh(τ +N), (3.14)

σ1
1 =

(

2n− 1

3

)

tanh(τ +N), (3.15)
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σ2
2 = σ3

3 =

(

1− 2n

6

)

tanh(τ +N), (3.16)

σ2 =
(2n− 1)2

12
tanh2(τ +N) (3.17)

and

R3 = a2/2+n coshn+1(τ +N). (3.18)

In the absence of magnetic field and bulk viscosity, the model represents an
expanding universe and ε > 0. The spatial volume increases as τ increases and it
is infinity when τ = ∞. Since limτ→∞(σ/θ) 6= 0, the model does not approach
isotropy for large values of τ .
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