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Abstract. Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model
is investigated. To get a determinate model, we have assumed the conditions o o« 6 and
(0 = constant where o is the shear, 6 the expansion in the model and ¢ the coefficient of
bulk viscosity. The behaviour of the model in the presence and absence of magnetic field
together with physical and geometrical aspects of the model are also discussed.
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1. Introduction

The general relativistic treatment of strings was initiated by Letelier [1] and Stachel
[2]. It is interesting to note that magnetic field present in galactic and inter galactic
spaces plays a significant role at cosmological scale. Melvin [3] in the cosmological
solution for dust and electromagnetic field suggested that during the evolution of
the universe, the matter was in highly ionized state and is smoothly coupled with
the field and consequently form a neutral matter as a result of universe expan-
sion. Hence in string dust universe the presence of magnetic field is not unrealistic.
Banerjee et al [4] investigated an axially symmetric Bianchi Type-I string dust
cosmological model in the presence and absence of magnetic field using a sup-
plementary condition o = af where a = «(t), 8 = B(t) and a is a constant. The
string cosmological models with magnetic field are also investigated by Chakraborty
[5] and Tikekar and Patel [6]. Recently Bali and Upadhaya [7] investigated LRS
Bianchi Type-I bulk viscous fluid string cosmological model in General Relativity.
To get a determinate model, it has been assumed that o o« # where o is the shear
and 6 the expansion in the model. Bali and Upadhaya [8] have also investigated
Bianchi Type-I magnetized string cosmological model in General Relativity.

In this paper, we have investigated Bianchi Type-I magnetized bulk viscous fluid
string dust cosmological model in General Relativity. To get a determinate model,
we have assumed the condition o o # and (f = constant where ¢ is the shear, 6
the expansion in the model and ¢ the coefficient of bulk viscosity. The behaviour of
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the model in the presence and absence of magnetic field together with geometrical
and physical aspects of the model are also discussed. We consider Bianchi Type-I
metric in the form

ds? = —dt? + A2d2? + B2dy? + C2d22 (1.1)

where A, B and C are functions of ¢ alone.
The energy momentum 77 for string dust is given by

T = eviv) — Avga? — Coly(g] + viv’) + E} (12)
together with

viv; = —zta; = —1 (1.3)
and

viz; =0, (1.4)

where ¢ = e, + A is the rest energy density for a cloud of strings. Here ¢, is
the particle density, A the string tension density, v’ the flow velocity vector, z?*
the direction of strings and ¢ the coefficient of bulk viscosity. Here FE;; is the
electromagnetic field given by Lichnerowicz [9]

1
Eij=p {|h2 (”i“j + 592’;’) - hihj:| ) (1.5)
where v; is the flow vector satisfying

gijv') = —1, (1.6)

[ is the magnetic permeability and h; the magnetic flux vector defined by

hi = 2—__g€ijngkéUj, (17)
1%

where Fj, is the electromagnetic field tensor and €;;5¢ is the Levi Civita tensor
density. We assume the coordinates to be comoving so that

vt =0=02=03 '=1. (1.8)
The incident magnetic field is taken along x-axis so that

hi1 #0, he=0=hs=hy. (1.9)
The first set of Maxwell’s equation

Fijik + Figi + Friyy =0 (1.10)
leads to

Fy3 = constant = H (say). (1.11)
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Here F4, = 0 = Fyy = F34 due to assumption of infinite electrical conductivity.

The only non-vanishing component of Fj; is Fo3. Hence

e — AH
' uBC
since
|h,‘2 _ h@hé — hlhl :gll(h1)2
and
| ‘2 - LQ
- ﬂZBQCZ'

From eq. (1.5)

H2

El=——
! 211B2C?

=—E; =-E; =E;.

Equation (1.2) leads to

H?
1 _ 14
Ti=—Agapes v
H?
2 14
= 2uB2C? CUies
H?
3 4
Ts = gppace ~ SV

H?
4 _
Ti=- (E + m> '
Using (87G/c*) = 1, the Einstein field equation

1. .
Ri - 5Re = =T}

3

the line element (1.1) reduces to

By Cu  ByCy H? ’
—_22 = =4+ — .
B ¢ T Be T oupeer T
A Cus | ACy H* + (o,

A c AC 20B2(C? o
Ags | Baa | AyBy H? ¢

A "B T AB T zpecer U
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(1.21)

(1.22)
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AyBy | BsCy | ACy H?
AB T BC T ac ~ T aoupece

(1.24)

where the suffix 4 after A, B, C denotes ordinary differentiation with respect to
t. Equations (1.21)—(1.24) are four equations in five unknowns A, B,C, A and ¢.
For the complete determination of these equations, we assume two supplementary
conditions: (i) The shear (o) is proportional to the scalar of expansion § which

leads to

A= (BCO)"
and (ii)

€=,

i.e. the rest energy density is equal to the string tension density.
From eqs (1.24) and (1.23), we have

Ags By ByCy  ACy H? ’
A "B BC  AC ~ pmer ST

Equations (1.27) and (1.21), together with condition (1.26) lead to

A 2B C A,C H?
Aga 44 44 4Gy 2 vl

AT B "¢ T a0 T Tymecr T

From eqs (1.25) and (1.28), we have

Y BRI B
+(n+2)% +(n+ 1)%
= —% —|—2Cvfé,
where
2
K = ZI_M

From eqgs (1.22) and (1.23), we get
Cag Ba Ay <B4 C4>

C B A

B C
Applying eq. (1.25) in (1.30), we get
(CBy—BCy)y  (BC)y

(CB,— BCy) " BC

On integration, it leads to
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¢ (?) - Bo

where L is the integration constant.
Thus

B? = v, c2=t
v

Equation (1.32) leads to
vy L

v Mn—i—l'
Equation (1.29) leads to

<2n+3>%+<4n2—6n—3>u_i 11/_2 (n+1) pavy
12

2 1 4 4 2 2 uy
K
:7E+2<Ufb
where
B
BC=ypu, —==u.
N

Equations (1.33) and (1.34) lead to

2n + 3 ,u44+ 4n? —6n —3 ,u?l+3 L?
2 L 4 pZ 4 p2nt2

In special case, if L =0, eq. (1.35) leads to

2n + 3 4n? —6n—3 2 K
pua (A2 bn= 3y id Ky,
2 1% 4 Iz p ’

Applying the condition
(6 = constant,

eq. (1.36) leads to

<2n—|—3> 44 <4n2—6n—3>
__|_ - 0
2 w 4 W

which leads to

|7;
o[t
|
@
Il
|

fipras + bl — By’ = —K,

where
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(1.32)

(1.33)

lvyy
2 v
(1.34)

K
=zt 20y

(1.35)

(1.36)

(1.37)

(1.38)
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Cdn2—6n-3 40
o2@2n+3) 7 T (2n+3)
which leads to
20 2K
2ff' + = f*=20p— —
I I
where
d
jo= () and [ = %

From eq. (1.40), we have

i 2 %2:2 _%
dM(J”)Jrﬂf Bu =

Equation (1.41) leads to

K P
2 -t
7

2 _
P=rah

where P is the constant of integration.

To find the solution, we take P = 0. Equation (1.42) leads to

| Ka I5)
,u—”ﬁcosh (\/;t—l—N),

where £/ + 1 = a and N is the integration constant.
Since L = 0, from eq. (1.33)

v = b (constant).

Therefore metric (1.1) reduces to

K n
ds? = —dt* + —a cosh?” \/ Et + N | da?
L6 «

K
+b 22 cosh ( ét—&- N) dy?
¢ @
1 /K
+E E—Ba cosh < §t+N> dz?
On applying transformation
a=c’— 1,
{=asin K,
f— i Kr
= sin ——,
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metric (1.45) reduces to

K(e® —1)\"
ds? = —cos? Krdr? + <7ﬂiesin K)>

in K
x cosh?" < eﬁﬁ_ 1SIHK T +N> dx?

/2 .
K(e? —1) ! 8 sinKrt 9
+ <—ﬁasinK ) cosh F_1 K + N |dY

5 1/2 .
+ <M) cosh ( p_sinKr N) az2.

Basin K e -1 K

In the absence of magnetic field, i.e. K = 0, metric (1.46) reduces to

ﬁi n
d52d72+<(e ﬁl)) cosh2"< 0 T+N>dX2

a el —1

1/2
_’_((eﬂa; 1)) cosh( eﬁﬁ_lr—i—N) dy?

1/2
_’_((eﬁag 1)> cosh( eﬁﬂ_lT—i-N) dz2.

In the absence of viscosity, i.e., 8 = 0, the metric (1.46) reduces to

ds® = —cos®? Krdr? + (

asin K

1/2 .
+< K ) cosh<81nKT+N>dY2

a sin K
K 1/2 sin K1 9
+<asinK> cosh< % —|—N>dZ.

2. Some physical and geometrical features

The density (¢) for model (1.46) is given by

[+ [ B B sin KT
A—E—( 1 ) eﬁ—ltanh< 71 K —I—N)

Basin K 9 0 sin KT
_7(6,371)58(7}1 P11 K +NJ.

> cosh?” <s1n]§{7' + N> dx?

(1.46)

(1.47)

(1.48)

(2.1)

The scalar of expansion (f) and the expression of shear tensor (J{ ) for the space-

time (1.46) are given by
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B 1] 8 sin Kt
0= (n+1) eﬁ—ltanh P11 K +N |, (2.2)
2n —1 I6) 0 sin Kt
1 _
01—< 3 )”eﬁ—ltanh< 71 K —|—N>7 (2.3)
1—2n 16} B sin KT
2_ 3 _
02—03—( 5 ) eﬁltanh< 71 K +N>. (2.4)
Thus
o* = 5(0i07),
5 (2n—1)2 8 9 8 sinKrt
= tanh N . 2.5
7 12 \ef-1)"" F-1 K (2:5)
Spatial volume
(n+2)/2 .
K(ef —1) 8 sin KTt
R =|———> b NJ. 2.6
(ﬂasinK) o8 ef -1 K * (2:6)

3. Discussion

The expansion in the model (1.46) increases as ( egﬁi T sinKr 4 N ) increases, i.e.

it represents expanding universe. From (2.1), we find that € > 0. For 7 = 0 we find
€ as a finite quantity. The spatial volume tends to infinity as (1 / %% + N )

tends to infinity. Since lim, .., § # 0, the model does not approach iostropy for
large values of 7. For n = %, model (1.46) represents an isotropic universe.

In the absence of magnetic field, i.e., when K = 0 then the energy density (),
string tension (A), the expansion 6, the components of shear tensor and the spatial
volume (R?) in the presence of bulk viscosity are given by

5:)\:(4n+1)( b )tanh( b T+N>, (3.1)

4 ef —1 el —1

€=(n+1)1/eﬁi_1tanh< eﬁﬁ_lT—i-N), (3.2)
J%_<2n3—1> /eﬁféiltanh< eﬁﬁ—lTJrN)’ (3.3)
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1—2n I5] J6]
2 _ 3 _
0203( 5 > eﬁ—ltanh< eﬁ—lTJrN)' (3.4)
Thus
2 (2n—1)? Ié; 9 3
o’ = B N tanh eﬁ_lT—i—N (3.5)
and
5_q (24n)/2
3 (e ) n+1 p
= h N |. .
R ( af ) cos eﬁ—17+ (3.6)

In the absence of viscosity, i.e., 8 = 0 then the above quantities in the presence
of magnetic field are given by

4 1 in K in K
€= ( n;— )tanh (San T—f—N) — asin Ksech? (San 7-—i—N>,

(3.7)
< K
6 = (n+1)tanh (me Ty N) : (3.8)
2n—1 in K
o = ( n3 )tanh (San A —l—N) , (3.9
1/1—-2n sin Kt
U§:U§:§< 5 )tanh( = +N>. (3.10)
Thus
2 (2n—1)? o (sin KT
0t = tanh I +N (3.11)
and
K (24n)/2 sin K1
5 = Wt —— + N 12
R (asinK) o8 K * (3.12)
when K — 0 and 8 — 0 then these quantities are given by
4 1
e=A= ( ”: > tanh(r + N), (3.13)
6 = (n+ 1) tanh(r + N), (3.14)
2n —1
ol = ( n3 )tanh(T+N), (3.15)
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1-2
02 =03 = ( : n) tanh(7 + N), (3.16)
»_ (2n—1)° 2
0% = tanh”(7 + N) (3.17)
and
R3 = a¥*" cosh" ™ (7 + N). (3.18)

In the absence of magnetic field and bulk viscosity, the model represents an
expanding universe and € > 0. The spatial volume increases as 7 increases and it
is infinity when 7 = oo. Since lim,_,o(c/0) # 0, the model does not approach
isotropy for large values of 7.
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