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Abstract. A brief account of applications of polarized inelastic neutron scattering in
condensed matter research is given. We show that full polarization analysis is the only
tool allowing to discriminate unambiguously between different magnetic modes in various
magnetic materials. We show by means of recent results in the Heisenberg ferromagnet
EuS that the effects of dipolar interactions can be studied on a microscopic scale. More-
over, we have found for the first time indications for the divergence of the longitudinal
fluctuations below Tc. In the itinerant antiferromagnet chromium we demonstrate that
the dynamics of the longitudinal and transverse excitations are very different, resolving a
long standing puzzle concerning the slope of their dispersion. Finally, we show that a mea-
surement of the polarization-dependent part of the cross section of non-centrosymmetric
MnSi proves directly that the chirality of the magnetic fluctuations is left-handed.
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1. Introduction

Polarized neutron scattering at high-flux neutron sources has proved to be a very
powerful tool for the investigation of materials in the field of condensed matter
physics. Nowadays polarized neutrons find application in various research fields
like studies of magnetic structures using zero-field polarimetry, determination of
spin densities in applied magnetic fields, identification of the polarization of mag-
netic fluctuations and their different modes, investigation of magnetic multi-layered
structures, depolarization of neutron beams in magnetic materials, separation of co-
herent and incoherent scattering in hydrogen containing materials, high-resolution
diffraction and spectroscopy using spin-echo techniques, not to forget applications
in fundamental physics to test time-invariance properties of neutrons etc. In this
short note, we provide a brief overview of recent experiments using the longitudi-
nal polarization technique (also called full-polarization analysis), that were recently
performed at the Institut Laue-Langevin and at the Swiss Spallation Source SINQ
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using cold and thermal neutron-triple axis spectrometers. Of course, due to limita-
tions in space we cannot give a complete review of the neutron polarization tech-
niques. Therefore, we refer the interested reader to recent reviews and conference
proceedings on the subject [1].

2. Longitudinal-polarization analysis technique

The method of the longitudinal-polarization analysis for both elastic and inelastic
neutron scattering was introduced by Moon, Riste and Koehler at Oak Ridge Na-
tional Laboratory [2]. The original principle works as follows: The incident neutron
beam is polarized by means of a polarizing monochromator. After scattering, the
neutrons are reflected from a polarizing analyzer before being detected in a neutron
counter. Of course the neutrons can also be polarized by other means like reflection
from polarizing supermirrors or by transmission through polarized 3He. By use of
spin-flippers, the polarization of the incident and scattered neutrons can be selected
to be either parallel or anti-parallel to the guide field (Bg ' 1 mT) that defines the
quantization axis of the neutron spin along the flight path from the polarizer to the
analyzer.

This set-up allows to determine four different cross-sections σ++, σ−−, σ+− and
σ−+. The indices +,− refer to the polarisation P of the neutrons being parallel or
anti-parallel to the magnetic field B, respectively, so that ++ and −− scattering is
non spin-flip, whereas +− and −+ events are spin-flip. At the sample position, a
magnetic field can be applied either along or perpendicular to the scattering vector
Q. In contrast to the recently developed technique of three-dimensional polarimetry
that is performed in zero field at the sample position [3], the Moon–Riste–Koehler
set-up that we discuss in this paper allows only to measure the polarization along
the applied magnetic field.

The neutron cross-section for neutron scattering contains three contributions: (1)
a pure nuclear contribution that gives rise to Bragg, phonon and isotopic incoherent
scattering, (2) a pure magnetic contribution due to magnetic Bragg scattering and
inelastic magnetic scattering, as well as spin-incoherent scattering, (3) a magnetic–
nuclear interference term. An elastic contribution to the interference term appears
if nuclear and magnetic Bragg peaks super-impose. This happens in ferromagnetic
and some antiferromagnetic materials. An inelastic contribution of the same kind
may appear only in special cases, for example when the spin–lattice interaction in a
magnetic material cannot be neglected (e.g. invar alloys, Spin-Peierls systems). We
point out that this term cannot be measured by means of longitudinal-polarization
analysis.

Since we present below exclusively examples of inelastic neutron scattering from
magnetic materials we quote only the matrix elements for magnetic scattering:

〈+|σ ·D⊥|+〉 = D⊥z, (1)

〈−|σ ·D⊥|−〉 = −D⊥z, (2)

〈−|σ ·D⊥|+〉 = D⊥x + iD⊥y, (3)

〈+|σ ·D⊥|−〉 = D⊥x − iD⊥y. (4)

σ is the operator of the neutron magnetic moment and D⊥ = Q̂ ×
(

ρ(Q, ω) × Q̂
)

126 Pramana – J. Phys., Vol. 63, No. 1, July 2004



Polarized INS in magnetism

is the magnetic interaction vector implying that only magnetic fluctuations per-
pendicular to Q contribute to the scattering cross-section. ρ(Q, ω) is the Fourier
transform in space and time of the magnetic moment distributionM(r, t). From the
above equations two important applications emerge. First, if the neutron polariza-
tion of the incident beam P (i.e. σ) is aligned along the scattering vector Q, then
all the magnetic scattering is spin-flip. This allows an unambiguous separation of
the often weak magnetic scattering, e.g. from phonons. Second, in a magnetic field
perpendicular to Q, i.e. P, spin fluctuations (spin waves or paramagnetic fluctua-
tions) with components along P occur in the NSF channel, while spin fluctuations
with components perpendicular to P occur in the SF channel.

2.1 Transverse and longitudinal excitations in the dipolar ferromagnet EuS

The magnetic properties of compounds with localized spin densities can be conve-
niently described on the basis of the Heisenberg Hamiltonian H = −∑

i,j JijSi · Sj,
where Jij is the exchange integral between the spins located at the i- and j-position,
respectively. Depending on the sign of the exchange integral J(q), either an anti-
ferromagnetic or a ferromagnetic ground-state is favored. If exchange interactions
extend beyond nearest neighbors, competing effects can occur that may lead to non-
collinear or even incommensurate magnetic structures. The dipolar interactions can
be included in the Hamiltonian for an isotropic ferromagnet by adding the dipolar

operator Hd =
∑

α,β,i,j G
(

δαβ

r3
i,j

− 3rαi,jr
β
i,j

r5
i,j

)

Sαi S
β
j . Because the dipolar interactions are

long-range, they affect the spin-wave dynamics only at small momentum transfers
q < qd, where the dipolar wavenumber is defined by Dq2d = gµ0µBM . Here, D is
the stiffness of the spin waves. For the model Heisenberg antiferromagnet EuS one
obtains qd = 0.245 Å−1. Obviously, qd is a measure of the relative strength of the
dipolar to the exchange interactions. The dipolar terms destroy the isotropy of the
Hamiltonian and in the ordered phase, one has to distinguish between magnetic
fluctuations parallel and perpendicular (= spin waves) to the magnetization M,

leading to several magnetic modes below Tc. Hence, spin excitations δSL along
(longitudinal, L) and δST transverse (T) to the reduced momentum transfer q are
no longer identical. If the magnetic field is applied along the vertical direction, two
spin wave modes (i.e. L and T) as well as a longitudinal mode with a polariza-
tion along M can be identified by means of polarization analysis. As an example,
we show in figure 1 typical constant-Q scans that were measured at the positions
(1.82, 0, 0) and (2, 0.18, 0) in reciprocal space. It is clearly seen that the spin-waves
occurring in the SF channel have a very different intensity. The reason is that the
spin waves with L-polarization attain a mass due to demagnetization that occurs
only for spin deviations δS||q. In other words, it is only the spin waves with T -
polarization that show Goldstone behavior 1/q2. These results can be summarized
by the following expressions for the wavelength-dependent susceptibility (α = L, T )

χα(Q) ∝ q2d
q2+δα,Lq2d

, showing that the number of Goldstone modes is reduced from

two to one. Of course, close to Tc the dynamics becomes also different for the two
modes.

The NSF channels contain the spin fluctuations parallel to the magnetization,
i.e. χz(Q, ω). They become very strong close to Tc since they are due to two
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magnon processes. Within our scattering geometry, the results at the two Q-
positions are identical as expected. We have investigated the T -dependence of the
energy integrated susceptibility χz(Q) in detail and find clear deviations from the
Lorentzian behavior 1/(q2 + κ2z), as shown in figure 1. Here, κz designates the
inverse correlation length. This is the first time that indications for the divergence
of the longitudinal susceptibility χz(Q) ∝ 1/q for q → 0 have been found [4].

Figure 1. Top: Constant-Q scans probing the magnetic fluctuations at
(1.82, 0, 0) and (2, 0.18, 0). The quadrants show the polarization of the mag-
netic modes with respect to M and q. Bottom: Inverse of the integrated
intensities of the spin wave and longitudinal spin fluctuations versus q2. The
latter clearly deviate at small q from Lorentzian behavior indicating the
1/q-divergence due to the Goldstone mode.
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2.2 Polarization dependence of the spin-density-wave excitations of chromium

Chromium is one of the most fascinating itinerant antiferromagnets exhibiting a
linearly polarized incommensurate magnetic ground state [5]. Cr undergoes a tran-
sition from the paramagnetic phase at TN = 311 K to a spin-density wave phase
characterized by the propagation vector Q0=(1±δ, 0, 0) with δ=0.048. The in-
commensurate magnetic order is the result of the nesting properties of the elec-
tron and hole Fermi surface. In the transverse spin-density wave (TSDW) phase
Tsf = 121 K < T < TN the magnetic moments are aligned perpendicular to Q0. At
Tsf the magnetic structure undergoes a first-order phase transition to a longitudinal
spin-density wave (LSDW) phase with the spins aligned along Q0.

Although experimentally well-studied, the nature of the magnetic excitations of
Cr are poorly understood. First of all, the magnetic excitations that emerge from
the satellite positions have an extremely high velocity c = 1020 meV Å−1. Second,
it has been found that in the TSDW phase the longitudinal magnetic fluctuations
are strongly enhanced for energy transfers below ∼8 meV. While the spin-wave
modes are not affected by the transition at Tsf , additional excitations were re-
ported in the TSDW phase between the incommensurate positions (1± δ, 0, 0) with
a well-defined maximum near 4 meV at the incommensurate position Q = (1,0,0)
[6]. Figure 2 shows a contour plot of the inelastic intensity recorded on the triple-
axis TASP in the TSDW-phase at 230 K [7]. Most dominant are the very steep
excitations that emerge from the incommensurate positions. Another important
feature is the Fincher mode near 4 meV mentioned above and the additional scat-
tering near (1.02, 0, 0) and 3 meV that has no counterpart at the symmetric posi-
tion (0.98, 0, 0). This unexpected asymmetry was recently confirmed on another Cr
crystal [8].

In order to obtain information about the polarization of the magnetic modes
we have measured the SF and NSF-cross-sections in Cr. The crystal was cooled
through TN in a magnetic field of 20 T to induce a single-Q state. During the
experiments, a vertical field Bz = 4 T along [0, 0, 1] was applied to enforce a single-
domain state with the magnetic moments lying in the (h, k, 0) scattering plane.
Hence, the SF- and NSF-scattering is due to longitudinal and transverse fluctu-
ations, respectively. Figure 2 shows constant-E scans that have been performed
with polarization analysis [9]. The peaks at the incommensurate positions corre-
spond to cuts through the rods of inelastic scattering that emerge from the mag-
netic Bragg peaks. The longitudinal polarization of the Fincher mode is clearly
established. The solid lines are fits to Gaussian functions. It is seen that there
is significant polarization-independent ‘commensurate’ scattering around (1, 0, 0).
The fits clearly show that the width of the incommensurate scattering with lon-
gitudinal polarization is broader than the scattering with transverse polarization.
The broadening of the L-peaks with respect to the T-peaks is compatible with the
predictions of Fishman and Liu [10]. Namely, the velocity cL of the longitudinal
modes is clearly smaller than the velocity cT of the transverse modes. In particular,
the width of the transverse peaks is now in good agreement with the prediction of
the three band model cT = vFermi/

√
3 = 1500 meV [10].
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Figure 2. Left: Contour map of the excitation spectrum as measured in the
transverse spin density wave phase of Cr at T = 230 K. The intense peak near
4 meV and Q = (1, 0, 0) is the Fincher mode. Right: Note the additional peak
near (1.02, 0, 0) and 3 meV that has no counterpart at (0.98, 0, 0). Bottom:
Constant-E scans at 4.2 meV probing the longitudinal and transverse fluc-
tuations along the [1, 0, 0] direction in the TSDW phase at T = 230 K with
polarization analysis.
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Figure 3. Inelastic spectra in MnSi (~ω = 0.5 meV) at T = 31 K (TN = 29.5
K) for the neutron polarization parallel and anti-parallel to the scattering
vector, respectively. See text for details.

2.3 Chiral fluctuations in non-centrosymmetric MnSi

In the previous examples we have demonstrated that longitudinal polarization
analysis allows to determine unambiguously the polarization of the magnetic
modes in magnetic materials. In the following, we show that chiral fluctua-
tions can be measured in zero-field by means of inelastic polarized neutron scat-
tering in compounds with non-centrosymmetric symmetry. Namely, the cross-

section of magnetic scattering with polarized neutrons is proportional to d2σ
dΩdω ∼

∑

α,β(δα,β−Q̂αQ̂β)A
αβ(Q, ω)+

∑

α,β(Q̂·P0)
∑

γ εα,β,γQ̂
γBαβ(Q, ω), where (Q, ω)

designates the momentum and energy transfer from the neutron to the sample
and Q̂ = Q/|Q|. The indices α, β, γ indicate Cartesian coordinates. The first
term in the cross-section is independent of the polarization of the incident neu-
trons, while the second is polarization dependent through the factor (Q̂ · P0).
P0 denotes the direction of the neutron polarization and its scalar is equal to
1 when the beam is fully polarized. Aαβ and Bαβ are the symmetric and an-
tisymmetric parts of the scattering function Sαβ , Aαβ = 1

2 (S
αβ + Sαβ) and

Bαβ = 1
2 (S

αβ − Sαβ). Sαβ are the Fourier transforms of the spin correlation

function 〈sαl s
β
l′〉, i.e. Sαβ(Q, ω) = 1

2πN

∫ ∞

−∞
dte−iωt

∑

ll′ e
iQ·(Xl−Xl′ )〈sαl s

β
l′(t)〉. The

vectors Xl designate the positions of the scattering centers in the lattice. Following
ref. [11] we now define an axial vector B by

∑

αβ εαβγB
αβ = Bγ(Q, ω). B charac-

terizes the antisymmetric part of the susceptibility. The corresponding cross-section
for magnetic scattering which depends on the neutron polarization is proportional
to (Q̂ ·P0)(Q̂ ·B). This term vanishes for a centro-symmetric system.

In order to prove this statement we show in figure 3 a constant-E scan conducted
in the weak-ferromagnet MnSi at an energy transfer ~ω = 0.5 meV measured in
the paramagnetic phase using a polarized beam. It is obvious from figure 3 that
the quasielastic scattering is polarization-dependent when the polarization of the
neutrons is chosen along ±Q. Of particular importance, we find that the neutron
peaks appear at positions incommensurate with respect to the chemical lattice,
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namely at Q = τ ±δ (τ is a reciprocal lattice vector). We emphasize that this shift
from the commensurate position is not visible in an experiment with unpolarized
neutrons or when the polarization of the neutron beam is chosen like P ⊥ Q (→
Q̂ ·P0 = 0) because of the intrinsic width of the scattering [12]. Because the crystal
structure of MnSi is non-centrosymmetric and the magnetic ground-state forms a
helix, we conclude that the antisymmetric part of the dynamical susceptibility is
due to the Dzyaloshinskii–Moriya interaction with a uniform D-vector. In that
case, the neutron cross-section depends on the polarization of the neutron beam

[13] as ( d2σ
dΩdω )p ∼ (D · Q̂)(Q̂ · P0)= (χ

⊥(q−δ,ω)−χ⊥(q+δ,ω))
2D . As shown in figure 3,

using for the dynamical susceptibility χ⊥(Q0 +q, ω) = χ(Q0 +q)/(1− iω/ΓQ0+q)
reproduces the inelastic neutron data well.

3. Conclusion

From the examples presented here, we have shown that polarised neutrons can yield
unique information on the spin dynamics of magnetic materials that cannot be
obtained by any other methods. We would like to point out that using the method
of longitudinal polarimetry as introduced by Moon, Riste and Koehler does not
give access to the nuclear–magnetic interference term in the inelastic cross-section.
It is expected that application of neutron polarimetry in zero field using inelastic
neutron scattering will open new perspectives in systems where e.g. spin–lattice
interactions cannot be neglected.
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