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Anisotropic Lyra cosmology
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Abstract. Anisotropic Bianchi Type-I cosmological models have been studied on the
basis of Lyra’s geometry. Two types of models, one with constant deceleration parameter
and the other with variable deceleration parameter have been derived by considering a
time-dependent displacement field.
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1. Introduction

Finstein geometrized gravitation. Weyl [1] was inspired by it and he was the first to
try to unify gravitation and electromagnetism in a single space-time geometry. He
showed how one can introduce a vector field in the Riemannian space-time with an
intrinsic geometrical significance. But this theory was not accepted as it was based
on non-integrability of length transfer.

Lyra [2] introduced a gauge function, i.e., a displacement vector in Riemannian
space-time which removes the non-integrability condition of a vector under parallel
transport. In this way Riemannian geometry was given a new modification by him
and the modified geometry was named as Lyra’s geometry.

Sen [3] and Sen and Dunn [4] proposed a new scalar—tensor theory of gravitation
and constructed the field equations analogous to the Einstein’s field equations,
based on Lyra’s geometry which in normal gauge may be written in the form

1 3 3
Rij — 59 R + 50id; — Zgz'jmd?k = —87G(t)T3, (1)

where ¢; is the displacement vector and other symbols have their usual meanings.
Halford [5] has pointed out that the constant vector displacement field ¢, in Lyra’s
geometry plays the role of cosmological constant in the normal general relativistic
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treatment. According to Halford [6] the scalar-tensor treatment based on Lyra’s
geometry predicts the same effects, within observational limits, as far as the classical
solar system tests are concerned, as well as tests based on the linearised form
of field equations. In papers [7—12], the study of cosmology in Lyra’s geometry
with a constant displacement field has been shown. Soleng [13] has pointed out
that the constant displacement in Lyra’s geometry will either include a creation
field and be equivalent to Hoyle’s creation field cosomology or contain a special
vacuum field which together with the gauge vector term may be considered as a
cosmological term. Beesham [14] considered FRW models with a time-dependent
field. Singh and Singh [15-18] have presented Bianchi Type-I, IIT and Kantowaski—
Sachs cosmological models with a time-dependent displacement field and have made
a comparative study of the Robertson-Walker models with a constant deceleration
parameter in Einstein’s theory with cosmological term and in the cosmological
theory based on Lyra’s geometry. They have given a review of Lyra cosmological
models. In a recent paper [19], Singh and Desikan have studied FRW models with
a time-dependent displacement field with constant deceleration parameter.

Some very recent works done on Lyra’s geometry are given in [21,22], viz.,
Rahaman et al [21] have done investigations in cosmology within the framework
of Lyra’s geometry. Rahaman et al [22] have studied string cosmology in five-
dimensional space-time based on Lyra geometry and in one model they have shown
that the gauge function is large in the beginning but decreases with the evolution
of the model.

It can be mentioned here that the Brans-Dicke field is a scalar field ¢(t) =
(1/G(t)). On the other hand, the Lyra field is a vector field, distinct from G(t).
This shows the difference between the Brans—Dicke field and the Lyra field.

The present universe is, by and large, isotropic conforming to FRW-metric with
deviations from homogeneity dp/p ~ 1075 and departures from isotropy o2/Hg <
10~?, 02 standing for the anisotropy [23].

Faber [24] and Guth [25] aver that at a very early stage, the universe might have
been anisotropic. However, in the course of evolution the universe has developed
isotropy as we observe today. We have been motivated by this conjecture to study
the anisotropic models of the universe in this paper.

The purpose of this paper is to derive some Bianchi Type-I cosmological models
with a time-dependent displacement field in terms of (i) constant and (ii) time-
dependent deceleration parameters. The paper is organised as follows: We present
field equatons in §2, constant deceleration parameter models in §3 and variable
deceleration models in §4. We conclude in §5.

2. Field equations

The energy—momentum conservation law is given by
Tf;j =0. (2)
The time-like displacement vector ¢; in (1) is given by
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We consider the cosmic matter as a perfect fluid and write the energy—momentum
tensor as

Tij = (p + p)uiuj — pgij, (4)

where the terms indicate their usual meanings.
For the Bianchi Type-I metric

ds? = dt? — a2 (t)dz? — a3(t)dy® — a3(t)dz> (5)

With (3)—(5), the field eq. (1) and the energy-momentum conservation equation
(2) become
ajp a2 azas  asair 3
e R R R R (. 6
wa e a a1 17 =x®p, (6)
(12 a3

2
== 4+ = t
a5 0 + + + ﬁ —x(t)p, (7)
as ax 2
==+ =+ = t
o o + + -+ 5 —x(®)p, (8)
(11 a2 3 2
— 24—+ 24 3= —x(t
o o L2 o 2 4 10 x(t)p, 9)
p+3H(p+p) =0, (10)

where x(t) = 8nG(t) and H(=R/R)= Hubble’s parameter with R(t)
(a1a2a3)1/3.
We take the anisotropy o2 as

o = 3H? — (‘“” 42298 “3‘”) (vide [20]). (11)
a1a9 az20as3 aszaq

Now, egs (6) and (11) lead to
2 3 o 2
From egs (7)—(9) and (11), we have
: 3
2H +3H? + 1/6’2 = —x(t)p — o> (13)
From (6)—(9), we obtain the continuity equation
c e B0
Xp+Xp+ 56°(8/8 + 3H) + x(p+ p)3H = 0. (14)

Equation (14) can also be obtained from (1) by directly using Bianchi identities
(vide Appendix). From (10) and (14), we have

352515 + 3H) =~ (15)
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Let us assume an equation of state

p=7p, 0=<y<1 (16)

With (16), egs (10), (13) and (14) become

p=phR™30F7  pi' = constant of integration (17)
: 3

2H + 3H? + 152 = —x(t)yp — o2, (18)
. 3 :

Xp+xp + 50°(B/6 4 3H) + x(1+7)p - 3H = 0. (19)

Adding (12) and (18), we have
2H +6H? = (1 — ) xp. (20)

(32 in the above equations appears to play the role of a variable cosmological term
A(t) in Einstein equation.

3. Constant deceleration parameter models

We have four independent equations above, viz. (12), (15), (17) and (20) for five
unknowns, viz. (R(t),x(t),p(t),3(t),c2(t)). To solve them we take the following
ansatz.

Ansatz (A):
R = Ropt", Rp and n are constants and n > 0. (21)
With (21), eq. (17) yields

3(147)

p=pot =3I py = ol Ry = constant. (22)
Using (21) and (22) in (20), we obtain
2n(3n —1
X = o2,y 2 2B ey (23)
(L=7)po

Equation (15) with eqs (21)—(23) leads to

C _ dn{3n(l+~)—2} _
2_ M 4—6n _ 2 _
g = 3(1— 3n)t 3(1—7) t~°, C = constant, C > 0.
(24)
Using (21)-(24) in (12) we have
C
2 _ —6n
A Te ) L (25)
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Table 1. Models for v = 0,1/3,1/2 for constant deceleration parameter.

Model no. 1 2 3
1 1
gl 0 3 2
1 4 2
n 3 9 5
R R0t1/2 R0t4/9 R0t2/5
p p0t73/2 p0t716/9 p0t79/5
1 4-1/2 4 4-2/9 8 4—1/5
X 2Pot 9pot 25!’0t
p 0 3P 3P
o2 Ct=3 %fs/?, %flz/s
2 1,—2 4C ,—3 16 ,—2 —8/3 16 ,—2 10C ;,—12/5
B 1172 — 19y 6472 _20t78/ 164-2 _ 10041/

The deceleration parameter, ¢(= (—R/R)/(R/R)?) = (1 —n)/n = constant. Equa-
tions (22)—(25) show that for x, o2, 3% to be positive and o2 to decay faster than p,

vy<1, 1/3<n<2/(3(1+7))
and

C(l _ ’Y) 1/(2(3n—1))

P B )2 =3 1)}

(26)

Equations (21), (23) and (26) indicate that this solution has only decelerating
expansion with decaying G(t).

For C(1 —v) < [2n(3n — 1){2 — 3n(1 + v)}], B? is seen to be negative at the
very early stage after the birth of the universe. After that it becomes zero and then
becomes maximum positive. Then the value of 3%(t) decreases with the evolution
of the universe.

Some models for different values of v and also for empty universe are presented
below. Model 1 for v = 0 (dust model), Model 2 for v = 1/3 (radiation universe)
and Model 3 for v = 1/2 (hard universe) are tabulated in table 1. Model 4 for
empty universe (p = p = 0) and Model 5 for stiff matter (y = 1) are presented
later.

In table 1, all models have decelerating expansion with decaying G(t). o2 decays
faster than p in each model. In the case of 3%(t), we see that in all models at the
time of birth of the universe it is infinitely large but negative, then its value increases
and becomes positive and rises to a maximum value and then again decreases with
the evolution of the universe. In Model 1, 32 > 0 for t > 4C and 3% = (3?)max at
t = 6C. In Model 2, 32 > 0 for t > (81C/8)%/2 and % = (%) max at t = (27C/2)3/?
and in Model 3, 32 > 0 for t > (125C/8)%/? and (% = (6%)max at t = (75C/4)%/2.
Plots of the different functions in Model 1 of table 1 is shown in figure 1.
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Figure 1. Plots of the different functions in Model 1 (of table 1).

Model 4. Empty universe (p = p = 0).

With p = p =0, eqgs (12), (15) and (20) become
2 3o 2
3H = Zﬂ + o ,
3 ¢ 3
° °32) 6H =0
(3#) + (3#) w0
H+3H%=0.

From (29), we have

R = Rotl/g, Ry = constant.
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From (28) and (30) we obtain

4D
3% = ?t_Q, D = constant, D > 0. (31)

With (30) and (31), eq. (27) gives

1 1
2=(=2-D)t% 0<D<-:=. 32
7o (fn)en vene] g

As there is no x in eqs (27)—(29), x(¢) may have any physically acceptable time-
dependent or constant expression.

We see that the empty universe model is a model with decelerating expansion.
Anisotropy and the gauge function decrease from a large value with the expansion
of the universe.

Model 5. v =1 (stiff matter)

With v =1, eqgs (12), (15), (17) and (20) become

3H? = x(t)p + 252 + 02, (33)
(37) + (37 o1 =~ (34)
p=poR™° (35)
and
H+3H?=0. (36)
From (36),
R = Rot'?, Ry = constant. (37)

Using (37) in (35), we obtain
p=rpot™>  po=pHRy°. (38)

Now, using (37) and (38) in (34), we have

4 (B
= 3 <P B X) pot~2, B =constant, B > 0. (39)
0

From (33), (37)—(39), we obtain

1 1
2 2
c‘==-—-—B|t 0 B < -. 40

Equation (16) gives
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p=p. (41)

(32 and x cannot be determined uniquely.

Equations (38) and (40) show that p and o? decay at the same rate so that
anisotropy is seen to exist with the existence of energy in the present universe. So,
we do not get any physical stiff matter model with constant deceleration parameter
in anisotropic Lyra cosmology.

Model 6
Ansatz (B):
R = Rope™, = constant, a > 0. (42)
With (42), eq. (17) will give
p=rpoe ™, po=pRy M, B =3a(1+7). (43)
Equation (20) with (42) and (43) gives

602

_ Bt _
X = X0,  Xo = . 44
po(1—7) 9
Using (42)—(44) in (12), we obtain
2, 32 2
o+ Zﬁ = 3a” — xopo = constant. (45)

Equation (45) shows that sum of two positive quantities o2 and (3/4)3? both of
which should decrease with time, has become constant. As this is an absurd case,
we can say de Sitter expansion (inflationary) with deceleration parameter, ¢ = —1
is not allowed in anisotropic Lyra cosmology.

4. Variable deceleration parameter models

To solve eqs (12), (15), (17) and (20) for variable deceleration parameter we adopt
the ansatz (C):

R = Rot"(t+t9)", Ro,n,to are constants. (46)
With (46), eq. (17) gives

p = pot IV (b 4 10) 730D p = pf RO, (47)
With (46) and (47), eq. (20) gives for n = 1/3

4
3(1—=7)po

With n =1/3, (46) and (47) turn into

X = t(t+to)". (48)
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Table 2. Models for v =0, , 1 for variable deceleration parameter.

1399
Model no. 1 2 3
Y 0 % %
R Rot*/3(t + to)*/? Rot'/3(t + to)/? Rot/3(t + t9)'/?
X % %tl/B(t—l-to)lB %#/Q(t_'_to)l/z
p pot (o)™ pot At 4 to) TP pot ™%/ (t + to) /2
B D42 (¢ + tg) 1472t 4 o) 2 L4721+ )2
X [D = St(t + to)] x [D = 34(t + to)]
2 (3t6-D) (5t5-D) (3t6-D)
7 t2(t+t0)? t2(t+t0)? 2 (i1t0)2
R = Rot'/*(t +t5)"/? (49)
and
p = pot~ I (t + )"0, (50)

Now, putting the values of x, R and p from (48)—(50) into eq. (15), we have

2_% —2 —2 . 4y
B2 =gt (t+ )2 |D —3(1_7)t(t+t0) , (51)

where D = constant of integration and D > 0.
From (12), (48)—(51), we obtain

42-D
o2 = M. (52)
t2(t + tg)?
Deceleration parameter obtained from (49) is
_ R/R 6 [ tt+to) 1}
(R/R)? (2t+t0)> 3
= a function of time. (53)
From (51) and (52),
4t (t + to) 1
m <D< gt% for ﬁ2 >0 and o? > 0. (54)

Some models are presented below for variable deceleration parameter with diff-
erent values of v. Model 1 for v = 0 (dust model), Model 2 for v = 1/3 (radiation
universe) and Model 3 for v = 1/2 (hard universe) are tabulated in table 2.

From table 2, we see that in Model 1, the universe has decelerating expansion
with constant G(¢). o2 decays faster than p. 4% > 0 and o2 > 0 for (1/3)t3 > D.
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Gauge function §(t) is infinitely large in the early stage of the evolution of the
universe and then decreases with time.

In Model 2, the universe expands in the same mode as in the dust model with
G(t) growing at the same rate as R(t). o2 decays faster than p.

02 >0 for (1/3)t2 > D
and

(% >0 for t(t+tg) < 3D/2.

This is a model valid for the early stage of the universe with §(t), decreasing from
a very large value, becomes imaginary at later times.

In Model 3, the universe expands in the same rate as those in dust and radiation
universe with growing G(t). o2 decays faster than p.

o? >0 for (1/3)t2 > D
and

% >0 for t(t+tg) < 3D/4.

This is also a model valid for the early universe with ((t), decreasing from a very
large value in the early universe, becomes imaginary at later times. So, in all the
three models, we see that R(t) and o2 are independent of v and they vary with
time at the same rate. All the models are decelerating expansion models.

Equation (20) shows that no stiff matter model (y = 1) is allowed in variable
deceleration parameter case. Equation (20) also shows that no time-dependant
deceleration parameter model is allowed in vacuum (p = p = 0) universe. Plots of
the different functions from Model 1 (of table 2) and only of 32(t) from Model 2
(of table 2) are shown in figure 2.

5. Concluding remarks

In this paper we have studied anisotropic Bianchi Type-I cosmological models in
Lyra’s geometry. We have found exact solutions of Sen equation for constant and
variable decelerations. Singh and Desikan [19] have presented models with both
positive and negative 3%(t). We have shown the models with positive 32(¢) only
because negative 32 will turn 3(t) into an imaginary quantity which is not physical.

For both constant and variable deceleration parameter models we have taken y
as a function of time.

Table 1 shows the constant deceleration parameter models. For all models o2
decays faster than p. In each model the universe evolves with decelerating ex-
pansion with decaying x(¢). In each model, assuming C to be very small, within
the very small time after the birth of the universe 32(t) starts from a very large
negative value, rises to a positive maximum (large) value and after that begins to
decrease with the evolution of the universe. In that era our universe remains in
quantum state. As our theory is valid for classical era only, it is not surprising that
(3% becomes negative or increasing in the quantum state. So, the imaginary and
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increasing gauge function is not acceptable. Plots of the functions of Model 1 (from
table 1) (figure 1) show the above-mentioned characters of the functions.

In Model 4, we see that empty universe allows decelerating expansion with inde-
pendent nature of the function x(t). 4% and o2 decrease from large value with the
expansion of the universe.

Model 5 shows that no stiff matter (v = 1) model is allowed in anisotropic Lyra
cosmology.

Model 6 shows that we cannot obtain a de Sitter expansion in anisotropic Lyra
universe.

Model 1 (table 2) Model 1 (table 2)
A ‘
R(t) R(t) ~ t3(t+t,)? Z(t) Z(t) = 4137,
t .
Model 1 (table 2) Model 1 (table 2)
) 1
2t p~t(t+t)” AL B0~y

t t
\ Model 1 (table 2) Model 2 (table 2)
|
3 to>D 2 2 2
A 1) =5t7(t+)” [D -F t(t +t,)]
o 2() o 2t ~ t7(t+)”

()
t =\V3D2

t \ t
Y

Figure 2. Plots of the different functions from Model 1 (of table 2) and only
of 32(t) from Model 2 (of table 2).
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Table 2 shows the three models with time-dependent deceleration parameter. All
models show same rate of decelerating expansion and same rate of decrease in 2.
Model 1 (dust model) shows constant G(t) and faster decay of o2 than p. 3% decays
from a large value with the exapansion of universe. Model 2 and Model 3 show
growing G(t) and faster decay of o2 than p. In them (%(t) starts from a large
value, then decreases and becomes negative (but falling) after a time. So, these two
models are valid for the early stage of the universe.

For vacuum universe and stiff matter (7 = 1) universe no model is allowed for
anisotropic Lyra cosmology.

Appendix

Using Bianchi identities and the energy—momentum conservation law in eq. (1), we
obtain

3 3 . -
*§(¢z‘¢]);j + 1(9§¢k¢k);j —8n(G),;T] =0
3 . , 3 .
= *§(¢¢¢;jj + ¢’ pij) + 1(9352);1' —8n(G) ;T =0

31, 1 0¢V=g) (9
=75 ¢zﬁ37 + ¢’ (@ - Ffﬂ%)}

3 i j
+Zgg(ﬁ2)’j _ 871-(G)7jTZ? =0,9= —(a1a2a3)2 and gg;j =0.

- 0 —
= _3 ¢OLM + ¢ <8;;58 — Fgoﬁbo)}

2 V=g 020 0
+%ggaé§§) C8n(G)oTO =0, (ij=1,2,3 give 0=0.)
+Z 8(5) —87Gp =0, (since 'Y, =0)
3 s s agg| 4 265 - sncp—o

= 2§13/ + 3H) = 8xCip.

This is (15) in §2 of this paper.
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