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Abstract. We have calculated the potential energy surfaces for N = Z, **Ne-''?Ba nu-
clei in an axially deformed relativistic mean field approach. A quadratic constraint scheme
is applied to determine the complete energy surface for a wide range of the quadrupole
deformation. The NL3, NL-RA1 and TM1 parameter sets are used. The phenomenon
of (multiple) shape coextistence is studied and the calculated ground and excited state
binding energies, quadrupole deformation parameters and root mean square (rms) charge
radii are compared with the available experimental data and other theoretical predictions.
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1. Introduction

In a recent work [1], we calculated the potential energy surfaces for some neutron-
deficient N = Z nuclei in the mass region A ~ 80. The phenomenon of multiple
shape coexistence (more than two shapes at about the same binding energy) is
predicted in this region, suggesting a ‘dynamically’ variable nature of the nuclear
shapes in the neutron-deficient N = Z exotic nuclei. Since the low level density in
the nuclear potential of A ~ 80 mass region nuclei leads to the shell gaps in the
nuclear mean field [2], the coexistence of neighbouring oblate and prolate shell gaps
cause the nuclear deformation to change dramatically with the addition or subtrac-
tion of a few nucleons. This result is observed experimentally, i.e., with the addition
of only two protons or two neutrons [3,4], the shape gets changed drastically and
the low-lying isomeric states (two, coexisting nuclear shapes) become the ground
band in this mass region [5]. In Nilsson—-Strutinsky picture the shape coexistence
can be understood as arising from the interplay between the liquid drop energy and
the Nilsson single-particle energies [6]. The Nilsson single-particle energies depend
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on the deformation, which results in more than one local minimum for the ground
state total energy as a function of deformation [6].

There are many theoretical calculations available in the literature for calculating
the potential energy surface (PES) diagram and to analyse the different structures
of nuclei in different mass regions of the periodic table [6,7]. Earlier, using the
dynamical deformation model (DDM), Kumar [8] predicted the shallow PES for
Ge isotopes and showed strong collective effects in the deformation space as well
as in the pairing interaction space. Wood et al [6] pointed out that in many cases
the minima in O-quasiparticle PES, even if they are very shallow and separated
by very low energy barriers, correspond to well-defined states. They showed that,
even the structures which do not correspond to a local minimum in PES may be
closely related to the physical state of the nucleus, whose energy can be success-
fully extracted by removing spurious interactions with excited configurations. The
number of particles occupying the single-particle intruder orbits can be treated
as an additional quantum number. These observations suggest that a flat PES
does not automatically lead to large fluctuations of shape. On the contrary, the
nucleus may still be fairly rigid, the shape being restored not by a large energy
barrier but by profound structural differences between different minima [6,7]. The
studies of N = Z nuclei in the mass region A ~60-80 have also been reported
using the Skyrme-Hartree-Fock (SHF) plus BCS method with a three-dimensional
(3D) mesh representation [9,10] which show the existence of three (prolate, oblate
and spherical) local minima. Takami et al [11] showed that, without imposing the
requirement of symmetry on the solutions to allow arbitrary nuclear shapes, the
reflection asymmetric shapes, violating the axial symmetry, are more favoured in
N = Z nuclei of mass region A ~ 60-80 than with the axial symmetry. Recently,
a superdeformed state with the quadrupole deformation parameter 8> = 0.65 is
also observed [12] in the N = Z, 36Ar nucleus, which could also be an isomeric
state, like in the mass region A = 80. This raises an apparent question: Do the
shape coexisting states occur in all N = Z nuclei beginning, say, from the normal
2ONe nucleus to the very proton-rich ''?Ba nucleus lying almost at the proton-
drip line? One of the aims of this work is to answer this question for the exotic
N = Z nuclei. It may be noted that the shape coexistence in neutron-deficient Pb
isotopes were calculated by Bengtsson and Nazarewicz [7] using the configuration
constrained shell correction method and they could separate the ground state PES
into different parts. Recently, the multiple shape phenomenon is well-studied in Pb
nuclei [13], where one of the best studied cases is 13¢Pb. The three different-shaped
(spherical, oblate and prolate) 0" states are also observed in the recent experiment
at the SHIP of GSI [14].

The shape coexistence phenomenon provides information regarding the excitation
energies of two (or more) neighbouring intrinsic states. Alternatively, this means
that if deeper minima in the potential energy surface are not nearly equally deep (i.e.
the energy difference between the first two minima AE > 2-2.5 MeV), then such
states are isomeric states, giving information about the first excited intrinsic state
above the ground state (deepest minimum), and so on for the next minima. Since
the first excited intrinsic state for spherical nuclei lie very high, it is possible that
AFE contains the information about the magic structure of nuclei and hence allows
us to test the validity of model parameters used in, say, the mean field approaches
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applied to nuclei far away from the valley of 3-stability. The mean field models are
often based on parameters derived from fits to stable or near-stable nuclei. This
is another aim of the present investigation and we use here the axially deformed
relativistic mean field (RMF) approach [15-18], with NL3, NL-RA1 and TMI1 as
the parameter sets. The potential energy surfaces are calculated in a quadratic
constraint scheme [19-22], explained below.

The paper is organized as follows: Section 2 gives some very basic details con-
cerning the relativistic mean field (RMF) formalism. The results of our calculations
are presented in §3. The paper is concluded with a summary and discussion of our
results in §4.

2. The relativistic mean field formalism

The relativistic mean field model is now a well-studied approach, where the rela-
tivistic Lagrangian density for a nucleon—-meson many-body system is defined as
[15-18],
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Here, the field for the o-meson is denoted by o, that of the w-meson by V,, and
of the isovector p-meson by ﬁu. A* denotes the electromagnetic field. ; are the
Dirac spinors for the nucleons, whose third component of isospin is denoted by 73;.
Jss Guw, gp and (e?/4mw) = (1/137) are the coupling constants for o, w, p mesons
and the photon, respectively. ¢», g3 and c3 are the parameters for the non-linear
terms of o and w mesons. M is the mass of the nucleon and m,, m, and m, are
the masses of the o, w and p mesons, respectively. Q*", Br and F* are the field
tensors for V#, R* and the photon fields, respectively [16].

From the relativistic Lagrangian we get the field equations for the nucleons and
the mesons. These equations are solved by expanding the upper and lower compo-
nents of the Dirac spinors and the boson fields in a deformed harmonic oscillator
basis with an initial deformation. The set of coupled equations is solved numeri-
cally by a self-consistent iteration method. The centre-of-mass motion is estimated
by the usual harmonic oscillator formula F. . = %4114_1/ 3. The quadrupole de-
formation parameter (35 is evaluated from the resulting quadrupole moment and
the total binding energy and other observables are obtained by using the standard
relations [16]. The Np = Ng = 12 oscillator shells are used as the expansion basis
for the fermion and boson fields.

In order to compute the whole potential energy surface, we introduce a
quadrupole constraint, which means, instead of minimizing (H), we minimize (H')
where H' = H — uQu, with Qu =1?Y5,(0, ¢) and the Lagrangian multiplier x fixed
by the constraint (@), = Qo. In detail, we have solved the set of RMF equations
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with two quadratic constraints [19,20]: %Cg((@o) —wo)? + %C’g((@g) — p2)?%, where
the constraining operators Qu are used as time components of a vector field in
Dirac equation. The quadratic constraint is used in order to be able to treat also
the concave areas of the energy surface [19,20]. The Lagrangian multiplier p is
adjusted to fix a definite deformation. It is to be noted here that, in nature, the
triaxial degree of freedom is very important but triaxiality destroys the possibility
of many isomers and allows a large amount of configuration mixing. In this way the
violation of axial symmetry is possible [9-11]. Recently, exotic shapes (non-axial,
with octupole deformations) and shape coexistence in N = Z proton-rich nuclei
from %Ge to 8*Mo by symmetry-unrestricted Skyrme-Hartree-Fock-Bogoliubov
(Skyrme-HFB) methods have been reported [23], where the PES are calculated in
constrained Skyrme-HFB approach. However, in the present calculation the triaxial
degree of freedom is beyond the scope of our work. Therefore, we have restricted
our calculation to an axially deformed RMF calculation only [19-22], termed as free
calculations in order to distinguish them from the quadrupole constrained calcula-
tions.

3. Calculations and results

Our calculations are performed with the three successful parameter sets TM1 [24],
NL3 [25] and NL-RA1 [26]. The predictive power of TM1 and NL3 parametriza-
tions is well-known and some examples can be found, e.g., in ref. [27] and references
quoted therein. The relatively new parameter set NL-RA1 is used recently in [28]
and it is found that the results produced by this set are as good as that of the
NL3. From the results presented in refs [26,28], it is evident that NL-RA1 can be
considered successful and could be used with confidence for the fruitful investiga-
tions of the new regions of nuclear stability. On the other hand, an interesting
feature of the TM1 is that, in this set the sign of the quartic scalar self-coupling is
positive (contrary to that for NL3 and NL-RA1), which is achieved by introducing
a quartic self-interaction of the vector field in the effective force [24,29]. It is worth
mentioning that, the value of ¢3 (eq. (1)) is non-zero in TM1 set, whereas it is zero
in all other forces. Another significant difference is that the value of g3 is positive
in TM1 and it is negative in NL3, NL-SH and NL-RA1. In general, the quality of
the results produced by TM1 is comparable to that of the standard non-linear NL3
and other parameter sets but so far it has not been used much in the literature.
Although the TM1 parameter set is designed for Z > 20 nuclei, we have used it
here for all the nuclei studied, for the sake of consistency. For the pairing energy,
following the prescription of Madland and Nix [30], we have chosen to use the BCS
formalism with the constant pairing gaps. Note that for most of the very neutron-
deficient nuclei studied here, the odd—even mass differences are not measured, and
hence very little is known about the precise effects of the pairing interactions. Also,
it may be noted that the constant pairing strength, taken from experimental data
or from the standard formula, fails to reproduce the quadrupole deformation of
light nuclei like ?°Ne (the large experimental value of 32 = 0.72 [31]), favouring no
pairing strength [27]. In such cases, we use the constant gaps A, = A, = 0.5 MeV,
and is called zero pairing. This type of prescription has already been adopted in
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the past [32] taking A,, = A, = 0.5 to 1 MeV and the chosen values for the gaps
contribute very little to the total binding energy of the nuclei in the present model.
Also, it has been shown in refs [32,33] that the standard RMF approach breaks
down near the N = Z nuclei region. For this reason, we have chosen here a mixed
approach for pairing, i.e., taking standard BCS pairing into account for some cases
and neglecting it for some other cases, depending on the situation.

Based on the above considerations, our calculated potential energy surfaces in
quadrupole constraint for the V = Z, Ne—Ba nuclei are plotted in figures 1-7 and
some of our results of free calculations (no quadrupole constraint) are given in
table 1. Table 1 presents the results of our complete calculation for the ground
state binding energies (BE), the first excited state solutions (the intrinsic binding
energies Fingr), the root mean square (rms) charge radii r., and the quadrupole
deformation parameter 35 for all the parameter sets by considering the full pairing
gaps of ref. [30]. We also display in table 1 the experimental data [31,34] and
other theoretical (finite range droplet model, FRDM) predictions [35], wherever
possible, for comparison. Again, we repeated the free calculations with zero pairing
(A, = A, = 0.5 MeV). Note that by a small change in A,, and A,, (i.e. varying
from 0.0 to 0.6 MeV) the calculated RMF results do not change considerably. The
results for zero pairing (A, = A, = 0.5 MeV) for some of the selected minima are
also presented (denoted by asterisks (*)) in the table. Comparing both the cases,
we notice for many nuclei, the results to be similar. However, in some of the cases,
like 2°Ne, 328, *4Ti and °Zn, a small pairing or zero pairing is necessary. To get
comparable results with the experimental observations, a zero pairing is preferable
for all the considered nuclei. In general, our RMF results for the ground state
binding energies and quadrupole deformation parameters 35 agree well with both
the experimental data and FRDM calculations. The rms charge radii r. for all the
parameter sets are similar and their values for the excited states are slightly lower,
as compared to that for the ground states.

Figure 1 gives our plot of the potential energy as a function of the quadrupole
deformation parameter 35 for 2°Ne, 2*Mg, 28Si and 328 nuclei. We first notice
that all the three parameter sets show a similar behaviour of the potential energy
surfaces (PES). The 2°Ne and 2*Mg nuclei are the cases of shape isomerism (two
or more deep minima at different deformations), while 28Si and 32S are showing
the shape coexistence with an energy difference of less than 1.0 MeV. The ground
state shape of 28Si is oblate (32~ —0.35) while those of the other three nuclei are
prolate (By = 0.5, ~0.48 and ~0.2 for 2°Ne, Mg and 328, respectively). In the
upper panel of figure 1, a well-defined excited state above the ground state for 2Mg
is at ~4.3 MeV for NL3 and TM1 and at ~4.1 MeV for NL-RA1 set. The barrier
height is ~5.0 MeV in all the three sets. In the lower panel of figure 1, the excited
state of 28Si is not well-defined and is rather shallow with the energy so close to the
ground state that the two could be considered as degenerate solutions, for all the
three parameter sets. Such solutions could vanish with a small change of the input
quantities, and will be further discussed in the next section. In such diagrams, a
note of caution is needed for the discussion of the shape of nuclei. It is interesting
to see in figure 1 that, for 28Si, the PES curve shows different form for TM1 set
as compared to NL3 and NL-RA1. However, the ground state deformations are
found to be almost similar in all the three sets (see table). It may happen that the
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Figure 1. The RMF binding energy, calculated in a quadrupole constraint,
as a function of the quadrupole deformation for 2°Ne, >*Mg, 28Si and 328,
using NL3, TM1 and NL-RA1 parameter sets. The pairing strength is from
ref. [30].

orientation of the nucleus is of y-soft structure and the true shape could be obtained
only in a triaxial constraint calculation [10,11,23]. As we have already mentioned
in the Introduction, the shallow minima in the PES curves may not necessarily
follow a solution in the free (no quadrupole constraint) calculations. Many minima
in the potential energy surface curve collectively will give a stable solution for the
nucleus [7]. Furthermore, while talking about the shape coexistence of the states, it
is worthwhile to mention that in the coexisting energy minima in one-dimensional
energy curves, caution must be taken, particularly when oblate and prolate minima
have similar absolute value of 82. Such minima may be connected by triaxial shapes
and only one of them may be a real (y-soft) minimum. This feature will become
clear if a triaxial calculation (including -deformation) is carried out. However, in
the present investigation we have not taken this point into consideration. A triaxial
potential energy surface calculation in this mass region may be an interesting study
in future. Similarly, in the case of 32S, the well-defined excited state is shown only
by TM1 set. The signatures of superdeformed state is predicted in 325 at By~1
which is ~8.5 MeV above the ground state for TM1, ~10.9 MeV for NL-RA1 and
~11 MeV for NL3 parameter set.
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Figure 2. Same as for figure 1, but for *Ar, “°Ca, **Ti and *®Cr.

The potential energy surfaces (PES) for 36Ar, 4°Ca, *4Ti and *8Cr are given in
figure 2. The shape of 2 Ar in the ground state is oblate, that of *°Ca and **Ti are
spherical while that of *Cr is prolate. Thus, with the addition of four nucleons each,
the shape changes from oblate to spherical and then from spherical to prolate. The
excited states minima in these nuclei are relatively shallower, different for different
parameter sets. For 36Ar, an isomeric excited state is predicted at $2~0.62 or 0.64
for NL3 or NL-RA1 parameter set, in agreement with the recent experiment [12]
(B2(expt.) = 0.65). The same is true for TM1, but the minima is shallower in this
case. The excitation energy above the ground state is about 8.1 MeV for NL3, 10
MeV for TM1 and 7.5 MeV for NL-RA1 parameter set. There is also a small local
minimum at B, ~ 0.13 for all the three parameter sets. °Ca is a double closed shell
nucleus, and hence the PES shows a deep spherical minimum. Another minimum
at ~15 MeV or ~18 MeV above the ground state is seen at f>~0.81 for NL3 or
NL-RA1 set, respectively, whereas the same is ~18 MeV higher at $2~0.9 (hence,
the superdeformed state) for the TM1 force. Also an oblate minimum is obtained
at By ~ —0.45 in NL3 and NL-RA1, which for the TM1 set is rather shallow and
is like a local minimum. The PES for **Ti show identical trends for all the three
forces. The (very shallow) first excited states minima in each case lie at S2~ —0.38
which is ~10 MeV higher, for all forces. For *Cr, there is a well-defined excited
state indicated by all the sets. The ground state energy is ~410.0 MeV for TM1
and NL-RA1 and ~409.5 MeV for NL3, all at 82 = 0.27. The first excited state
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Figure 3. Same as for figure 1, but for *°Ne and **Ti, and with and without
pairing.

is ~2 MeV above the ground-state with an oblate deformation of 3, = —0.11.
Once again, like for 36Ar, there is a shape coexistence for *®Cr. Therefore 36Ar
and *3Cr are the clear cases of shape coexistences, with two nearly equally deep
minima at different deformations in the PES. It is to be noted here that in our
earlier investigation [1] for the mass region A ~ 80 (specifically, for ?Kr to *>Pd
nuclei), we get multiple shape structures in PES for all nuclei. There is always
a competition between prolate and oblate solutions in the ground state of these
nuclei. We know that, in general, the prolate configuration has a larger moment
of inertia than the oblate one, and the upper part of the g-band of even—even
nuclei can be expected to have a prolate shape although in some nuclei the ground
state itself could correspond to an oblate or spherical shape [2]. The oblate-shaped
rotational bands appear low in energy, when the excitation of some quasi-particles

is involved. Another important observation, evident from figure 2, is the minima

in the PES at about 3 ~ —0.2 in the case of 36Ar for all the parameter sets. If

one looks at the free solutions in table 1, the minimum for 36Ar is at 3> ~ —0.16,
a value slightly smaller than in figure 2 mentioned above. This happens due to the
influence of the lower shallow minima appearing in the PES curve, which are not
considered in the free solution [7]. Finally, it may be mentioned here that in PES,
pairing plays a very important role in some of the cases, like for 2°Ne and *4Ti
illustrated in figure 3. In this figure, the PES curve with and without pairing is
compared and we find a large difference between these two results. If the pairing is
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Figure 4. Same as for figure 1, but for >?Fe, **Ni, 9°Zn and *‘Ge.

included, then it is not possible to obtain the ground state minimum at the right
position to reproduce the experimental value of the ground deformation. However,
for zero pairing interaction in figure 3, the predicted o value agrees well with the
experimental value (see also figures 1 and 2).

The PES for 52Fe, °Ni, 9Zn and ®*Ge are plotted in figure 4 and show that
all the parameter sets give two distinct minima in each case (except for **Ni in
cases of NL3 and NL-RA1), with energy of first excited minimum close (< 2 MeV)
to ground state energy. In the case of 52Fe, the oblate excited state is ~8.0 MeV
above the prolate ground state with deformation 8> ~ —0.5. There is also a local
minimum at the height of ~2.0 MeV, predicted by all the parameter sets. For °Ni
nucleus, the two minima (spherical ground state and oblate excited state) for TM1
are separated by ~2.0 MeV, whereas the same are rather shallow for NL3 and NL-
RA1. There is distinct isomeric state, ~1.4 MeV above the prolate ground state,
in the plot of ®°Zn. The ground and oblate minimum for all the parameter sets is
separated by a barrier height of ~2 MeV. But in the case of ®*Ge the two shapes
(oblate and prolate) are having the energy difference of ~0.8 MeV only. This means
that there is a clear shape coexistence in 5°Zn and ®*Ge in which all the parameter
sets agree well with each other. These are the additional examples of two shape
coexisting states. The large prolate minimum is, however, separated by a relatively
higher barrier, ~4.5 MeV, in %4Ge for all the parameter sets.
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Figure 5. Same as for figure 1, but for *®Se, Kr, "°Sr and #°Zr.

Figures 5 and 6 give the PES for the region comprising A = 82+10 nuclei, already
studied in ref. [1]. The new cases are %Se and Cd. This region is already shown to
be the interesting region of multiple shape coexistences, and %8Se also presents the
same result (two shape coexisting states), thereby extending this region by one unit
at the beginning side. On the other hand, in °°Cd all the parameter sets show the
spherical ground state. Hence, adding ®?Fe, °Zn and % Ge from figure 4 and ®®Se
from figure 5 to the already studied region in ref. [1], we have A = 52 and 60-92 as
the region of (multiple) shape coexisting states. Note that, compared to the PES in
ref. [1], the present calculation shows significant differences. This happens because
here we use the pairing prescription of ref. [30] for evaluating the pairing gaps A,,
and A, for neutron and proton, respectively, whereas in our earlier calculation of
ref. [1] we had taken A,, = A, = 0.5 MeV which is practically equivalent to zero
pairing. The inclusion of stronger pairing makes the PES curves smoother and
many of the low-lying minima get washed away.

The PES for 1°°Sn, 1%4Te, 1°Xe and ''?Ba are shown in figure 7. Similar to the
case of °Ca, in figure 2, all the parameter sets predict the spherical ground state for
10081 and 04Te. There is no excited state in these nuclei which could also be seen
in the table. This structure of PES diagram confirms the double magic structure
of 19°Sn. Note that 1°°Sn represents the experimental limit of proton drip line, and
hence the PES for three other nuclei beyond experimental drip line (1°4Te, 198Xe
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Figure 6. Same as for figure 1, but for **Mo, **Ru, ?’Pd and *°Cd.

and ''2Ba) are given here simply as the theoretical predictions for completeness.
The '°Xe and ''?Ba nuclei seem to present good cases of shape coexistence for all
the forces.

From the analysis of figures 1-7, we notice a qualitative difference in the PES
curve for TM1, although the quadrupole deformation parameter 5 obtained by
TM1 is similar to other sets, like N3 and NL-RA1. To be more transparent about
the structure of the PES with respect to the force used, we demonstrate in figure
8, for two cases of 28Si and 32S, our results for the above three forces and an
additional force parametrization NL-SH [36]. The behaviour of NL-SH is found to
be similar to that for NL3 and NL-RA1, but different from the parametrization of
TM1. Hence, the behaviour of TM1 parameter is rather unique. Due to the unique
parametrizations of TM1 as discussed earlier, difference in PES is possible.

Finally, in figure 9, the difference between the ground state binding energy and
the energy of the first excited state, AE, is presented for all the three parameter
sets. Two results are apparent: (i) The shape coexistence (AE < 2.5) nature of
the solutions for all the three forces are shown for N = Z, 28Si, 323, 52Fe, %9Zn,
64Ge, 58Se, "?Kr, "6Sr, 897r, 84Mo, 88Ru, ??Pd, '%4Te and '°8Xe nuclei. In other
words, the shape coexistence region is confined mainly to the deformed Z = 14-16,
30-44 and 52-54 nuclei, in the vicinity of the sub-shell closure (0ds/2) and the

Pramana — J. Phys., Vol. 62, No. 4, April 2004 851



M S Mehta et al

889°¢  FL0'0— 0207 899°€  €90°0— TL0F  €99°¢  TL0'0—  ¥°90%

99'¢  GE€L0  GTIF 0000 TITy  ¥89°¢ €920 6607  969°¢  8¥Z0 0°0TF  889°¢  S¥%0 £°60¥ IDgy
geg'e  BIT°0—  F0L8 99S'€  SIT'0— L'T.& 88¢'¢  LIT'0—  0°0LE

L.8°¢ €0T°0 9' 1.8  6L9°¢ ¢TI0 z'eLe 18S°€ ¥0%°0 T12€ Ly

6S°¢  T9Z'0  §'GLE 0000 8°9.¢  86G°€  C00°0— OFLE  L6S°€  S00°0 9°GL¢  T09'E  S00°0 9'¢Le Ly
80G°¢ TEL0— TTEE  LISE  GEL0—  6°CEE  €TSE  0£€0—  TIEE

89%'¢  000°0 TTre  8ST'E 00070 LVPe  TLF'E 0000 0ZFe  «®Dgy

8v'¢  Tgl'0  T1The 0000 9'Zhe  L09°€  000°0 TTVe  L99°¢ €00°0 TS¥e  €I9°¢ €00°0 g'ohe Doy
69¢°¢ 6600 €66C  LS€°€ G900 L1008 0.£°€  S60°0 T'66C

9.€'¢  012°0— Z'€0€ 6.£€ 6IT0— TTF0E 08€'E€ L0Z0— GT0E  IVge

Th'e  €L50  L°90€ 00070 1°90¢  €2€'¢ TI50— T'€0€ 6L8°¢ 6I¢0— ¢F0E 08€€ L030— G'C0¢ IV ¢
122'¢  S20°0— 0°G9Z 9.T'€ €ST0— T'T9T  F09'€  TTO0 7'89%

9€2°'¢  8ST0 1°29¢  €92°¢  18T°0 LG9%  LET°C  LYVTO 0°99% «Sze
z0g'e  09T°0— 899Z S€e'€  TFT0—  L'S9Z  86Z'¢  T1ZT'0— T1°99C

ve'¢  TIe0  8TLZ 0000 §'69¢  862°¢  88T°0 9292  GTL'e  L¥TO €99z  862°¢  TST'0 G'99% Stze
120°€  800°0 6'7€C  68C°¢  G6S°0 ¥'92¢  €63°¢  SLS0 0722

6IT°C GZC0— ¥'€6C¢ 88T'€ 96£0— 6°08¢ GoI'€ 6280— T1°3EC «1Sgz
88T'¢  €82°0— L'€€C  L¥TE  €S9€0— TILC  L6I'E  68C30—  €£7TET

ST'¢  L0P°0 99¢e  8.F0— T9LT  8TI'E 6700 1°€€c  ¥€¢°'¢  ¥65°0 '8cc  GET'E  TS0°0 9'1€% ISez
000°¢  0SZ°0— ¥'88T 8€0°€ 28T0— G981  L00'€ 0SZ'0— 08T

Tvo'e 9870 L1661  080°¢  9TS°0 9°¢6T  GP0'E  G8F°0 TE61 SNy
00T'¢  002°0— L'T6T 82I'€ 922°0— 0061 <CIT'C 002°0— ¥ 06T

80°C 9090 €861 FLEO 7'86T CPI'E 670 1961 LTS  GL¥O eF6T  TST'E  0SF0 LV6T SNy
968°¢  6¢2°0— T'€ST  F06'C  FET0—  L'TST  L06'C  0€Z°0—  0°TST

€96 9250 8°LGT  696'¢  TI¥S0 6°28T GL6'C  1€9°0 L1981 Nz

00°¢  8TL'0  9°09T  GE€€0 ¢T19T  €96'C 1290 €8T 696'C  T¥S0 L'L8T  GT8'C €600 €991 9Nz
2 eg ad ey qad i eg ad 2L eg ad 2 ey qad

“3dxgy WNa¥a TVH-IN TINL €N PN

IdYj0 104 ‘¢ = ¥

‘[og] -3o1 wroag st Sutred a1y ‘sosed
= 4y -o'1 ‘Surrred JMOYIIM SUOTIRINO[ED B MOTS () SYSLIdS® YT, "W UI ST SNIPRI 9T} PUR AJ[\ UI SI

A819ua a7, ‘suostreduwrod 1oy uaald osfe aIe [¢g] (IN@Y.I) [Ppow jo[doip aSuer atuy srdodsordewr-omIw o) pue [F¢1g] vIRp
(porejodenyxoe 10) TejueurLIodxo A1) JO SIMNSAI O], 'OINU 77 = AJ USAI—TIAD ) IO SUOIIN]OS S[(ISSOd SNOLIRA 9T} JO 2.4 SNIPRI
ogretd 's'ur1 o) pue ‘(7g) 1ojeurered uoreuriofep osjodnipenb oy ‘(Hg) A819us Jurpuiq oY) 10j synseI JINY °YL, ‘T IRl

Pramana — J. Phys., Vol. 62, No. 4, April 2004

852



Z, 2 Ne-'12 Ba nuclei

Potential energy surfaces for N

66¢°0

16€°0

8¢V°0

€820

9,20

8820

76¢°0

¥61°0

8L€°0

6°00L

8°699

1°8€9

T°L09

¥'9LG

0'97¢

0'GTS

078y

LYY

€40°0

€EV°0

1270

67€°0—

ligall]

6120

08T°0

000°0

000°0

0,69

€699

L'8€9

0°209

8'GLG

9Vve

Vyig

S8y

LYY

EVE'V
8CE'V
89TV
8¢E'V
98TV
99¢€'¥
€9C'V
€LCV
89¢'V
062’V
8LT'V
GLT'V
681V
18T
0L0'¥%
9.0’
860
6807
LL6°€
996°€
c00'¥
G66°€
8G8'¢
098¢
LL8°€
788'¢
L98°€
€IL°€
69.L°€
GL9'€
¥69°€
€0L°¢
8CL'E
§gc9'e
699°¢

60C°0—
000°0
96T°0—
887°0
c6T'0—
870
LLE0—
6.7°0
GeE0—
997°0
T6€°0
8€€0—
0T€0—
TGE0
0920
09¢°0—
€46¢°0—
£ve0
0€2°0—
8¢¢'0
T1¢°0—
Gea’0
L9T°0—
120
690°0—
09T°0
86€°0
c00'0—
¥00°0
80T°0—
€280
€70°0—
061°0
LYT°0—
86¢°0

1°969
6°€69
1°299
L7999
8'€99
G'999
0°2€9
87€9
¥'€€9
L7G€9
6°669
2209
9°€09
¥'109
€1LS
9'TLS
L'CLS
T°CLS
¢'8€S
9'6€9
9°07¢
G Ive
1809
9'T1S
L°0TG
T°¢19
V'9LY
(anis
A%
€1y
Sl
VY
9%y
cvoy
€607

67E'¥V
L2ET
TLEV
96C'¥
€8TV
0,8V
€8TV
¥6C' v
j4ta%
60€'¥
V8TV
GET'¥V
881
VT
6.0V
VL0V
T10T'¥
€607
686°¢
8L6°'€
€10V
L007
288°¢
788'¢
906°¢
916°€
188°¢
6VL°€
€6L°¢
669°€
1¢L'€
LeLE
T9L.°€
L€9°€
¥.9°€

c0c'0—
000°0
L0970
000°0
89T°0—
000°0
L8€0—
0670
9¢1°0—
697°0
e 0—
C¢LT0—
06¢°0—
6€T°0
T9¢°0—
€920
06¢°0—
8€C°0
9€¢°0—
66¢°0
T¢e 0—
66¢°0
G8T°0—
T€C0
¥wio—
¥1e'0
0170
T00°0
G00'0—
VIT0—
LET0
870°0—
8¢¢'0
6V1°0—
0T€°0

0°669
8°869
€799
2299
0°899
1°699
7'€€9
1°G€9
¥'LE9
0°9€9
1°609
¢'c09
6°909
G709
9vLG
T'vLS
g'qLe
8'7.LG
8°6€9
€' 1vg
c'ove
8'¢¥4
8,09
G019
0°0T¢
€119
CLLY
6°6L¥V
7087
V'6EY
VEVY
8¢V
Vv
0'70¥
607

ey
8CE'Y
9EEV
¥9¢'¥y
GLC'Y
89¢'Y
€9C'¥
cLT'Y
jRéay
€68V
9LT'Y
V'Y
68TV
18TV
8L0°F
0L0'¥
00T
060'%
186°€
696°€
G00'¥
866°¢
T98°€
098¢
LL8°€
988°¢
898°¢
T1L°€
6GL°€
9.9'¢
969°€
L0L°€
GeEL'E
L89°€
¢99°¢

90¢°0—
000°0
8870
000°0
0000
78770
9L€°0—
6.7°0
6€T°0—
L9770
6€€°0—
681°0—
G0€0—
€T€°0
€9¢°0—
[Sigall]
¥4 0—
¥¢0
¥€C0—
1€2°0
L1C°0—
9220
CLT0—
[44al]
290°0—
T9T°0
96€°0
T00°0
¥00°0
0TT°0—
Srea]
160°0—
¥02°0
10—
00€°0

L7969
1969
¥7'999
0799
£€°999
1999
G'T€9
97€9
¥'€€9
¥°q€9
G'c09
G869
¥°€09
T°109
8'1.G
V1LG
LeLs
¢'eLS
6°LE9
8'8€9
£0ve
199
1°L0G
6°0T9
001G
V' I1G
6°GLY
T°€87
£E8Y
plids
9Ty
LEVY
v avy
g'eov
1807

ONpg
«17 08
1708
«1Sg,
1Sq,
<1z,
ey,
9Sg9
©Dypg
%D
«UZ09
UZ 09

«INogg
mz.wm

A ze

*HO@%

853

Pramana — J. Phys., Vol. 62, No. 4, April 2004



M S Mehta et al

78'%  ¥6£0— 0288  FS8F  86£0—  0T68  IF8T  96£0— 67188

TEL'Y  8ET0 7'€68  TPLT  GET0 1868  1€.F  0%2°0 7'S68  edgrr
6cLY  SPI0— €768  9TLT  T800— G868  €ELF  G9T0—  L°€68

2020 6768  6ELT  TITO 0668  THL'T  TI8T°0 2006 68LF  LIT0 9'968 L] < P
6£97  82T0— 9298 IS9F  SIT0—  LI.8  TPOF  TPIO— G898

LF9%  9LT0 0128  099F  ¥LTO 6'7L8  LVOF  18T°0 6148  «9Xgor
169'F  680°0—  T'0.8 T99F  T180°0— ZFL8 199F  L60°0— 01,8

ZST'0 8°0.8  099°F  9GT°0 €TL8  TLOT  TSTO 0928  099°F  T19T°0 7'€L8 X go1
L699°%  L80°0—  T°LF8  GL9F 060°0—  6'8F8  FSS'F  680°0—  6°LF8

7957 S2T0 7’878  ¥8¢¥F  STI0 9678  €9¢F  6aT°0 €678  «OLypor

SP0'0  T'8P8  TLSF €00°0 6678  06S'F €000 T°1¢8  699F  000°0 8°098 9Lyor

89FF 10070 7628  S6%'F  000°0—  9°.28  S9F'F 00070 0088 «USqor

6728 6000 6928  T6FF  100°0 7628 LIS 1000 0828  687'F 1000 £0¢8 US oot
YEPY  SP00—  206L 09FF  TITTO 6°¢6L  0SPF  €ST0—  GL8L

W9y 2010 0°€6L  T9%'F  €0T°0 6'C6L  6SV'F  TOT'0 8°€6L «PDgg

7'€6L  SPO0  TE6L  LPFY  T000 ¥¥6L  09%'F G000 8¥6L  9FFF 0000 £°G6. PDogg
IIF'%  88T°0—  ©99L 9¢%'F  G61°0— 868 OIFF  06T°0— @96

TPy £ST°0 §'8¢.  ¥e¥¥y  SST0 1°09L  OIF'¥%F  #ST'O 9°652 «Pdzg
0T%%  T€00— TT19. &gF'¥  TI10°0—  8°09L OIFF  6300—  86SL

1°29L  €50°0  9°09L  LIF% €010 8'65L  8CF'F  S80°0 ¢ 19, 9TF¥%F  T0T°0 0°T192 Pd¢s
YT 78T0 0'6TL  €6£F  LIE0—  GLT. 9.8V ¥Ig0—  ¥°92L

LI €TIT0—  T9TL 08T TST0 ¥'L2L  €LEV TST0 L'GT. N gg
16€%  1050—  92.8L  €O¥VF SG61°0— 063, 1687  6610— 6.3

7'I€L  €S0°0 9'82L  9L€F  G0T'0 6°GZL  9LE'F  800°0 8'82L  TLET  080°0 1°LTL Y gg
0veY  9€€0 1569  9€¢F  0€8°0 €69  LTEF  FETO z'169

8ZEY  0TC0—  9F69  9€€F 10—  FL69  8ZLF  02Z0—  T1°G69 ON g
24 Ty qad ey ad 2 ey ad 2 ey qad 2L eg qad

dxq Naad TVY-IN TINL ¢IN NN

(ponunjuod) ‘1 oqeL,

Pramana — J. Phys., Vol. 62, No. 4, April 2004

854



Potential energy surfaces for N = Z, 2° Ne-*12 Ba nuclei

- ; s [ diisaatasassteionsanntaasansannt |
i ] .
-TRE B e 1 K — M ]
4 “Bn I 1 R i e -
ML~ 1 I T 2 [T
ot r i 415
< / N E
- -
i 5s | ""\. f} "-.:. .;":'” -E3E i
u f 3 £ il
I T W, j_.,.-‘f:' 1 F “\‘ g gis T
: f
\ % !
B 4 F ‘l. f (F14
i ! £ |
s e I
L L. . i aadaceisaal gag
BT 14 1 [ LA -zA 04 [] 04 04
—E5{ I T = i
T m
) -, ] e =M
Tl F Ba Wi
—£22 1 - — — A ; rllll S—— T Y] d -0
] A it o
1 1 y
i B 1.!- o4 E 11 _..:,-{' -BBz
= W i s ’ =
-] [ iy t LR I ]
£ s i l.-f"f 1E V= i - &
' I ! - 4
:f y b Db N m
B '-.'_:______-;:_:_\._x # {E ot -BE1
H"-\._.':_l'-. - —
—ETE 1 E -0
& i i i B i i a |
LT -03 a2 0 1 uE it

Figure 7. Same as for figure 1, but for 1°°Sn, 1% Te, 1%Xe and !?Ba.

magic numbers 28 and 50. It may be noted, however, that the shape coexistence, in
the cases where excited states minima are shallow, are likely to be affected by the
dynamical effects such as quadrupole vibrations. In the free calculations, in a few
cases like 2°Ne, 36 Ar, 40Ca, 44Ti, °6Ni, °6Cd, 1°°Sn and '°4Te nuclei, we do not find
the excited states, when the pairing interaction is added. In other words, we get the
finite value of AFE for all the above-mentioned cases when the pairing interaction
is small or switched off. This is shown in figure 9 for A, = A, = 0.5 (dotted
line) for NL3 force only. Thus, in figure 9, the open circles, rectangular boxes and
the open triangles lying on the zero line means the nuclei having no excited states,
and we have put AE = 0 considering that the excited state has the same binding
energy as the ground state solution, which means that the pairing interaction washes
away the excited state minima. On the other hand, if the pairing is off then the
shape coexistence can be seen in the nuclei 28Si, 323, 44Ti, %4Ge, %®Se, "?Kr and
1047Te. (ii) For all the parameter sets, AE shows the peaking structure (large value
of AFE) at all the magic numbers 20, 28 and 50. The role of pairing is once again
evident from this figure, if we compare the solid line for stronger pairing with the
dotted line for the case of no pairing, plotted for NL3 parameter set. The peaking
structure of magic nuclei are intact for both with and without pairing correlations.
Hence, the magicity of the numbers 20, 28 and 50 seems not to be affected by the
pairing interaction.
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Figure 8. Same as for figure 1, but for **Si and 3*S, and with the additional
NL-SH parameter set.

4. Summary and discussion of results

In summary, we have calculated the ground state properties of Z = 10 to Z = 56,
even—even N = Z nuclei, in an axially deformed relativistic mean field formalism.
The parameter sets used are the NL3, TM1 and NL-RA1. Also, the whole of po-
tential energy surfaces are determined in a quadratic constraint calculation, whose
analysis of the different minima give quadrupole deformation parameters and ex-
cited state energies. In most of the nuclei (Z = 30-44) considered, we predict two
or even three minima at various different quadrupole deformations. In the present
calculations, all the three parameter sets predict qualitatively similar results for
almost all the nuclei, except for some isolated systems like 28Si, 2S and 36Ni. For
example, in 28Si the prolate excited minimum is at ~2.5 MeV for TM1 whereas in
the other two sets it is at less than 1.0 MeV. The region of multiple shape coex-
istence is found to occur mainly for the deformed A = 68-92 and A = 108, 112
nuclei. Here, two or more different solutions are found to have (nearly) the same
energy. We have also compared our PES diagrams obtained with and without pair-
ing and found that the pairing has a large effect in some cases. With the inclusion
of pairing interaction, the PES curves become smoother than the curves obtained
without pairing. The shallow low minima do not appear when the pairing inter-
action is included, while many minima are predicted when the pairing interaction
is switched off [1]. An analysis of AE, the energy differences between ground state
and first excited state solutions, show that in general all parameter sets predict cor-

rect magic shells at N = Z = 20, 28 and 50. The subshell closures at N = Z = 14
and 40 do not show any significant large value of AE.
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Figure 9. The difference between the RMF ground-state binding energy and
the energy of the first excited state, AFE, as a function of A for the considered
N = Z nuclei, for the three parameter sets. The solid lines are for the strong
pairing [30] whereas the dashed line is for no pairing (A, = A, = 0.5).

Finally, there are some limitations of the present calculations. For example, the
correlations that we have not taken into account here, are the angular momentum
projection or correlations beyond the mean field (like the fluctuations) which may
easily shift the value of AE by several hundred keV. Therefore, in order to avoid
ambiguities in the predictions of ground state shapes for the shape coexisting nuclei,
a more sophisticated approach for calculating the binding energies is called for. In
this connection, the Dirac—Hartree—Bogoliubov approach is a prescription which
treats the pairing effects in a slightly more proper way [37,38]. But it is not sure
whether the relativistic Dirac-Hartree-Bogoliubov (RDHB) approach is suitable for
the exotic nuclei or not, as this is also a highly parameterized calculation. Unless
the Lagrangian contains the terms like 1), ¢t9t, opTptepep or the higher orders, we
cannot say that proper pairing effects have been taken into account. In one of our
earlier work [39], we have shown that the position of the orbital and the quality
of binding energy predictions remain unchanged both in the relativistic Hartree
approximation and relativistic Dirac—Hartree-Bogoliubov approach [38]. Thus to
take pairing into account the relativistic Hartree-Bogoliubov (RHB) approach is not
enough, rather a self-consistent approach which includes the relativistic Lagrangian
level is very important. The improved BCS, i.e., the inclusion of quasi-bound state
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is the next step in this regard [39]. In an earlier calculation [39] we have used
this approach for spherical open-shell nuclei and it works remarkably well. Thus,
it will be an interesting improvement if one could include the quasi-bound state
for deformed calculations [40]. The energy of the 0" state (ground state for even—
even nuclei), coming from an intrinsic configuration with large deformation, needs
a special comment. A deformed intrinsic state is a superposition of various angular
momentum states and, after angular momentum projection, the ground state is
lowered in energy as compared to the intrinsic state Ein¢,.. This lowering is large for
configurations with large § values [40]. Apparently, Ei,y, can be identified with Ey
only for spherical solutions (containing only 0% state). However, in the present work
angular momentum projection is not considered. In other words, we are concerned
here only with bulk properties, such as the binding energies, nuclear deformations
and the average properties of the intrinsic states and not with the spectroscopy
of the bands in the studied nuclei. To project out onto good angular momentum
states is an interesting problem for future investigations of the relativistic mean
field model.
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