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Higgs production at next-to-next-to-leading order
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Abstract. We describe the calculation of inclusive Higgs boson production at hadronic
colliders at next-to-next-to-leading order (NNLO) in perturbative quantum chromody-
namics. We have used the technique developed in ref. [4]. Our results agree with those
published earlier in the literature.
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1. Introduction

The discovery of the Higgs boson will shed light on the symmetry breaking mecha-
nism of the standard model (SM). The experimental bound from the LEP experi-
ments and precision studies within and beyond the standard model strongly suggest
that hadron colliders such as the Tevatron and the LHC will see the Higgs boson if
it exists. At these machines the dominant contribution to single Higgs boson pro-
duction is the gluon—gluon fusion process through heavy quark loops. The reason
for this is that the Higgs boson couples strongly to heavy quarks. In addition the
large gluon flux at the LHC enhances the total inclusive cross-section substantially.
The NLO corrections along with NLO parton distributions yield a large K factor
and also show a strong scale dependence. Hence there is need for improved par-
ton densities using NNLO splitting functions as well as inclusion of NNLO partonic
cross-sections. The NNLO correction to Higgs boson production was first computed
by an expansion technique in [1]. Exact results were obtained in [2] using Cutkosky
rules. In our work [3], we have used a straightforward technique which was adopted
in [4] to compute the NNLO corrections to Drell-Yan process. A clever choice of
the integration variables in specific frames makes the computation manageable.

2. Method of computation

We use the effective Lagrangian approach which emerges from the SM in the heavy
top quark limit (m; — oo) and is found to be a good approximation at hadron
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colliders. For Higgs boson production at hadron colliders at the NNLO level one has
to compute: (1) treelevel a+b — c+d+H, (2) one-loop corrected a+b — ¢+ H, and
(3) two-loop corrected g + g — H, where a,b, ¢, d are light partons such as quarks,
antiquarks and gluons whose interactions are governed by QCD. These corrections
involve the computation of 2 — 3 body phase-space integrals and two- and one-
loop momentum integrals followed by 2 — 1 and 2 — 2 phase-space integrations
respectively. We use dimensional regularization (space-time dimension is taken
to be n = 4 4 ¢) to regulate both ultraviolet and infrared (soft and collinear)
divergences. We first describe here how we have performed three-body phase-
space integrals for 2 — 3 tree level matrix elements and the two-body phase-
space integrals for one-loop corrected matrix elements. The 2 — 3 body processes
involve two angular integrations (say 6,¢) and two parametric integrations (say
z,y). Before we perform these integrations, it is important to classify the matrix
elements in such a way that the phase-space integrations over them can be done in
suitable frames. For example, when the Higgs boson is produced from the incoming
partons, the center-of-mass (CM) frame of outgoing partons is the most suitable
frame, because the massive propagators 1/(Png2B5) (o, B > 1) will not involve
angular dependence in this frame. Here P;s = (p;+pn)?, where py is the momentum
of the Higgs boson, and p; is the momentum of the massless parton. Similarly when
the Higgs boson is produced from an outgoing parton, we choose the CM frame
of incoming partons where 1/ (P%Pﬁ) (a, 8 > 1) do not depend on the angles.
Complications arise when we encounter processes where the Higgs boson is produced
by both initial and final state partons, i.e., where interference terms of the form
1/(P1°‘5P£3) (a, 8 > 0) appear. In this case we have chosen the CM frame of the
fourth (or third) parton and the Higgs boson where the angular integrals and other
parametric integrals are less difficult. In the CM frame of the incoming partons and
the CM frame of the outgoing partons we perform the angular integrations exactly
using the result given in [5].
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where C;; = (1 — cos#) (1 — cos x cosf — sin x cos ¢sin#) ~J. Here cos x is related
to kinematical variables such as = (= m%/s, s-CM energy) and the integration
variables z and y, and Fj > is the hypergeometric function. In the CM frame of
the fourth parton and Higgs boson, due to the complexity, we performed one an-
gular integration (say ¢) exactly and performed the remaining € integration after
expanding the integrands in powers of € = n — 4. In all these frames, using var-
ious Kummer’s relations, the hypergeometric functions are simplified to the form
Fi »(£e/2,+e/2,1+¢/2;D(x,y, z)) which is the most suitable for integrations over
z and y. The next hurdle in the computation is the appearance of terms with large
powers in 1/(1 — z) or 1/z. We have reduced the higher powers of 1/(1 — z)2+5¢
or 1/2°%5¢ where a > 1 by successive integration by parts with exact hypergeo-
metric functions until we arrive at 1/(1 — 2)'7% or 1/2'*5¢ multiplied by regular
functions. We have used the following identity to accomplish this:
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In the end we are left with integrations of the form fol dzz='75¢f(2) and/or

fol dz(1 — 2)7'1=8¢ f(2). Such integrals are simplified as follows:

1 s 1
/ dzz7' 7P f(2) :/ dz 27'7P% f(2) +/ dz 271775 f(2), o< 1.
0 0 5

(2)

The first term can be evaluated to be f(0)([Be]~' + logd + [Be/2]log® & + - - -).
After expanding z7%¢ in powers of ¢ in the second term the z integration can be
performed exactly order-by-order in ¢ with non-zero §. At the end the d dependence
cancels in each order in €. Since the z integration over the hypergeometric functions
is nontrivial due to their complicated arguments, we have expanded them in powers
of € prior to the z integration:
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where Sp,,(z) = (=1)"*P~(n — 1)lpl]~! fol dt[t]=" log™ *(t)logP(1 — zt) with
n,p > 1 and Li,(2) = Sp—1,1(2) see [6]. We have repeated the same procedure
to perform the remaining y integration. In addition to 2 — 3 contributions, we
encounter one-loop corrected 2 — 2 processes at NNLO level. Here the one-loop
tensorial integrals are reduced to scalar integrals using the Passarino—Veltman re-
duction procedure implemented in n dimensions. The resulting one-loop two- and
three-point scalar integrals can be expressed in terms of kinematic invariants. In the
case of the four-point function, the scalar integrals can be expressed only in terms
of hypergeometric functions which increases the complexity of the two-body phase-
space integrations. We follow the procedure adopted for the 2 — 3 phase-space
integrations to perform the two-body phase-space integrations. After performing
all these integrals, we have removed all the ultraviolet divergences by strong cou-
pling and operator renormalization constants. The remaining collinear divergences
are removed by mass factorization. Then we are left with finite partonic cross sec-
tions which are folded with parton distribution functions to compute hadronic cross
section for the inclusive Higgs boson production.

Using the method described above we have successfully computed the NNLO
corrections to Higgs boson production at hadron colliders and found complete
agreement with the results of [1,2]. We find that NNLO corrections improve the
convergence of the perturbative result and decrease the scale ambiguities inherent
in it.
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