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Abstract. Integrability of a linearly damped two-coupled non-linear oscillators equation
&= —dt —axr— 06 (x2 +y2) — 202y ,
i =—dy— By — 0> (z° +y*) — 201wy

is investigated by employing the Painlevé analysis. The following two integrable cases are

identified: (i) d = 0, a = 3, 81 and &> are arbitrary. (i) d*> = 25a/6, a = 3, §; and J» are
arbitrary. Exact analytical solution is constructed for the integrable choices.
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1. Introduction

For non-linear systems integrating the equations of motion completely, obtaining
analytical solutions and finding acceptable constants of motions seem to be rare.
From a qualitative point of view, integrability can be considered as a mathemat-
ical property that can be successfully used to obtain more predictive power and
quantitative informations to understand the dynamics of the system locally and
globally [1-8]. Integrability nature of dynamical systems can be methodologically
investigated employing Painlevé analysis [1-3]. If the solution of a non-linear dif-
ferential equation is free from movable critical singular points, it is said to possess
the Painlevé property. In this case the system is expected to be integrable.

In recent years more attention is paid to the study of coupled non-linear oscilla-
tors. Coupled non-linear oscillators describe a variety of self-organization phenom-
ena. Examples include multi-rhythmicity of heart beating [9,10], wave in ensembles
of intestinal cells [11], oscillations in chemical reactions [12,13], transition between
two oscillation modes [14], wave fronts in coupled Lorentz oscillators [15] and cou-
pled MLC circuits [3,16], in-phase and out-of-phase solutions [17] and self-organized
criticality in pulse coupled relaxation oscillators [18,19].
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We consider a two-coupled non-linear oscillator with the potential

@ o 0

Vi) = 202+ Dy2 v Lot 4 2 s iay? + . (1)
2 2 3 3

The equation of motion of the system with the addition of linear damping is written

as

i = —di —ax — & (2% +y?) — 20,7y, (2a)
:[j = —dy — ,By — (52 (1’2 + y2) - 2(511’1} (2b)

V(z,y) given by eq. (1) is the potential of the two harmonic oscillators coupled
by conservative coupling. Further, the type of non-linear coupling in the potential
(1) is present in a variety of plasma waves [20,21], for example, Rossby waves in
atmosphere and gravity-capillary waves in deep water. Analog simulation of eq. (2)
is also possible. The system (2) is considered as the simplest model for a hard in
amplitude transition to chaos [22,23]. Sudden transition to chaos was found in an
analog simulation of the system (2) [24]. The effect of noise has also been studied
in eq. (2) [25].

In the present work, we wish to investigate integrability of eq. (2) by applying the
Painlevé analysis. To be self-contained, in §2 we briefly outline the salient features
of the Painlevé analysis. In §3 we perform the Painlevé test to eq. (2). We identify
two integrable limits. Then, in §4 we obtain the analytical solution for the two
integrable cases. Finally, §5 contains conclusions.

2. Painlevé analysis

Consider an nth order ordinary differential equation of the form
ii:Fi(mla"'amn;t)a i:1727"'7n7 (3)

where F; are rational in x1,%s,...,%, and analytic in ¢. The ordinary differen-
tial eq. (3) is said to have the Painlevé property if all movable singularities of the
solutions are poles. The term ‘strong Painlevé’ is used when the solution in the
neighbourhood of an arbitrary singularity ¢* can be expressed as 7 = (t — t*)7P,
where p is an integer determined from the leading order, so that the movable al-
gebraic or logarithmic branch points as well as essential singularities are excluded.
A necessary condition for eq. (3) to have the Painlevé property is that there is a
Laurent series expansion with (n — 1) arbitrary expansion coefficients. The analysis
consists of three steps, dealing with the dominant behaviours, the resonances and
the constants of integrations, respectively [1-3,26,27].

2.1 Dominant behaviours

The first step is the determination of the leading order behaviours of z; in the
neighbourhood of a movable singularity ¢* in the form z; =~ a; (t — t*)P*, as
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t — t*, ajp = constant. If all the allowed p;s are negative integers, the solution
may correspond to the strong Painlevé property. On the other hand, if any of the
p;s is a rational fraction, the solution may be associated with the weak P-property
[28]. In either case, the solution is written in the form of Laurent series as

mi(t):Tp"Zaika s (4:)
k=0

where 7 =t — t*.

2.2 Resonances

The next step is to find the resonances, that is, the values of the order at which
arbitrary constants will enter in the expansion of the solution near the singularity
at t = t*. Apart from ¢*, there are (n — 1) other arbitrary constants for eq. (3). To
determine the resonances, the solution

T & apTh + TPt r >0, i=1,2,...,n (5)

is substituted in eq. (3) and the leading order terms in €; are retained. The reduced
equation will be of the form

Q(r)'ona Q:(Qla---aﬂn)a (6)

where Q(r) is a square matrix of order n with r appearing only in its diagonal
elements. The roots of equation det Q(r) = 0 are the resonances.

2.3 The constants of integration

The final step is to verify the existence of sufficient number of arbitrary constants
at the resonances without the introduction of logarithmic branch points. For this
purpose, the truncated expansion

T
T = apT? + ZaikTp“’“ , (7)
k=1
where r; the largest resonance value which is substituted in eq. (3). At the res-

onances, one usually finds some conditions termed ‘compatibility conditions’ that
have to be satisfied in order to secure arbitrariness of the coefficients.

3. The Painlevé property of the two-coupled non-linear oscillators
equation (2)

We apply the P-analysis to the two-coupled anharmonic oscillators eq. (2). The
analysis starts with the leading order behaviours.
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3.1 Leading order analysis

We assume the leading orders to be
z=aot?, y=bet?!, T=({t—-1t")—>0. (8)

To determine p, g, ag and by we substitute eq. (8) in eq. (2). We obtain the following
pairs of leading order equations:

aop(p — )77 = —daopr?™! — aaor? — d1a57°F — 61 b7
—265a0boTPTY, (9a)
boq(q — 1)7772 = —dboqr?™" — Bbor? — G2b372 — SpalT??
—201agboT? . (9b)

From eq. (9) the leading order behaviour is obtained as p = ¢ = —2. Then, from
the coefficient of (77%,77%) in eq. (9) we have
6(10 = —(51(1(2) — (51[)(2) — 2(520,0[)0, (10&)
6[)0 = —(52[)(2) — (52(1(2) — 2(510,0[)0. (IOb)

Multiplying eq. (10a) by by and eq. (10b) by ao and subtracting one from the
other we get

(a% - b%) (52a0 + 61b0) =0. (].].)

Equation (11) is satisfied if ag = bg or ag = —bg or d2a¢ + d1bg = 0. For each of
these choices ap and by can be determined from eqs (10). We have the following
three leading orders:

Case 1

=q=-2, ay=0» ———3 (12a)

bp=q= 9 0 — Vo — (51+(52‘
Case 2

3 6

b= 0 T8 -0 oo 02 — 01 (12b)

Case 3
641 692
p=q=-2, d2a9+0d1b =0, aoz(sg_&%, 60:—63_6%. (12¢)

The next step is the resonance analysis for each of the three leading orders.

3.2 Resonances

To identify the resonances, the powers of eq. (5) at which arbitrary constants will
enter, we write
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m%ang+QlTp+T, y%bqu-f-QquJrr. (13)

Equation (13) is substituted into eq. (2). From the coefficients of (77~%, 77~%) we
obtain

0 [(r — 2)(7‘ — 3) + 261a9 + 2(52()0] + Qs [2(52(10 + 2(51[)0] =0, (14&)
0 [262(10 + 2(51[)0] + Qs [(T — 2)(7’ — 3) + 261a9 + 2(52[)0] =0. (14b)
The above system of linear equations is rewritten in the form of (6) as

Q(r)-Q = (r—2)(r —3) + 2d1a0 + 262b9 285a0 + 201bo
- 20200 + 201bo (r = 2)(r — 3) + 202bo + 25100

X (g;) =0. (15)

The condition for non-trivial solutions (21, €22) is the determinant of Q(r) equal to
zZero.

Case 1
For eq. (12a) the matrix @ is
_(r*—5r —6
Q(T) - ( —6 742 _ 5T> . (16)
The roots of det Q(r) = 0 are r = —1,2,3,6. The root —1 corresponds to the
arbitrariness of t* in eq. (8).
Case 2

For eq. (12b), the values of r are found to be r = —1,2,3,6 which are the same
as that of Case 1.

Case 3
For eq. (12c¢) the determinant of Q(r) leads to the equation (r + 1)%(r —6)? = 0.
The resonances are thus » = —1,—1,6,6.

Thus, for eq. (2) we identified three sets of full resonances. The resonance anal-
ysis tells us which coefficients should be arbitrary. In Cases 1 and 2 apart from the
arbitrariness of t* the coefficients as or bs, a3 or b3 and ag or bg must be arbitrary to
satisfy P-property. Then the Laurent series will have four arbitrary constants. Such
a branch of solutions z(t) and y(t) with sufficient number of arbitrary constants is
termed as main branch [2,3]. In Case 3 the resonance values are r = —1,—-1,6,6.
r = —1 and 6 appear twice. One of the r = —1 values corresponds to arbitrariness
of t*. For the solution to be free from movable critical points, ag and bg must be
arbitrary. In this case the Laurent series will have only three arbitrary constants.
Such a branch of solution with less number of arbitrary constants is known as sub-
sidiary branch [2,3]. Next, we check the arbitrariness of the coefficients indicated
by the resonance analysis.
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3.3 Identification of arbitrary constants of integration

To verify the occurrence of sufficient number of arbitrary constants, let us consider
the series expansion

T T
x = aoT? + Z apPR .y = bot! + Z bk, (17)
k=1 k=1

We substitute eq. (17) in eq. (2) and equate the coefficients of like powers of 7 on
both sides of the expansion.
Case 1

The resonance values r = —1,2,3,6 imply that in addition to ¢*, three more
arbitrary constants exist. Thus, for eq. (2) to satisfy P-property, as (or b2), as (or
bs) and ag (or bg) must be arbitrary.

From the coefficients of (772, 772) we obtain

3(11 + 2b1 = —dag, (183.)
3b1 + 2(11 = —dag, (].Sb)

which imply a; = b;. Substitution of a; = by in (18) gives

a; = b1 = —gao. (19)

From the coefficients of (772, 772) we have

ay + by = M ao (20a)
150 ’
(258 — d?)
as + b2 = T agp. (20]1))
From (20) we get
0-a2+0-b2:(agﬂ)a0. (21)

Thus, as or bs is arbitrary provided a = 3.
The coefficients of (771, 77!) in (2) give

B
asz + bs = 750 aop, (22a)
3
asz + bg = 750 aop, (22b)
from which we get
0-az3 +0-b3 =0. (23)

6 Pramana — J. Phys., Vol. 62, No. 1, January 2004



Two-coupled non-linear oscillators

ag or bg is arbitrary without any further restriction on the parameters. Proceeding
further, from the coefficients of (7°,7°) and (7, 7) we have the relations

as +by = (%) ao, (24a)
a5+ by = (1375;204;06079d5> a0 (24b)
Finally, from the coefficients of (72, 72) we obtain
0+ a5 +0+bs = 2 (as + bs) + o (g + ba) + (51 +62) (a5 + bo)’
+2 (01 + 02) (az + b2) (as + bs) . (25)

Substituting the expressions obtained above for a; + b;, i = 2,3,4,5 and ag from
eq. (12a) in eq. (25) we get
36 , N
. iy = — | —d* — ) 2
0-ag+0-bg 1 {625d a] (26)

Thus, ag or bg is arbitrary if d = 0 or d*> = 25a/6. Therefore, eq. (2) satisfies
P-property for

d=0, a=p, 6 and §, are arbitrary. (27)
. 2
d* = %, a=/f, 4§ and d; are arbitrary. (28)
Case 2
For Case 2 the resonance values are 7 = —1,2,3,6. We obtain
d
a; = —bl = —3 agp- (29&)

From the coefficients of (772, 772) we obtain

by = 20— F) 29b

a3 2 = 150 ao, ( )
d? — 2558

bz — Qg = % agp. (290)

From (29b) and (29¢) the condition for as or by to become arbitrary is o = . a3
or bz is arbitrary without any further restriction on the parameters and
d3

a3—1)3:—7—

The values of a4, by, as and b5 are fixed and we have
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12502 — 7d*
oy, = [ 120a” —7a” 2
ag — by < 15000 >a07 ( 99)
1375da? — 79d°
a5 = b < 225000 >a° (206)

From the coefficients of (72, 72) we get

27d .
0-ag+0-bg = ?(a5—b5)+a(a4—b4)+(61 —(52)(&3—[)3)2

+2 ((51 — (52) (a2 — bz) ((L4 — b4)

& (3648,

For ag or bg to be arbitrary we require d = 0 or d? = 25a/6. Thus, the system (2)
possesses P-property for the parametric conditions given by egs (27) and (28).

Case 3
The resonance values are r = —1, —1,6, 6 with the parametric condition given by

eq. (12c). From the coefficients of (7¢,7¢), i = —3, -2, 1,0, 1 the constants a;, b;,
1=1,2,...,5 are determined as

d d
@ =—5a, b=—¢bh, (31a)
(25a—d2) (25B_d2)
=300 % =750 31b
“ 300 ‘7 300 (31b)
d? d3
~ 71500 1
“Ts00 ‘0 %= 1500 (31c)
25002 7d4 1 -
( 30000 > 1—440 (610”ag + 61675 + 2a882a0bo) , (31d)
25082 — 7d*
( 360000 )b * 1410 1440 (025°b5 + 620°ag + 2a381a9by) ,  (31e)
275da® — 158d° 11d6y(a — B)?
( 90000 ) 0" 600 b (31f)
([ 275df* — 158d° 11d6y (o — B)?
bs = (W) bo = %1600 %ol (31g)

From the coefficients of (72,72) in eq. (2), the condition for both ag and bg to
become arbitrary is obtained as

3d (as + bs) + (cas + Bbs) + (61 + 02) (az + bs)®
+2 ((51 + (52) [(a1 + bl) ((15 + b5) + ((LQ + bz) ((L4 + b4)] =0. (32)

Using eqs (31) for a;s and b;s in the above equation we find that both ag and bg
are arbitrary only if d = 0, a = #. This choice is the same as the one given by eq.

(27).

8 Pramana — J. Phys., Vol. 62, No. 1, January 2004
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4. Analytical solution for the integrable cases

In this section we construct the exact analytical solution for the two integrable
choices identified by the Painlevé test. In both the integrable cases we have a = .
For this choice, under the change of variables £ = u+wv, y = u—wv eq. (2) decouples
into two single oscillators:

i+ du + au + 2 (6, + 62) u* =0, (33)
b+ do+av+2(8; +d)v? =0. (34)
Now we consider the case d = 0. Multiplying eq. (33) (with d = 0) by @ and then
integrating once we obtain
, 4
(@) + au® + 3 (01 +0) u® 4 up =0, (35)
where ug is an integration constant. Defining s;, so and s3 as the real roots of the
polynomial

3a 3’le0

3 2 =0 36
TG )" TG+ e (36)
eq. (35) can be rewritten as
. 4
(@)* = _5(51 +02) (u — s1) (u— s2) (u = s3), (37a)
where
3a
81+ 82 + 83 = m, (37b)
5152 + $283 + $351 = 0, (370)
_ 3U0
§18283 = 4((51 i (52) (37d)
Introducing the change of variable
2- s (38)
(s2 — s3)
eq. (37a) becomes
(2)2 = A2 (1-2%) (1-m?2?), (39a)
where
1 (83 — 82)
M=, +96 - 2o = b
3 01+ 02)(s1—83), m (55 —51) (39b)

The solution of eq. (39a) is [29]

Pramana — J. Phys., Vol. 62, No. 1, January 2004 9
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z = sn(At, m), (40)

where sn is the Jacobian elliptic function. Then the solution of eq. (33) is obtained
as

u = s3 + (52 — s3) sn*(\t,m). (41)

Next, we construct the solution of eq. (33) for the choice given by eq. (28).
General methods are not existing to find analytic solution of damped non-linear
differential equations of arbitrary order. However, for certain second-order non-
linear differential equations, methods are available in the literature. In ref. [29]
general solution of the equation

W +6W? =0 (42)
is given as

k? 1

_ 2 _
W(z)=c T3/ s {e(e — 20 k7]

(43)

where c and zy are arbitrary constants and k? is a root of the equation 1—k?+k* = 0.
The change of variables

6d>

— —2dt/5 — —dt/5 44
u 725(61+62)W(z)e , z=¢ (44)

with d* = 25a/6 transform eq. (33) into eq. (42). Hence the solution of eq. (33) is
given by eq. (44) with W (z) given by eq. (43).

Applying dynamic Lie symmetries approach [2,3,30] we obtained two linearly in-
dependent integrals of motion for each of the two integrable cases. For the integrable
condition given by eq. (27) the integrals of motion are

1. 1 . 1
I = 53’32 + 3 2+ % (% +y°) + 3 (612° + 629°) + 622y + d17y?, (45a)
) ) ‘ ‘
L, =iy + 32:133 + Ely3 + azy + §,2%y + dazy’. (45b)

I; is simply the Hamiltonian of the system. For the integrable choice given by eq.
(28) we obtained

4 2 . 2
I = eb4/5 [a‘:Q + 97+ zd (@d +yy) + 30 (27 +y7) + 3007
2
+§51x3 + 20027y + 261xy2} , (46a)
2 1 1 2
I = M5 iy + Zd (dy + xg) + 2020° + 201y° + Zawy
5 3 3 3
+0oxy® + 51:1:21/} . (46b)

One can easily verify that df; /d¢t =dI;/dt = 0.
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5. Conclusions

In this paper we considered a damped two-coupled non-linear oscillators eq. (2)
which is found to exhibit hard in amplitude transition to chaos. Painlevé analysis is
applied to explore the integrable nature of the system. We identified three distinct
sets of Laurent series solutions with leading orders given by (12). For Cases 1
and 2 we verified the existence of sufficient number of arbitrary constants in the
series solution. The parametric restrictions obtained in these two cases are given
by eqgs (27) and (28). For Case 3 the series has only three arbitrary constants and
parametric restrictions are d = 0 and a = . Thus, we identified two integrable
choices given by eqgs (27) and (28). For these two integrable cases we obtained exact
analytical solution. Further, for the integrable choices eq. (2) admits two linearly
independent integrals of motion. The explicit forms of these integrals of motion
obtained by dynamic Lie symmetries method are given by eqs (45) and (46). It is
of interest to investigate the effect of non-linear damping and addition of periodic
force and various non-linear phenomena in eq. (2).
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