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Collective flow in relativistic heavy-ion collisions

R S BHALERAO
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400 005, India

Abstract. A brief introduction is given to the field of collective flow, currently being investigated
experimentally at the Relativistic Heavy-Ion Collider, Brookhaven National Laboratory. It is fol-
lowed by an outline of the work that I have been doing in this field, in collaboration with Nicolas
Borghini and Jean-Yves Ollitrault.
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1. Introduction

It is important to investigate whether the quark–gluon matter formed in relativistic heavy-
ion collisions, attains thermal equilibrium before it hadronizes. One can claim the forma-
tion of a new state of matter, namely quark–gluon plasma, only if the thermalization is
demonstrated unambiguously. Observation of a strong collective flow of outgoing parti-
cles is an unmistakable signature of thermalization. Let us see, why this is so. (Readers
interested in detailed reviews of this field, may see refs [1–4].)

1.1Directed and elliptic flows

In this talk I shall focus mostly on the non-central collisions. These are the collisions which
have non-zero impact parameter. The reaction plane is defined as the plane determined
by the impact parameter vector and the collision axis. (Obviously, in central or head-on
collisions no reaction plane can be defined.) Thus if the two nuclei are approaching each
other parallel to thez-axis and the impact parameter vector is parallel to thex-axis, then the
xz plane is the reaction plane. Thexy plane is the azimuthal plane. A relativistic collision
of two nuclei results in a state with hundreds of particles leaving the reaction zone. Let
f �φ� be the distribution of the particles in the azimuthal plane. Hereφ is the azimuthal
angle between the trajectory of an outgoing particle and the reaction plane.f �φ� is an even
and periodic function ofφ. Hence the Fourier expansion off �φ� reads

f �φ� �
a0

2
�

∞

∑
n�1

an cosnφ�
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where

an �
1
π

� π

�π
f �φ�cosnφ dφ�

Obviously,an � a0�cosnφ� where the expectation value of cosnφ is taken with respect to
the distributionf �φ�. The flowvn is defined as

vn � �cosnφ�� n � 1�2�3� ��� �

Thusvn is essentially thenth harmonic coefficient off �φ�. The first two harmonicsv1 �
�cosφ� andv2 � �cos2φ� are thedirected andelliptic flows, respectively. It is useful to
note thatvn can also be written as

vn � �einφ�� n � 1�2�3� ��� �

In central collisions, there is an azimuthal isotropy, i.e.,f �φ� is constant. Hence all
Fourier harmonicsan�n �� 0� vanish, andvn�n � 1�2� ���� � 0. Thus there is no flow as
defined above. However, in central collisions, one can define what is called aradial flow.
In the rest of this talk, I shall consider only non-central collisions.

1.2 Importance of flow measurements

In a non-central collision the overlap region oftwo nuclei is lens-shaped. Thus the initial
state is characterized by aspatial anisotropy in the azimuthal plane. If a non-vanishing
flow is observed experimentally, then it follows that the azimuthal momentum distribu-
tion f �φ� is anisotropic or non-flat. Thus the final state is characterized by amomentum
anisotropy in the azimuthal plane. The initial spatial anisotropy gives rise to the final mo-
mentum anisotropy, on account of multiple interparticle collisions. If either of the two
ingredients, namely initial spatial anisotropy and rescatterings, is missing, there is no flow.
Thus in non-central collisions, the flowvn provides a measure of rescatterings. In other
words, the flow is sensitive to the number of interactions and parton–parton scattering
cross-sections. But these are precisely the issues which have a bearing on the degree of
thermalization.

For the reasons stated above, the study of the collective flow has emerged as an important
area of research in the context of the wealth of data produced at SPS, CERN and the new
and upcoming data from RHIC, BNL. Flow is a signature of pressure at early times. Flow
provides information on the equation of state of the matter produced in collisions. Study
of the flow also provides important constraints on theoretical models.

How is the flow measured? Recallvn � �exp�inφ��, where the azimuthal angleφ is
measured with respect to the reaction plane. Ifφ is measured with respect to a fixed
direction in the laboratory, thenvn � �exp�in�φ�φR���, whereφR is the azimuthal angle
of the reaction plane. Note that the average is done first over all particles in one (collision)
event and then over a large number of events with nearly equal multiplicitiesM. Different
events in a sample, in general correspond to differentφRs which are neither known nor
easy to determine. Hence the flow is usually measured with the help of correlations among
particles.
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1.3Correlations

What is the origin of interparticle correlations in the azimuthal plane? Correlations arise
due to

� Particle or resonance decay, e.g.,ρ � 2π, ω� 3π, π0 � 2γ,
� Momentum conservation,
� Final-state interactions (Coulomb, strong),
� Quantum correlations,
� (Mini)jets, etc.

But these are thedirect or non-flow correlations which have nothing to do with the orien-
tation of the reaction plane. Hence we arenot interested in these correlations.

Correlations among particles also arise indirectly, because the trajectory of each outgo-
ing particle is correlated with the orientation of the reaction plane. These are theindirect
or flow correlations which we are looking for.

How do correlations help in the measurement of the flowvn? Consider two-particle
correlations:

�ein�φ1�φ2��� �ein�φ1�φR�ein�φR�φ2��

� �ein�φ1�φR���ein�φR�φ2��

� v2
n� (1)

where the second equality is obtained assuming that the direct or non-flow correlations
are either absent or somehow eliminated from the data sample. Similarly, the flow can be
measured with the help of 4-particle correlations too:

v4
n � �ein�φ1�φ2�φ3�φ4��� (2)

Note that in eqs (1) and (2), the knowledge ofφR is unnecessary.
Standard flow analyses rely on two-particle correlations. Flow measurements based on

cumulants of multi-particle correlations were proposed by Borghiniet al [5].

1.4Cumulants

Wherever statistical analyses are done, whether in physics, biology or psychology, corre-
lation functions play an important role; see, e.g., [6]. In an obvious notation these may be
denoted byρ1�x1�� ρ2�x1�x2�� ρ3�x1�x2�x3�, etc. A knowledge of correlation functions
to all orders provides complete information of the statistical system. However, the above
correlation functions contain uncorrelated parts which have to be subtracted out to get to
the ‘true’ correlations:

C2�x1�x2� � ρ2�x1�x2��ρ1�x1�ρ1�x2�

C3�x1�x2�x3� � ρ3�x1�x2�x3��∑
�3�

ρ1�x1�ρ2�x2�x3��2ρ1�x1�ρ1�x2�ρ1�x3��
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where (3) indicates that there are three terms of this type. These reduced quantities are
called cumulants. They are constructed precisely in such a way as to vanish whenever any
one or more of the pointsxi becomes statistically independent of the others.

The 2-particle cumulant in our problem is defined as [5]

��ein�φ1�φ2��� � �ein�φ1�φ2����einφ1��e�inφ2��

Higher-order cumulants are defined similarly.

1.5Generating functions

Generating functions produce multiparticle correlations and cumulants in an elegant way.
A typical generating function for correlations reads as [5]

Gn�z��
M

∏
j�1

�
1�

i
M

�
z�einφj � ze�inφj

��
�

wherez � x� iy and M is the multiplicity of the event. AveragingGn�z� over events
and expanding�Gn�z�� in powers ofz andz� generates azimuthal correlations of arbitrary
orders. This is the reason whyGn�z� is called a ‘generating function’.

The generating function for cumulants is given by

�n�z�� ln�Gn�z��� (3)

Expanding�n�z� in powers ofz andz� generates cumulantsck�l of arbitrary orders:

�n�z� �∑
k�l

z�kzl

k! l!
ck�l � (4)

where

ck�l � ��ein�φ1�����φk�φk�1�����φk�l����

2. Flow from large-order correlations

As we have seen above, the flowvn can be extracted from 2-, 4-, 6-,... particle correlations.
It is advantageous to consider higher-order correlations because the systematic error due
to non-flow correlations becomes smaller as the order increases [5]. However, numerical
and analytical efforts increase very rapidly as the order increases. Hence, past studies have
focussed mainly on 2- and 4-particle correlations. Nevertheless, the genuine collective
behaviour induces correlations of arbitrarily large order. Hence it is important to study
correlations of a large, in fact asymptotically large number of particles with respect to the
reaction plane, in order to learn about the collective motion of the fireball.

With this as our motivation, we have been working on a new method [7] to extract the
genuine collective flow involving an asymptotically large number of particles. Consider
the series for�n�z�, eq. (4). We realized that the asymptotic behaviour of the cumulants is
determined by the radius of convergence ofthis series, i.e., by the singularities of�n�z� in
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the complexz plane. According to eq. (3), these singularities are either the singularities of
�Gn�z�� or its zeros. Since�Gn�z�� is a polynomial, it has no singularities, but it has zeros.
The asymptotic behaviour of the cumulants is given by the zero which is closest to the
origin. The flowvn can be determined, once the zero of�Gn�z�� is identified. Thus ours is
a direct method; it does not require calculation of the cumulants. It is formally analogous
to the Yang–Lee theory of phase transitions [8], which is based on the zeros of the grand
partition function.

Although the above idea is simple, there are several technical issues (such as systematic
and statistical errors arising due to a variety of causes) which need to be probed. Ultimately
we would like to propose a set of recipes which can be used by experimentalists, in a
straightforward manner, to obtain integrated and differential, directed and elliptic flows
from experimental data. This work is in progress.
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