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Abstract. In this talk I review studies of hadron properties in bosonized chiral quark models for the
quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge
as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars
regularization scheme not only fully regularizes the effective action but also leads the scaling laws
for structure functions. For the nucleon structure functions the present approach serves to determine
the regularization prescription for structure functions whose leading moments are not given by matrix
elements of local operators. Some numerical results are presented for the spin structure functions.
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1. Introduction

In this talk I review investigations of hadron properties in the Nambu–Jona–Lasino (NJL)
model [1]. This is a particularly simple model for the quark flavor interactions with the
important feature that the quarks can be integrated out in favor of meson fields [2]. The
resulting effective action for these mesons possesses soliton solutions [3]. According to the
large-NC picture [4] of quantum chromodynamics (QCD) these solutions are interpreted as
baryons.

The construction of hadron wave functions is not possible in QCD. This represents a
main obstacle for the computation of hadron properties from first principles. As the NJL
model adopts the symmetry properties of QCD, the current operators in the model cor-
respond to those of QCD. As a consequence, matrix elements of the current operators as
computed in the model are sensible and their comparison with experimental data is mean-
ingful. In particular, it is interesting to analyze the hadronic tensor that parametrizes the
deep inelastic scattering (DIS) and confront the model predictions with empirical data.
This picture has led to interesting studies of hadron structure functions in bosonized chiral
quark models. Here I will present the results of refs [5–7]. These studies build up a consis-
tent approach by computing the hadronic tensor (or equivalently the forward virtual Comp-
ton amplitude) from the gauged meson action. For the nucleon structure functions similar
studies have been reported in refs [8–10]. No attempt was made to compute the structure
functions from the gauged action, but rather it was assumed that the model predictions for
the constituent quark distributions can be identified with QCD quark distributions. I refer
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to those articles for a more expatiated presentation of numerical results. In addition, I re-
fer to the review articles [3] for comprehensive discussions of model predictions for static
baryon properties such as magnetic moments, axial charges or the hyperon spectrum.

This talk is organized as follows. In�2 the NJL model is introduced as an effective me-
son theory and pion properties are utilized to determine the model parameters. Section 3
describes the subtleties for extracting the structure functions that arise in this model from
regularization. The pion structure function is considered as an example. In�4 the construc-
tion of baryon states in the soliton picture is reviewed. The following section sketches the
computation of nucleon matrix elements of the hadronic tensor and the extraction of the
structure functions in the Bjorken limit. Finally in�6 some numerical results for the spin
structure functionsg1 andg2 are presented and a comparison is done between structure
function and experimental data by means of the transformation to the infinite momentum
frame and subsequent DGLAP evolution. Section 7 serves as a short summary.

2. The NJL model for chiral dynamics

The NJL model is a quark model with a chirally invariant quartic quark interaction.
Bosonization is achieved semiclassically by introducing effective meson fields for the
quark bilinears in that interaction. Then the quark fields are integrated out by functional
methods. This yields an effective action for meson degrees of freedom,

� �S�P� ��iNCTrΛ log �i∂�� �S� iγ5P���
1

4G

�
d4x tr� �S�P� � (1)

Here� is a local potential for the effective scalarS and pseudoscalarP fields, that are
matrices in flavor space. In the NJL model the potential reads� � S2�P2�2m̂0S with
m̂0 being the current quark mass matrix. Since the interaction is mediated by flavor degrees
of freedom, the number of colors,NC, is merely a multiplicative quantity. The functional
trace (Tr) originates from integrating out the quarks and induces a non-local interaction
for S andP. For simplicity I will only consider the isospin limit for up (u) and down (d)
quarks:m0�u � m0�d � m0.

A major concern in regularizing the functional (1), as indicated by the cut-offΛ, is to
maintain the chiral anomaly. This is achieved by splitting this functional intoγ5-even and
odd pieces and only regulate the former,

TrΛ log �i∂�� �S� iγ5P�� ��i
NC

2

2

∑
n�0

cnTrlog
�
�DD5�Λ2

n� iε
�

�i
NC

2
Tr log��D�D5�

�1� iε� � (2)

with

iD � i∂�� �S� iγ5P� and iD5 ��i∂�� �S� iγ5P� � (3)

The double Pauli–Villars regularization renders the functional (1) finite withc0 �
1� Λ0 � 0� ∑2

n�0cn � 0� The γ5-odd piece is conditionally finite and not regularizing it,
reproduces the chiral anomaly properly. For sufficiently largeG one obtains the VEV,
�S� �m� that parametrizes the dynamical chiral symmetry breaking from the gap equation
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1
2G

�m�m0� � 4iNCm
2

∑
n�0

cn

�
d4k
�2π�4

�
k2�m2�Λ2

n � iε
��1

� (4)

SubstitutingS � �S�� m� in eq. (1) shows thatm plays the role of a mass and is therefore
called the constituent quark mass.

In the next step I utilize pion properties to fix the model parameters and introduce the
isovector pion field�π via

S� iPγ5 � m �U�γ5 � mexp
�

i
g
m

γ5�π��τ
�

� (5)

Sandwiching the axial current between the vacuum and a single pion state yields the pion
decay constantfπ � 93 MeV in terms of the polarization functionΠ�q2�x�,

fπ � 4NCmg
� 1

0
dxΠ�m2

π�x��

Π�q2�x� �
2

∑
n�0

cn
d4k

�2π�4i

�
k2� x�1� x�m2

π�m2�Λ2
n � iε

��2
� (6)

wheremπ � 138 MeV is the pion mass. The Yukawa coupling constant,g, is determined
by the requirement that the pion propagator has unit residuum,

1
g2 � 4NC

d
dm2

π

� 1

0
dx
�
m2

πΠ�m2
π�x�

�
� (7)

In the chiral limit (mπ � 0) this simplifies tofπ � m�g. Finally the current quark mass is
fixed from the condition that the pole of the pion propagator is exactly at the pion mass

m0 � 4NC mGm2
π

� 1

0
dxΠ�m2

π�x� � (8)

Before discussing nucleons as solitons of the bosonized action (1) and the respective
structure functions it will be illuminating to first consider DIS off pions.

3. The Compton tensor and pion structure function

DIS off hadrons is parametrized by the hadronic tensorW µν �p�q� whereq is the momen-
tum transmitted from the photon to the hadron with momentump.

The tensorW µν �p�q� is obtained from the hadron matrix element of the current commu-
tator by Fourier transformation and is parametrized in terms of form factors that multiply
the allowed Lorentz structures. These form factors are obtained by pertinent projection
of the hadronic tensor. Finally the structure functions are the leading twist contributions
of the form factors. These contributions are obtained from computingW µν �p�q� in the
Bjorken limit: Q2 ��q2 �∞ with x � Q2�p �q fixed. That is, subleading contributions in
1�Q2 are omitted.

An essential feature of bosonized quark models is that the derivative term in (1) is for-
mally identical to that of a non-interacting (or asymptotically free) quark model. Hence
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the current operator is given asJµ � q̄�γµq, with� a flavor matrix. Expectation values
of currents are computed by introducing pertinent sourcesvµ in eq. (2)

iD �� iD��v� and iD5 �� iD5��v� (9)

and differentiating the gauged action (1) with respect tovµ . In bosonized quark models it
is convenient to start from the absorptive part of the forward virtual Compton amplitude
[10a].

T µν �p�q� �
�

d4ξ eiq�ξ �p�s�T �Jµ�ξ �Jν �0�� �p�s��

W µν �p�q� �
1

2π
�� �T µν �p�q�� (10)

because the time-ordered product is straightforwardly obtained from

T �Jµ�ξ �Jν �0�� �
δ2

δvµ�ξ �δvν �0�
TrΛ log �i∂�� �S� iγ5P��� v��

�����
vµ�0

� (11)

as defined from eq. (2) with the substitution (9).
Pion-DIS is characterized by a single structure function,F�x�. For its computation the

pion matrix element in the Compton amplitude (10) must be specified. For virtual pion-
photon scattering it is obtained by expanding eqs (2) and (5) to second order in both�π
andvµ . Due to the separation intoD andD5 this calculation differs considerably from the
simple evaluation of the ‘handbag’ diagram. For example, isospin violating and dimension-
five operators appear for the action (2). Fortunately all isospin violating pieces cancel,
yielding

F�x� �
5
9
�4NCg2�

d
dm2

π

�
m2

πΠ�m2
π�x�

�
� 0	 x 	 1� (12)

The same result is obtained by formal treatment of the divergent handbag diagram and
ad hoc regularization [11]. The cancellation of the isospin violating pieces is a feature
of the Bjorken limit: insertions of the pion field on the propagator carrying the infinitely
large photon momentum can be safely ignored. Furthermore this propagator can be taken
to be the one for non-interacting massless fermions. This implies that also the Pauli–
Villars cut-off can be omitted for this propagator. That, in turn, leads to the desired scaling
behavior of the structure function in this model and is a particular feature of the Pauli–
Villars regularization.A priori it is not obvious for an arbitrary regularization scheme that
terms of the formQ2�Λ2

n drop out in the Bjorken limit.
From eqs (7) and (12) it is obvious thatF�x� � 5�9 for 0	 x 	 1 in the chiral limit

(mπ � 0). It must be noted that this refers to the structure function at the (low) energy
scale of the model. To compare with empirical data, that are at a higher energy scale,
the DGLAG program of perturbative QCD has to be applied toF�x� to include the lnQ2

corrections. Such studies [12] show good agreement with the experimental data forF�x�.
It is also worthwhile to mention that expanding eqs (2) and (5) to linear and quadratic

order in�π andvµ , respectively, yields the correct width for the anomalous decayπ0 � γγ.
This is the direct consequence of not regularizing theγ5-odd piece.
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4. The nucleon as a chiral soliton

Solitons are non-perturbative stationary configurations of the meson fields. To determine
that configuration for the meson theory (1) I consider the hedgehog ansatz

UH��r� � exp�i�τ � r̂F�r�� and �UH��r ��
γ5 � exp�iγ5�τ � r̂F�r��

for the pion field (5). The correspondingsingle particle Dirac Hamiltonian reads

h � �α ��p�β m �cosF � iγ5�τ � r̂sinF� � (13)

Evaluating the action functional (2) in the eigenbasis ofh gives the energy functional in
terms of the eigenvalues,εα , [13]

E�F� �
NC

2
�1�sign�εV��εV �

NC

2 ∑
α

2

∑
n�0

cn

��
ε2

α �Λ2
n�

�
ε�0�2α �Λ2

n

�

�m2
π f 2

π

�
d3r �1�cosF� (14)

for a baryon number one configuration. HereV denotes the unique quark level that is
strongly bound by the soliton. Its explicit occupation takes care of the total fermion number
and thus this level is referred to as thevalence quark. It should not be confused with the
valence quarks in the parton model. Furthermore,ε�0�α are the eigenvalues ofh�0� ��α ��p�
β m . The soliton profileF�r� is then obtained from extremizingE self-consistently [3].

States possessing good spin and isospin quantum numbers are generated by taking the
zero-modes to be time dependent [14]

U��r � t� � A�t�UH��r �A
†�t� � (15)

which introduces the collective coordinatesA�t� 
 SU�2�. The action functional is ex-
panded [15] up to quadratic order in the angular velocities

i�τ ��Ω � 2A†�t�Ȧ�t� � (16)

The coefficient of the quadratic [15a] term defines the moment of inertia [15b],α 2�F �.
Nucleon states�N� are obtained by canonical quantization of the collective coordinates,
A�t�. This is analogous to quantizing a rigid rotator and allows to compute matrix elements
of operators in the space of the collective coordinates [14]:

�N�12tr
	
τaA†τbA



�N���4

3�N�IaJb�N� and �Ω ���J �α 2�F � � (17)

whereIa andJb denote isospin and spin, respectively.
For later use I note that the valence quark wave function receives a first-order cranking

correction

ΨV��r � t� � e�iεVtA�t�

�
φV��r ��

1
2 ∑

µ ��V

φµ��r �
�µ ��τ ��Ω�V�

εV � εµ

�
� (18)

whereφµ��r � are the eigenfunctions ofh in eq. (13). The moment of inertia,α 2�F�, is of
orderNC. Thus, upon quantization (17), this rotational correction is subleading in 1�NC.
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5. Nucleon structure functions

DIS off nucleons is described by four structure functions:F1�x� andF2�x� are insensitive
to the nucleon spin while the polarized structure functions,g1�x� andg2�x�, are associated
with the components of the hadronic tensor that contain the nucleon spin.

As argued in�3, the quark propagator with the infinite photon momentum should be
taken to be the one for free and massless fermions. Thus, it is sufficient to differentiate
(HereD andD5 are those of eq. (3), i.e. withvµ � 0.)

NC

4i

2

∑
n�0

cnTr���DD5�Λ2
n�

�1��2v��∂���1v�D5�D�v��∂���1v��5�
2��

�
NC

4i
Tr���DD5�

�1��2v��∂���1v�D5�D�v��∂���1v��5�
2�� � (19)

with respect to the photon fieldvµ . I have introduced the�� � ��5 description

γµγργν � Sµρνσγσ � iεµρνσ γσ γ5 � �γµγργν �5 � Sµρνσγσ � iεµρνσ γσ γ5

to account for the unconventional appearance of axial sources inD5, cf. ref. [7]. Substitut-
ing eq. (15) for the meson fields that are contained inD andD5, computing the functional
trace up to subleading order in 1�NC using a basis of quark states obtained from the Dirac
Hamiltonian (13), yields analytical results for the structure functions. I refer to [7] for de-
tailed formulas for other structure functions and the verification of the sum rules that relate
integrals over the structure functions to static nucleon properties. As an example I restrain
myself to list the contribution tog1�x� which is the leading order in 1�NC:

g1�x� �
MNNC

36i
�N�I3�N�

�
dω
2π ∑

α

�
d3ξ

�
dλ
2π

eiMN xλ






2

∑
n�0

cn �ω� εα �

ω2� ε2
α �Λ2

n � iε

�
P

�φ†
α �

�ξ �τ3 �1�α3�γ5φα ��ξ �λ ê3�e
�iωλ

�φ†
α �

�ξ �τ3 �1�α3�γ5φα ��ξ�λ ê3�e
iωλ � � (20)

where the subscriptP indicates the pole term.
Before discussing numerical results, I would like to mention the unexpected result that

the structure function entering the Gottfried sum rule is related to theγ5-odd piece of the
action and hence does not undergo regularization. This is surprisingbecause in the parton
model this structure function differs from the one associated with the Adler sum rule only
by the sign of the anti-quark distribution. The latter structure function, however, gets
regularized in the present model, in agreement with the quantization rule for the collective
coordinates that correspond to the isospin operator that involves the regularized moment
of inertia,α 2.

6. Numerical results for nucleon structure functions

Unfortunately, numerical results for the fullstructure functions in the double Pauli-Villars
regularization scheme, i.e., including the properly regularized vacuum piece are not yet
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available. However, in the Pauli-Villars regularization, the axial charges are saturated to
95% or more by their valence quark (18) contributions once the self-consistent soliton is
substituted. This provides sufficient justification to consider the valence quark contribution
to the polarized structure functions as a reliable approximation since e.g. the zeroth mo-
ment of the leading structure functiong1 is nothing but the axial current matrix element.
This valence quark level is that of the chiral soliton model and, as already mentioned, its
contributions to the structure functions should not be confused with valence quark distri-
butions in parton models. In general, it should be stressed that the present model calcu-
lation yields structure functions, i.e., quantities that parametrize the hadronic tensor, but
not (anti)-quark distributions. The latter would require the identification of model degrees
of freedom with those in QCD. However, here only the symmetries (namely the chiral
symmetry) and thus the current operators in the hadronic tensor are identified.

As in the case for the pion, the model calculation yields the nucleon structure function at
a low energy scale. In addition the soliton is a localized object. Thus the computed struc-
ture functions are frame-dependent and oneframe has to be picked. The appropriate choice
is the infinite momentum frame (IMF) not only because it makes contact with the parton
model but also because it is that frame in which the support of the structure functions is
limited to the physical regime 0	 x	 1. Choosing the IMF amounts to the transformation
[16,17]

fIMF�x� �
1

1� x
fRF��ln�1� x�� � (21)

where fRF�x� denotes the structure function as computed in the nucleon rest frame. So the
program is two-stage, first the transformation of the model structure function to the IMF
according to eq. (21) and subsequently the DGLAP evolution program [18] to incorporate
the resumed lnQ2 corrections. In the current context it is appropriate to restrain oneself
to the leading order (inαs) in the evolution program because higher orders require the
identification of quark and antiquark distributions in the parton models sense. In the present
model calculation this is not possible without further assumptions [18a]. The low energy
scale,Q2

0 � 0�4 GeV2, at which the model is assumed to approximate QCD has been
estimated in ref. [5] from a best fit to the experimental data of the unpolarized structure
function, F2�x�. The same boundary value is taken to evolve the model prediction for
polarized structure function,g1�x�, in the IMF to the scaleQ2 of several GeV2 at which
the experimental data are available. For the structure function,g2�x�, the situation is a bit
more complicated. First the twist-2 piece must be separated according to [19]

gWW
2 �x� ��g1�x��

� 1

x

dy
y

g1�y� (22)

and evolved analogously tog1�x� (which also is twist-2). The remainder,g2�x��gWW
2 �x�,

is twist-3 and is evolved according to the large-NC scheme of ref. [20]. Finally, the two
pieces are again put together at the end-point of the evolution,Q2. In figure 1, the model
predictions for the linearly independent polarized structure functions of the proton to ex-
perimental data are compared [21].

In figure 2, the model predictions for both the proton and the neutron (in the form of
deuteron) not only to the recently accumulated data but also to other model predictions
are compared. Surprisingly the twist-2 truncation, i.e., eq. (22) with the data forg1�x� at
the right-hand side, gives the most accurate description of the data. However, the chiral
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Figure 1. Model predictions for the polarized proton structure functionsxg1 (left
panel) andxg2 (right panel). The curves labeled RF denote the results as obtained
from the valence quark contribution to (19). These undergo a projection to the infinite
momentum frame IMF (21) and a leading order LO DGLAP evolution [18]. Data are
from SLAC-E143 [21].

Figure 2. Model predictions for the polarized proton structure functionsxg2 for proton
and neutron (deuteron) and comparison with data from E143 [21] (�) and E155 [22]
(�) and their combination (�). The full line is the twist-2 truncation (22) of data for
g1�x�. Dashed-dotted [23] and dotted [24] lines are bag model calculations, the short
dashed lines represent the present chiral soliton model [6] and long dashed line that of
ref. [10]. (This is a slightly modified figure from ref. [22].)

soliton model predictions alsoreproduce the data well. Bag model predictions have a less
pronounced structure.

Recently, precise data [25] have becomeavailable for the neutron asymmetry

A1 �
g1�x�Q2�� �4M2x2�Q2�g2�x�Q2�

F1�x�Q2�
� (23)

It is therefore challenging to study this quantity in the present model. As subleading twist
contributions are omitted, this amounts to computing the ratio,g1�x�Q2��F1�x�Q2�, for the
neutron. The resulting ratio is shown in figure 3 together with data. It is interesting to
note that while the ratio at the model scale,Q0, becomes large and negative at smallx, the
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Figure 3. Model prediction forAN
1 at differentQ2. The right panel shows various

experimental data [22]. The JLab-data (E99-117) are still preliminary.

DGLAP evolution causes it to bend around so that it actually tends to zero asx � 0. This
behavior is also observed from the data, as is the change in sign at moderatex. The position
(x� 0�25) at which this change occurs seems somewhat lower than the recent precise JLab-
data [25] suggested and insensitive to the end-point of evolution. Once evolution has set in
at a moderate pointQ2, the evolution to even higherQ2 has insignificant effect.

7. Conclusions

I have discussed a chiral quark model for hadron phenomenology. In particular, I consid-
ered the bosonized NJL model as a simplified model for the quark flavor dynamics. Al-
though the bosonized version is a meson theory, the quark degrees of freedom can indeed
be traced. This is very helpful for considering structure functions. Additional correlations
are introduced due to the unavoidable regularization which is imposed in a way to respect
the chiral anomaly. Hence a consistent extraction of the nucleon structure functions from
the Compton amplitude in the Bjorken limit leads to expressions that are quite different
from those obtained by an ad hoc regularization of quark distributions in the same model. I
also showed that within a reliable approximation the numerical results for the spin depen-
dent structure functions agree reasonably well with the empirical data.
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