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Abstract. Energy cascade rates and Kolmogorov’s constant for non-helical steady magnetohydro-
dynamic turbulence have been calculated by solving the flux equations to the first order in per-
turbation. For zero cross helicity and space dimensiond � 3, magnetic energy cascades from
large length-scales to small length-scales (forward cascade). In addition, there are energy fluxes
from large-scale magnetic field to small-scale velocity field, large-scale velocity field to small-scale
magnetic field, and large-scale velocity field to large-scale magnetic field. Kolmogorov’s constant
for magnetohydrodynamics is approximately equal to that for fluid turbulence (� 1�6) for Alfv én
ratio 0�5� rA � ∞. For higher space-dimensions, the energy fluxes are qualitatively similar, and
Kolmogorov’s constant varies asd1�3. For the normalized cross helicityσc � 1, the cascade rates
are proportional to�1�σc���1�σc�, and the Kolmogorov’s constants vary significantly withσc.
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1. Introduction

There are various phenomenological, numerical, and theoretical results on magnetohy-
drodynamics (MHD) turbulence. Kraichnan [1] and Iroshnikov [2] proposed a first phe-
nomenology for homogeneous and isotropic MHD which connects energy spectrum and
cascade rates. In this phenomenology, the kinetic and magnetic energy spectrum (Eu�k�
and Eb�k� respectively) are proportional tok�3�2, and the energy cascade rate of flux
Π � �E�k��2k3�B0, whereB0 is the mean magnetic field. In an alternate phenomenology,
Marsch [3], Matthaeus and Zhou [4], and Zhou and Matthaeus [5] predicted that energy
spectrum is Kolmogorov-like (E�k� ∝ k�5�3) andΠ � �E�k��3�2k5�2. Vermaet al [6] nu-
merically calculated the energy cascade rates of Els¨asser variableu�b (u, b are velocity
and magnetic field fluctuations), and found their results to be consistent with Kolmogorov-
like phenomenology, rather than that of Kraichnan and Iroshnikov. Frick and Sokoloff [7]
studied the spectra and cascade rates in a shell model of MHD turbulence; they found the
spectral index to be close to 5/3 in the absence of cross helicity and magnetic helicity. Ac-
cording to their study, the helicities suppress the cascade process. Recently, M¨uller and
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Figure 1. Various energy cascade rates of MHD turbulence. The illustrated
wave-number spheres containu � andb � modes, whileu � andb � are modes out-
side these spheres. The velocity field is forced at large-scale.

Biskamp [8] and Biskamp and M¨uller [9] computed the spectral index and found it to be
closer to 5/3. Kolmogorov-like spectrum is also supported by recent theoretical results
[10–15].

The energy cascade rates of MHD depend on cross helicity (Hc � 1�2�u �b�), mag-
netic helicity (HM � 1�2�a �b�, wherea is vector potential), and kinetic helicity (HK �
1�2�u �ω�, whereω is vorticity). Here��� denotes ensemble average, which is equal
to spatial average for homogeneous and isotropic systems. Pouquetet al [16] applied
EDQNM approximation to study energy fluxes. For non-helical MHD, Pouquetet al [16]
argued that the ME cascade is forward, i.e., from large-scale to small-scale. However, in the
presence of helicity, they observed that the large-scale magnetic energy brings to equipar-
tition the small-scale kinetic and magnetic excitation by Alfv´en effect, and the ‘residual
helicity’, HK �HM, induces growth of large-scale magnetic energy and helicity. Pouquet
and Patterson [17] studied this problem using direct numerical simulation and arrived at
similar conclusions. In the present paper we will derive the energy fluxes of non-helical
MHD using field theoretic methods. The energy fluxes of helical MHD are discussed in a
companion paper, Verma [18], referred to as paper II.

Since there are two fieldsu andb in MHD, the energy can be transferred fromu to u, u to
b, andb to b. The resulting energy fluxes due to these transfers are illustrated in figure 1.
These fluxes have been numerically calculated recently by Daret al [19] and Ishizawa
and Hattori [20] for two-dimensional (2D) MHD turbulence. The fluxes are dependent on
well-known parameters: the normalized cross helicityσc, which is the ratio of twice cross
helicity and energy and the Alfv´en ratiorA, which is the ratio of kinetic energy (1�2�u �u�)
and magnetic energy (1�2�u �u�). The numerical values calculated by Daret al for σc � 0
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Table 1. The flux ratios computed by Daret al (d � 2�σc � 0�rA � 0�5).

Πu�
u�/Π Πu�

b�/Π Πb�
u�/Π Πb�

b�/Π Πu�
b�/Π K�

�0�13 0.68 �0�09 0.47 0.37 � 4

and rA (KE/ME) � 0�5 are listed in table 1. The prime conclusions of Daret al’s [19]
and Ishizawa and Hattori’s [20] 2D numerical study are: (1) the ME cascades from large-
scales to small-scales (forward cascade), (2) there is a significant energy transfer from large
length-scale velocity field to large length-scale magnetic field; this transfer could play an
important role in ME enhancement and (3) there is an inverse cascade of KE. Recently,
Cho and Vishniac [21] have derived some interesting scaling relationships between the
energy transfer rates and verified them using numerical simulations. Since the direction of
total energy cascade is the same in 2D and 3D (three-dimensional) MHD turbulence, some
of the conclusions drawn by Daret al [19] and Ishizawa and Hattori [20] based on 2D
simulations are expected to hold at least qualitatively in 3D MHD turbulence. Therefore,
in this paper we compare the numerical results of Daret al [19] and Ishizawa and Hattori
[20] with our 3D analytic results.

In the present paper we have carried out the energy cascade rate calculation for MHD tur-
bulence for theinertial-range wave numbers using perturbative field-theoretic technique.
Here, we assume that the turbulence is homogeneous and isotropic to make the problem
tractable. Even though the real-world turbulence does not satisfy these properties, at least
at the large-scales, many conclusions drawn using this assumption give us important in-
sights into the energy transfer mechanisms, as will be discussed in this paper and paper
II. We assume that the mean magnetic field is absent; this assumption is to ensure that
the turbulence is isotropic. Our procedure requires Fourier space integrations of functions
involving products of energy spectrum and the Green’s functions. Since there is a general
agreement on Kolmogorov-like spectrum for MHD turbulence, we takeE�k� ∝ k�5�3 for
all the energy spectra for MHD. For the Green’s function, we substitute the ‘renormalized’
or ‘dressed’ Green’s function computed by Verma [14]. After this substitution, various
energy fluxes and Kolmogorov’s constant of MHD are computed. Using the steady-state
condition, we also calculate the energy supply from the large-scale velocity field to the
large-scale magnetic field. This result is quite robust, and is independent of the nature of
large-scale forcing. In this paper we assume both kinetic and magnetic helicities to be
absent. The energy fluxes for helical MHD are discussed in paper II.

The parameter space of MHD is rather large because of various energy spectra. The
two well-known parameters are the normalized cross helicityσc and the Alfvén ratio
rA. Calculation of cascade rates for arbitraryσc and rA is quite complex. In this pa-
per we limit ourselves to two limiting cases: (1)σc � 0 and whole range ofrA; (2)
σc � 1 andrA � 1. Strictly speaking, the parameters used in our calculations are spectral
σc�k� � 2Hc�k���Eu�k��Eb�k�� andrA�k� � Eu�k��Eb�k�. Since our calculation is con-
fined to inertial-range wave numbers where Kolmogorov’s 5/3 power law is valid for all the
energy spectra of MHD, bothσ�k� andrA�k� can be treated as constants. Note that these
parameters may differ from the globalσc andrA. We carry out our theoretical analysis
in various dimensions. We will show that our theoretical results are in general agreement
with the simulation results of Daret al [19] and Ishizawa and Hattori [20].
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The outline of this paper is as follows: In�2 we calculate various cascade rates forσc � 0
case. The other extreme caseσc� 1 is considered in�3. Section 4 contains summary and
conclusions.

2. Cascade rates in MHD turbulence: σσc�0

In this section we will analyticallycompute the energy cascade rates whenσc � 0. We
take the following form of Kolmogorov’s spectrum for kinetic energy (KE) and magnetic
energy (ME):

Eu�k� � KuΠ2�3k�5�3� (1)

Eb�k� � Eu�k��rA � (2)

whereKu is the Kolmogorov’s constant for MHD turbulence andΠ is the total energy flux.
Another Kolmogorov’s constantK is defined for the total energy,

Etotal�k� � Eu�k��Eb�k� � E�k� � KΠ2�3k�5�3� (3)

with

K � Ku�1� r�1
A �� (4)

With this preliminaries we start our flux calculation.
The incompressible MHD equations are

∂u
∂ t

��u � ∇ �u ��∇ p��b � ∇ �b�ν∇ 2u� (5)

∂b
∂ t

��u � ∇ �b ���b � ∇ �u�η ∇ 2b� (6)

∇ �u � 0� (7)

∇ �b � 0� (8)

whereu andb are the velocity and magnetic fields respectively,p the total pressure, and
ν andη the kinematic viscosity and magnetic diffusivity respectively. To compute various
energy transfers among various Fourier modes we resort to the energy equations, which
are [16,19,22]�

∂
∂ t

�2νk2
�

Cuu�k� t� t� �
1

�d�1��2π�dδ�k�k��

�
k��p�q�0

dp
�2π�d

	�Suu�k�
p
q��Suu�k�
q
p��Sub�k�
p
q��Sub�k�
q
p��� (9)�
∂
∂ t

�2ηk2
�

Cbb�k� t� t� �
1

�d�1��2π�dδ�k�k��

�
k��p�q�0

dp
�2π�d

	�Sbu�k�
p
q��Sbu�k�
q
p��Sbb�k�
p
q��Sbb�k�
q
p��� (10)
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The above integrals have constraints thatk��p�q � 0 (k ��k�). The equal-time corre-
lation functions used in the energy equations are defined using

�ui�p� t�u j�q� t��� Pi j�p�Cuu�p� t� t�δ�p�q��2π�d (11)

�bi�p� t�b j�q� t��� Pi j�p�Cbb�p� t� t�δ�p�q��2π�d (12)

�ui�p� t�b j�q� t��� Pi j�p�Cub�p� t� t�δ�p�q��2π�d (13)

and the energy transfer ratesS�k�
p
q� are defined using

Suu�k�
p
q� ��ℑ ��k� �u�q���u�k�� �u�p���� (14)

Sbb�k�
p
q� ��ℑ ��k� �u�q���b�k�� �b�p���� (15)

Sub�k�
p
q� � ℑ ��k� �b�q���u�k�� �b�p���� (16)

Sbu�k�
p
q� ��Sub�p
k�
q�� (17)

Hereℑ stands for the imaginary part of the argument. Note thatCub � 0 becauseσc has
been taken to be zero. The above equations are based on Daret al’s formalism, which
is a generalization of those of Pouquetet al [16], Stanis̆ić [22] and others. In Daret
al’s formalism, the termsS�k
p
q� represent energy transfer from modep (the second
argument ofS) to k (the first argument ofS) with modeq (the third argument ofS) acting
as a mediator. Note that in the expression forS, the field variables with the first and second
arguments are dotted together, while the field variables with the third argument is dotted
with the wavevectork. Daret al’s formulas have certain advantages over those of Pouquet
et al [16] and Stani˘sić [22]. Some of the quantities to be defined below were not accessible
in the earlier formalism, but now they can be calculated using Daret al’s formulas. For
detailed comparisons of these methods, refer to Daret al [19]. In addition, the flux formulas
derived using the new scheme are relatively simpler.

After some algebraic manipulation it can be shown that

Suu�k�
p
q��Suu�k�
q
p��Suu�p
k�
q��Suu�p
q
k��
�Suu�q
k�
p��Suu�q
p
k�� � 0� (18)

Sbb�k�
p
q��Sbb�k�
q
p��Sbb�p
k�
q��Sbb�p
q
k��
�Sbb�q
k�
p��Sbb�q
p
k�� � 0� (19)

Sub�k�
p
q��Sub�k�
q
p��Sub�p
k�
q��Sub�p
q
k��
�Sub�q
k�
p��Sub�q
p
k���Sbu�k�
p
q�
�Sbu�k�
q
p��Sbu�p
k�
q��Sbu�p
q
k��
�Sbu�q
k�
p��Sbu�q
p
k�� � 0� (20)

These are the statements of ‘detailed conservation of energy’ in MHD triads (whenν �
η � 0) [23].

For energy flux study, we split the wave number space into two regions:k � k0 (inside
‘k0-sphere’) andk � k0 (outside ‘k0-sphere’). This division is done for both velocity and
magnetic fields. The energy transfer could take place from inside/outsideu�b-sphere to in-
side/outsideu�b-sphere. In terms ofS, the energy flux from inside theX-sphere to outside
theY -sphere is
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ΠX�
Y��k0� �

1
�2π�dδ�k��p�q�

�
k��k0

dk�

�2π�d

�
p�k0

dp
�2π�d

�
SYX �k�
p
q�� � (21)

whereX andY stand foru or b. The energy fluxes from insideu�b-sphere to outside
u�b-sphere can be calculated by earlier formalism, as well as by Daret al’s formalism.
However, the fluxes from insideu-sphere to insideb-sphere, and from outsideu-sphere
to outsideb-sphere can be numerically calculated only by Daret al’s formalism [19]. In
this paper we will analytically calculate the above fluxes in the inertial range using the
Kolmogorov-like energy spectrum.

We assume that the kinetic energy is forcedat small wave numbers, and the turbulence
is steady. Therefore,

Πu�
b� � Πb�

b��Πb�
u�� (22)

Input kinetic energy� Πu�
u��Πu�

b��Πu�
b�� (23)

We calculate the energy fluxΠu�
b� using the above steady-state property. Hence the energy

feed into the large-scale magnetic field from the large-scale velocity field could be obtained
theoretically irrespective of thenature of large-scale forcing.

We will analytically calculate the above energy fluxes [eq. (21)] in the inertial range
to the leading order in perturbation series. It is assumed thatu�k� is Gaussian to leading
order. Consequently, the ensemble average ofSYX ,

�
SY X

�
, is zero to the zeroth order, but

is non-zero to the first order. The first order terms forSYX �k
p
q� in terms of Feynman
diagrams are shown below:

�Suu�k�
p
q��� � (24)

�Sub�k�
p
q��� � (25)

�Sbu�k�
p
q��� � (26)

�Sbb�k�
p
q��� � (27)

In the above diagrams the solid, dashed, wiggly (photon), and curly (gluons) lines denote
�uiu j���bib j��Guu, andGbb respectively. In all the diagrams, the left vertex denoteski,
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while the filled circle and the empty circles of right vertex represent��i�2�P�
i jm and�iP�i jm

respectively. SinceGub�Gbu�Cub, andCbu are zero whenσc � 0, we have not included the
Feynman diagrams containing these terms. When we substitute�uiu j���bib j� using eqs
(11) and (12), we obtain terms involvingCX �p� t� t ��CY �q� t� t ��. The resulting expressions
for various�SYX�k
p
q�� are

�Suu�k
p
q���
� t

�∞
dt ��2π�d �T1�k� p�q�Guu�k� t� t ��Cuu�p� t� t ��Cuu�q� t� t ��

�T5�k� p�q�Guu�p� t� t ��Cuu�k� t� t ��Cuu�q� t� t ��

�T9�k� p�q�Guu�q� t� t ��Cuu�k� t� t ��Cuu�p� t� t ���� (28)

�Sub�k
p
q���
� t

�∞
dt ��2π�d �T2�k� p�q�Guu�k� t� t ��Cbb�p� t� t ��Cbb�q� t� t ��

�T7�k� p�q�Gbb�p� t� t ��Cuu�k� t� t ��Cbb�q� t� t ��

�T11�k� p�q�Guu�q� t� t ��Cuu�k� t� t ��Cbb�p� t� t ���� (29)

�Sbu�k
p
q���
� t

�∞
dt ��2π�d �T3�k� p�q�Gbb�k� t� t ��Cuu�p� t� t ��Cbb�q� t� t ��

�T6�k� p�q�Guu�p� t� t ��Cbb�k� t� t ��Cbb�q� t� t ��

�T12�k� p�q�Gbb�q� t� t ��Cbb�k� t� t ��Cuu�p� t� t ���� (30)

�Sbb�k
p
q���
� t

�∞
dt ��2π�d �T4�k� p�q�Gbb�k� t� t ��Cbb�p� t� t ��Cuu�q� t� t ��

�T8�k� p�q�Gbb�p� t� t ��Cbb�k� t� t ��Cuu�q� t� t ��

�T10�k� p�q�Guu�q� t� t ��Cbb�k� t� t ��Cbb�p� t� t ���� (31)

whereTi�k� p�q� are functions of wavevectorsk� p, andq given in Appendix A.
The Green’s functions can be written in terms of ‘effective’ or ‘renormalized’ viscosity

ν�k� and resistivityη �k� (see Verma [14] for details) as

Guu�k� t� t �� � exp
��ν�k�k2�t� t ��

�
� (32)

Gbb�k� t� t �� � exp
��η �k�k2�t� t ��

�
� (33)

The relaxation time forCuu�k� t� t �� is assumed to be the same as that ofGuu, and that of
Cbb�k� t� t �� is assumed to be the same as that ofGbb. Therefore, the time dependence of
the unequal-time correlation functions will be

Cuu�k� t� t �� � exp
��ν�k�k2�t� t ��

�
Cuu�k� t� t� (34)

Cbb�k� t� t �� � exp
��η �k�k2�t� t ��

�
Cbb�k� t� t�� (35)

The above forms of Green’s and correlation functions are substituted in the expression of�
SYX

�
, and thet � integral is performed. Now eqs (21) and (28) yield the following flux

formula forΠu�
u��k0�:
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Πu�
u��k0� �

�
k�k0

dk
�2π�d

�
p�k0

dp
�2π�d

1
ν�k�k2�ν�p�p2�ν�q�q2

	�T1�k� p�q�Cuu�p�Cuu�q��T5�k� p�q�Cuu�k�Cuu�q�

�T9�k� p�q�Cuu�k�Cuu�p��� (36)

The expressions for the other fluxes can be obtained similarly.
The equal-time correlation functionsCuu�k� t� t� andCbb�k� t� t� at the steady state can be

written in terms of one-dimensional energy spectrum as

Cuu�k� t� t� �
2�2π�d

Sd�d�1�
k��d�1�Eu�k�� (37)

Cbb�k� t� t� �
2�2π�d

Sd�d�1�
k��d�1�Eb�k�� (38)

whereSd is the surface area ofd-dimensional unit spheres. We are interested in the fluxes
in the inertial range. Therefore, we substitute Kolmogorov’s spectrum (eqs (1) and (2)) for
the energy spectrum. The effective viscosity and resistivity are proportional tok�4�3, i.e.,

ν�k� � �Ku�1�2Π1�3k�4�3ν�� (39)

η �k� � �Ku�1�2Π1�3k�4�3η � (40)

and the parametersν� andη � were calculated in Verma [14].
Thed-dimensional volume integral under the constraintk��p�q � 0 is given by [24]

�
p�q�k

dq � Sd�1

�
dpdq

� pq
k

�d�2
�sinα �d�3� (41)

whereα is the angle between vectorsp andq. We also non-dimensionalize eq. (36) by
substituting [23]

k �
k0

u
; p �

k0

u
v; q �

k0

u
w (42)

which yields

ΠX�
Y� � �Ku�3�2Π

	
	

4Sd�1

�d�1�2Sd

� 1

0
dv ln�1�v�

� 1�v

1�v
dw�vw�d�2�sinα �d�3FX�

Y� �v�w�



�

(43)

where the integralsFX�
Y� �v�w� are

Fu�
u� �

1

ν��1� v2�3�w2�3�

	�t1�v�w��vw��d�2�3� t5�v�w�w
�d�2�3� t9�v�w�v

�d�2�3�� (44)
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Fb�
u� �

1

ν��η ��v2�3�w2�3�

	�t2�v�w��vw��d�2�3r�2
A � t7�v�w�w

�d�2�3r�1
A

�t11�v�w�v
�d�2�3r�1

A �� (45)

Fu�
b� �

1

ν�v2�3�η ��1�w2�3�

	�t3�v�w��vw��d�2�3r�1
A � t6�v�w�w

�d�2�3r�2
A

�t12�v�w�v
�d�2�3r�1

A �� (46)

Fb�
b� �

1

ν�w2�3�η ��1� v2�3�

	�t4�v�w��vw��d�2�3r�1
A � t8�v�w�w

�d�2�3r�1
A

�t10�v�w�v
�d�2�3r�2

A �� (47)

Hereti�v�w� � Ti�k�kv�kw��k2. Note that the energy fluxes are constant and are consistent
with the Kolmogorov’s picture. We compute the bracketed terms (denoted byIX�

Y� ) numer-
ically and find that all of them converge. Let us denoteI � Iu�

u� � Ib�
u� � Iu�

b� � Ib�
b� . Using

the fact that the total fluxΠ is

Π � Πu�
u��Πb�

u��Πu�
b��Πb�

b�� (48)

we can calculate the value of constantKu, which is

Ku � �I��2�3� (49)

In addition, the energy flux ratios can be computed usingΠX�
Y��Π � IX�

Y� �I. The flux ratio
Πu�

b��Π is obtained using steady-state condition (eq. (22)). The values of constantK can be
computed using eq. (4). The flux ratios and Kolmogorov’s constants ford � 3 and various
rA are listed in table 2. The same quantities forrA � 1 and various space dimensions are
listed in table 3.

The following trends can be inferred by studying table 2. We find that ford � 3, Πu�
u�/Π

starts from 1 for largerA and decreases nearly to zero nearrA � 0�3. All other fluxes start
from zero and increase up to some saturated values; this implies that nearrA � 1, all the
energy fluxes become significant. Clearly, the sign ofΠb�

b� is positive, indicating that ME
cascades from large length-scale to small length-scale. Under steady state the large-scale
ME is maintained byΠu�

b�, which is one of the most dominant transfers nearrA � 0�5. The
energy fluxΠu�

b� entering the large scale magnetic energy could play an important role in
the amplification of magnetic energy. In paper II, we will construct a dynamo model based
on the energy fluxes.

The Kolmogorov’s constantK for d � 3 is listed in table 2. For allrA greater than 0.5,
K is approximately constant and is close to 1.6, same as that for fluid turbulence (rA � ∞).
SinceΠ ∝ K�3�2, we can conclude that the variation ofrA (redistribution of fluid and
magnetic energy, keeping the total energy fixed) does not change the total cascade rate.
NearrA � 0�3, the constantK appears to increase, indicating a sudden drop in the cascade
rate. WhenrA is decreased further, nearrA � 0�25 bothν� andη � became approximately
equal to 0 [14], orK � ∞. This signals an absence of turbulence forrA near 0.25. This is
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Table 2. The computed values of energy cascade rates of MHD turbulence for various
rA whend � 3 andσc � 0.

Π � rA 5000 100 5 1 0.5 0.3 Trend

Πu�
u�/Π 1 0.97 0.60 0.12 0.037 0.011 Decreases

Πu�
b�/Π 3.5E-4 1.7E-2 0.25 0.40 0.33 0.36 Increases

then saturates
Πb�

u�/Π �1.1E-4 �5.1E-3 �0.05 0.12 0.33 0.42 Increases
then saturates

Πb�
b�/Π 2.7E-4 1.3E-2 0.20 0.35 0.30 0.21 Increases

then dips
Πu�

b�/Π 1.7E-4 8.1E-3 0.15 0.47 0.63 0.63 Increases
then saturates

K� 1.53 1.51 1.55 1.50 1.65 3.26 Approx. const.
till rA � 0�5

Ku 1.53 1.50 1.29 0.75 0.55 0.75 Decreases

Table 3. The computed values of energy cascade rates of MHD turbulence for various
space dimensionsd whenσc � 0 andrA � 1.

Π �d 2.1 2.2 2.5 3 4 10 100

Πu�
u�/Π – 0.02 0.068 0.12 0.17 0.23 0.25

Πu�
b�/Π – 0.61 0.49 0.40 0.34 0.27 0.25

Πb�
u�/Π – �0.027 0.048 0.12 0.18 0.23 0.25

Πb�
b�/Π – 0.40 0.39 0.35 0.31 0.27 0.25

Πu�
b�/Π – 0.37 0.4 0.47 0.49 0.50 0.50

K� – 1.4 1.4 1.50 1.57 1.90 3.46
Ku – 0.69 0.72 0.75 0.79 0.95 1.73

consistent with the fact that MHD equations are linear in therA � 0 (fully magnetic) limit,
hence do not exhibit turbulence. However, it is still surprising that turbulence disappears
nearrA � 0�25 itself.

The Kolmogorov’s constantK computed above can be used to estimate the amount of
turbulent heating in the solar wind. Vermaet al [25] and Tu [26] have put constraints
on the turbulent heating in the solar wind from the radial variation of temperature in the
solar wind. Vermaet al [25] observed that whenK � 1, all the heating in the solar wind
for streams withσc � 0 can be accounted for by the turbulent heating. Our theoretical
value for this constant in the absence of mean magnetic field is approximately 1.5, larger
than 1. If we takeK � 1�5 for solar wind streams withσc � 0, only a fraction, possibly
around half (�1�1�5�3�2), of the heating will be due to turbulence. However, neglect of
mean magnetic field, anisotropy, helicities etc. are gross assumptions, and we can only
claim general consistency of the theoretical estimates with the observational results of the
solar wind.

We have calculated the flux ratios and the constantK for various space dimensions
d � 2�2. Verma [14] has shown that ford � 2�2, the RG fixed point is unstable, and the
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renormalized parameters could not be determined. Due to that reason we have calculated
fluxes and Kolmogorov’s constant ford � 2 only. For these calculations we takerA � 1,
which is a generic case. The calculated values are shown in table 3. It is striking that all
the fluxes are approximately the same for larged. In addition,Πu�

b�/Π is approximately 0.5
for all dimensions greater than 4.

We verify thatIX�
Y� for constantν� andη � are proportional tod�1. In Verma [14] we find

that ν��η � ∝ d�1�2. Therefore,K ∝ d�1�3. This result is a generalization of theoretical
analysis of Fournieret al [24] for fluid turbulence.

In this section we calculated the cascade rates forσc � 0. In the next section we take the
other limit σc � 1.

3. Cascade rates in MHD turbulence: σσc � 1

In this section we will describe the calculation of the energy cascade rates for the large
normalized cross helicity (σc � 1), and show that the cascade rates crucially depend on
cross helicity. For cases withσc� 1, it is best to work with Els¨asser variablesz� � u�b.
For the following discussion we will denote the ratio

�
z�
2���
z�
2� by r. Clearlyr � 1.
Here we limit ourselves torA � 1.

The incompressible MHD equations in terms ofz� are

∂z�

∂ t
��z� � ∇ �z� ��∇ p�ν�∇ 2z��ν�∇ 2z�� (50)

∇ � z� � 0� (51)

wherep is the total pressure andν� � �ν �η ��2. Numerical simulations of Verma [27]
and Dar [28], solar wind observations of Matthaeus and Goldstein [29], and Marsch and
Tu [30], and theoretical calculations of Verma [13,14] show that Kolmogorov-like energy
spectrum is valid even for non-zero cross helicity, i.e.,

E��k� � K� �Π��
4�3

�Π��2�3
k�5�3� (52)

whereK� are Kolmogorov’s constants for MHD. The above equation was first derived by
Marsch [3].

The corresponding equations for the energy evolution are
�

∂
∂ t

�2ν�k2
�

C���k� t� t��2ν�k2C���k� t� t�

�
1

�d�1��2π�dδ�k�k��

�
k��p�q�0

dp
�2π�d �S

���k�
p
q��S���k�
q
p��� (53)

where

S���k�
p
q� ��ℑ ��k� � z��q���z��k�� � z��p��� (54)

and the equal-time correlation functionsC�� andC�� are defined using
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�
z�i �p� t�z

�
j �q� t�

�
� Pi j�p�C���p� t� t�δ�p�q��2π�d� (55)

�
z�i �p� t�z

�
j �q� t�

�
� Pi j�p�C���p� t� t�δ�p�q��2π�d� (56)

From eq. (54) it is evident that in the non-linear transfers, the modesz� transfer energy
only to z� while z� acts as a mediator. Similarlyz� transfers energy only toz� with z�

acting as a mediator. It can be easily shown that

S��k�
p
q��S��k�
q
p��S��p
k�
q��S��p
q
k��
�S��q
k�
p��S��q
p
k�� � 0� (57)

These equations correspond to the ‘detailed conservation of energy’ in MHD triads.
In terms ofz� variables, there are only two types of fluxesΠ�, one for thez� cascade

and the other forz� cascade. In terms ofS, these energy fluxesΠ� are

Π��k0� �
1

�2π�dδ�k��p�q�

�
k��k0

dk
�2π�d

�
p�k0

dp
�2π�d

�
S���k�
p
q�� � (58)

As described in the last section, the above fluxes are calculated to the leading order in
perturbation series. To the first order,�S���k�
p
q�� are

�
S���k
p
q�� �

� t

�∞
dt ��2π�d �T13�k� p�q�G���k� t� t ��C���p� t� t ��C���q� t� t ��

�T14�k� p�q�G���k� t� t ��C���p� t� t ��C���q� t� t ��

�T15�k� p�q�G���k� t� t ��C���p� t� t ��C���q� t� t ��

�T16�k� p�q�G���k� t� t ��C���p� t� t ��C���q� t� t ��

�T17�k� p�q�G���p� t� t ��C���k� t� t ��C���q� t� t ��

�T18�k� p�q�G���p� t� t ��C���k� t� t ��C���q� t� t ��

�T19�k� p�q�G���p� t� t ��C���k� t� t ��C���q� t� t ��

�T20�k� p�q�G���p� t� t ��C���k� t� t ��C���q� t� t ��

�T21�k� p�q�G���q� t� t ��C���k� t� t ��C���p� t� t ��

�T22�k� p�q�G���q� t� t ��C���k� t� t ��C���p� t� t ��

�T23�k� p�q�G���q� t� t ��C���k� t� t ��C���p� t� t ��

�T24�k� p�q�G���q� t� t ��C���k� t� t ��C���p� t� t ���� (59)

whereTi�k� p�q� are given in Appendix A.
Now we use the approximation thatr is small. In terms of renormalized̂ν matrix

ν̂�k� �
�

rζ α
rψ β

�
� (60)

the Green’s function̂G�k� t� t �� � exp��ν̂k2�t� t ��� to leading order inr is

Ĝ�k� t� t ��

�



� 1� rαψ

β2 �1�e�β�t�t��� �
�

α
β � rα

β

�
ζ
β � 2αψ

β2

��
�1�e�β�t�t���

� rψ
β �1�e�β�t�t��� e�β�t�t��� rαψ

β2 �1�e�β�t�t���

�
� � (61)
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For derivation and further details on the renormalizedν̂ , refer to [14]. The correlation
matrixĈ�k� t� t �� is given by

�
C���k� t� t �� C���k� t� t ��
C���k� t� t �� C���k� t� t ��

�
� Ĝ�k� t� t ��

�
C���k� C���k�
C���k� C���k�

�
� (62)

The quantitiesC���k� can be written in terms ofE��k� as

C���k� �
2�2π�d

Sd�d�1�
k��d�1�E��k�� (63)

We takeC���k� � 0 (or rA � 1) for simplifying the calculation. We take Kolmogorov’s
spectrum forE��k� (see eq. (52)), and

ν̂�k� �
�

rζ α
rψ β

�
�

�
rζ � α �

rψ� β�

�

K�

�Π��
4�3

�Π��2�3
k�4�3� (64)

The renormalized parametersζ ��α ��ψ�, andβ� have been calculated in [14]. Finally, the
matricesĜ�k� t� t �� andĈ�k� t� t �� can be written in terms of renormalized parameters and
Kolmogorov’s spectrum.

Now we substituteĜ�k� t � t �� and Ĉ�k� t� t �� in eq. (59), and keep terms only to the
leading order inr. We find that the terms (1,4,5,8–10) of eq. (59) vanish. The final equation
for the fluxesΠ� to the leading order inr are

Π� � r
�Π��2

Π�
�K��3�2

	
4Sd�1

�d�1�2Sd

� 1

0
dv ln�1�v�

	
� 1�v

1�v
dw�vw�d�2�sinα �d�3F��v�w�



� (65)

where the integrandF� are

F� � t13�v�w��vw��d�2�3 1

β�w2�3
� t14�v�w��vw��d�2�3 α �

β�

	
�

1

β��1�w2�3�
� 1

β�w2�3

�
� t15�v�w�w

�d�2�3 1

β�w2�3

�t16�v�w�w
�d�2�3 α �

β�

�
1

β��v2�3�w2�3�
� 1

β�w2�3

�

�t17�v�w�v
�d�2�3 α �

β�

�
1

β��v2�3�w2�3�
� 1

β�w2�3

�

�t18�v�w�v
�d�2�3 α �

β�

�
1

β��1�w2�3�
� 1

β�w2�3

�
� (66)

F� � t13�v�w��vw��d�2�3 1

β��1� v2�3�
� t15�v�w�w

�d�2�3 1

β��1� v2�3�
� (67)

We denote the bracketed term of eq. (65) byI� and compute them numerically. We find
that the integrals are finite ford � 2 and 3. Also note thatI� are independent ofr. We
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Table 4. The computed values of Kolmogorov’s constants for
σc� 1 andrA � 1 limit for variousr � E��E� (d � 2�3).

d r K� K�

0.17 1.4 1.4
0.10 2.1 1.2

3 0.07 2.7 1.07
10�3 45 0.26
10�6 4528 0.026

0.1 1.2 2.4
0.07 1.5 2.2

2 0.047 1.9 1.9
10�3 25 0.52
10�6 2480 0.052

calculate the constantK� of eq. (65) in terms ofI�; the constantsK� are listed in table 4
for various values ofr in d � 2 and 3. The constantsK� depend very sensitively onr.
Also, there is a change of behaviour nearr � �I��I��2 � rc; K� � K� for r � rc, whereas
inequality reverses forr beyondrc.

From the equations derived above, we can derive many important relationships. For
example,

Π�

Π�
�

I�

I�
� (68)

SinceI� are independent ofr, we can immediately conclude that the ratioΠ��Π� is also
independent of r. This is an important conclusion from our calculation. From the above
equations we can also derive

K� �
1

r2�3

�I��2�3

�I��4�3
� (69)

K� � r1�3 �I
��2�3

�I��4�3
� (70)

K�

K�
� r

�
I�

I�

�2

� (71)

The total energy cascade rate can be written in terms ofE��k� as

Π �
1
2
�Π��Π�� �

r
2
�I�� I���E��k��3�2k5�2� (72)

SinceI� is independent ofr, Π is a linear function ofr. When we apply the above formula
to the solar wind stream withr � 0�07, we find thatK� � 2�12 andK� � 0�85.

As mentioned in the previous section, the observed temperature evolution was studied
by Vermaet al [25] and Tu [26]. For streams withσc � 1, Vermaet al [25] had assumed
thatK� � K� � K independent ofσc, and derived the total turbulent dissipation rate to be
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Π �
r�



r

2K3�2
�E��k��3�2k5�2� (73)

Clearly the assumption thatK� � K�, as well as the above formula (73) is incorrect.
Hence, the calculation of Vermaet al [25] needs to be modified. The substitution of the
parametersr andK� in our formula (72) gives us an estimate of the turbulent heating that is
an order of magnitude higher than the observed overall heating in the solar wind [25]. Some
of the resolutions of this paradox are: (1) the assumption that the solar wind has reached
steady state is incorrect, and the formula (72) is inapplicable to the solar wind streams
with largeσc; or (2) the constantsK� calculated above will be modified significantly by
the mean magnetic field, anisotropy, helicity etc. In case of the former, one needs to
understand the non-equilibrium evolution of MHD turbulence, while in case of the latter,
the field theoretic calculation has to be generalized in the presence of mean magnetic field
and helicity. Both these generalizations are beyond the scope of this paper.

4. Summary and conclusions

In this paper we have theoretically calculated various energy cascade rates in the inertial
range ofnon-helical MHD turbulence. Our procedure is based on field-theoretic approach.
Using the steady-state condition we also calculate the energy supply rate from the large-
scale velocity field to the large-scale magnetic field. For simplicity of the calculation, we
have taken two special cases: (1)σc � 0; (2) σc � 1. Throughout the calculation we
assume that the velocity modes at large length-scales are forced.

We will first summarize the results forσc � 0 case ind � 3. The cascade ratesΠu�
b�,

Πb�
b�, Πu�

b�, Πb�
u� are approximately the same forrA in the range of 0.5–1, but the fluxΠu�

u�

is rather small. The sign ofΠb�
b� is positive, indicating that the ME cascades forward,

that is from large length-scales to small length-scales. The large-scale magnetic field is
maintained by theΠu�

b� flux. We exploit this result to construct a dynamo model for galaxy.
This result is discussed in paper II.

Recently Cho and Vishniac (CV) [21] performed numerical simulation of non-helical
MHD turbulence and arrived at the following conclusion based on their numerical results.
In our language, their results for largerA can be rephrased as (1)Πu�

u��U3; (2)Πu�
�b��b���

UB2; (3) Πu�
b�� �U�cB�B2, whereU andB are the large-scale velocity and magnetic field

respectively, andc is a constant. When we compare our theoretical findings with CV’s
result, we find our results can explain CV’s first and second results, but they are only partly
consistent with the third result. From eq. (44) it can be easily seen thatΠu�

u� depends on
the KE in the same manner as in fluid turbulence. Hence,Πu�

u� �U3�L, a result consistent
with the first result of CV. UsingΠu�

�b��b�� � Πu�
b��Πb�

b��Πb�
u� and the definitions ofF �s

(eqs (46) and (47)) we can easily show that

Πu�
�b��b��

Π
� �� � r�1

A � � � �r�2
A � (74)

where � � � represents a constant. We estimate the above equation in the largerA limit
(Eu � Eb). In this limit, Π �U3�L. Hence, to a leading order inr�1

A
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Πu�
�b��b�� � Π

Eb

Eu �UB2�L� (75)

From eqs (44)–(47), we also conclude that

Πu�
b� � �� � � r�1

A � � � �r�2
A �Π �

�
� � �U

L
��� � B2

UL

�
B2� (76)

Note that the first part of the above equation matches with CV’s first part, but the second
part ofΠu�

b� differs from CV’s result by a factor ofB�U . SinceB�U � 1 at steady state,
it is difficult to differentiate our results with that of CV. On the whole, our theoretical
calculation is able to explain the numerical results of CV.

For d � 3 the Kolmogorov’s constantK is approximately constant and is close to 1.5
for all rA greater than 1/2, same as that for fluid turbulence (rA � ∞). This result implies
that the total cascade rate does not change appreciably under the variation ofrA (since
Π ∝ K�3�2). The cascade rates vanish nearrA � 0�25; this result is in the expected lines
because MHD equations become linear inrA � 0 limit. Comparison with the past results
shows that our result differs from that of Verma and Bhattacharjee’s calculation [31] where
Kolmogorov’s constant changes significantly with the variation ofrA. Note, however, that
our procedure described here is an improvement over that of Verma and Bhattacharjee,
where they had assumed a wave-number cutoff for the self-energy integral for curing the
infrared divergence problem. They had also assumed a specific type of self-energy matrix
which can be shown to be correct only in some regime.

When we varyd, we find that for larged, Πu�
u� � Πu�

b� � Πb�
b� � Πb�

u�. In addition we
also observe that Kolmogorov’s constant MHD turbulence increases with dimensions as
d1�3. The same variation is observed for fluid turbulence [24]. This result indicates that
the cascade rates decrease in higher dimensions. We could calculate fluxes ford � 2�2
because the RG fixed point is unstable for dimensions lower than 2.2 [14]. However, the
RG fixed point for fluid turbulence is stable ford � 2, and the Kolmogorov’s constant in the
inverse cascade regime of 2D fluid turbulence comes out to be 6.3. For this computation,
the renormalized viscosityν� was taken as�0.6. It is interesting to note that Daret al [19]
find negative KE flux (Πu�

u�) in their 2D MHD turbulence simulation; this is reminiscent of
2D fluid turbulence.

In the other extreme limitσc � 1 andrA � 1, we find that Kolmogorov’s constantsK�

andK� are not equal, and the ratioK��K� depends very sensitively onr � E��k��E��k�.
Both the fluxesΠ�, and also the total fluxΠ, are proportional tor. The flux ratioΠ��Π�

is found to be independent ofr. We also discuss the implications of our flux results to the
heating of the solar wind.

In this paper we have restricted ourselves to non-helical turbulence. Helical MHD turbu-
lence is very important specially for the growth of magnetic energy (dynamo). The energy
fluxes for helical MHD have been discussed in paper II. The study of the effects of mean
magnetic field using field theory has been relegated for future.

Appendix A: Values of Ti

The algebraic expressions forTi�k� p�q� are given below.
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T1�k� p�q� � kiP
�
jab�k�Pja�p�Pib�q�

� kp
�
�d�3�z��d�2�xy�2z3�2xyz2� x2z

�
� (A1)

T3�k� p�q� � kiP
�
jab�k�Pja�p�Pib�q�

��k2��d�2��1� y2�� z2� xyz
�
� (A2)

T5�k� p�q� ��kiP
�
jab�p�Pja�k�Pib�q�

��kp
�
�d�3�z��d�2�xy�2z3�2xyz2� y2z

�
� (A3)

T7�k� p�q� ��kiP
�
jab�p�Pja�k�Pib�q�

��kp
�
�2�d�xy��1�d�z� y2z

�
� (A4)

T9�k� p�q� ��kiP
�
iab�q�Pja�k�Pjb�p� ��kq

�
xz�2xy2z� yz2� � (A5)

T11�k� p�q� ��kiP
�
iab�q�Pja�k�Pjb�p� ��kqz�x� yz� � (A6)

T2n�k� p�q� ��T2n�1�k� p�q� for n � 1� � � � �6� (A7)

T13�15�k� p�q� � kiMjab�k
��Pja�p�Pib�q� ��kpyz�y� xz�� (A8)

T14�16�k� p�q� � kiMjab�k
��Pjb�p�Pia�q� � k2�1� y2��d�2� z2�� (A9)

T17�19�k� p�q� � kiMjab�p�Pja�k�Pib�q� � kpxz�x� yz�� (A10)

T18�20�k� p�q� ��T14�k� p�q�� (A11)

T21�23�k� p�q� � kiMiab�q�Pja�k�Pjb�p� ��kpxy�1� z2�� (A12)

T22�24�k� p�q� ��T13�k� p�q�� (A13)

wherek � p�q, andx�y�z are defined by

p �q ��pqx; q �k � qky; p �k � pkz� (A14)
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