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Abstract. Energy cascade rates and Kolmogorov’s constant for non-helical steady magnetohydro-
dynamic turbulence have been calculated by solving the flux equations to the first order in per-
turbation. For zero cross helicity and space dimensloa 3, magnetic energy cascades from
large length-scales to small length-scales (Emdvcascade). In addition, there are energy fluxes
from large-scale magnetic field to small-scale vélofield, large-scale velocity field to small-scale
magnetic field, and large-scale velocity field to large-scale magnetic field. Kolmogorov's constant
for magnetohydrodynamics is approximately equal to that for fluid turbulenck®) for Alfven

ratio 05 <rp < . For higher space-dimensions, the energy fluxes are qualitatively similar, and

Kolmogorov’s constant varies @/3. For the normalized cross helicity. — 1, the cascade rates
are proportional t¢1— o¢)/(1+ o), and the Kolmogorov's constants vary significantly with
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1. Introduction

There are various phenomenological, numerical, and theoretical results on magnetohy-
drodynamics (MHD) turbulence. Kraichnan [1] and Iroshnikov [2] proposed a first phe-
nomenology for homogeneous and isotropic MHD which connects energy spectrum and
cascade rates. In this phenomenology, the kinetic and magnetic energy spdetfigm (

and E(k) respectively) are proportional to-3/2, and the energy cascade rate of flux

M = (E(k))?k3/Bo, whereBy is the mean magnetic field. In an alternate phenomenology,
Marsch [3], Matthaeus and Zhou [4], and Zhou and Matthaeus [5] predicted that energy
spectrum is Kolmogorov-likeE(k) 0 k=5/3) andr = (E(k))%/2k2. Vermaet al [6] nu-
merically calculated the energy cascade rates dd$slsi variablet + b (u, b are velocity

and magnetic field fluctuations), and found their results to be consistent with Kolmogorov-
like phenomenology, rather than that of Kiaman and Iroshnikov. Frick and Sokoloff [7]
studied the spectra and cascade rates in a shell model of MHD turbulence; they found the
spectral index to be close to 5/3 in the absence of cross helicity and magnetic helicity. Ac-
cording to their study, the helicitiesigpress the cascade process. Recentlyjeviand
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Figure 1. Various energy cascade rates of MHD turbulence. The illustrated
wave-number spheres contair< andb < modes, whileu > andb > are modes out-
side these spheres. The velocity field is forced at large-scale.

Biskamp [8] and Biskamp and Miér [9] computed the spectral index and found it to be
closer to 5/3. Kolmogorov-like spectrum is also supported by recent theoretical results
[10-15].

The energy cascade rates of MHD depend on cross helidigy=(1/2(u-b)), mag-
netic helicity Hv = 1/2(a-b), wherea is vector potential), and kinetic helicityHg =
1/2(u- w), wherew is vorticity). Here(-) denotes ensemble average, which is equal
to spatial average for homogeneous and isotropic systems. Poetcalefl6] applied
EDQNM approximation to study energy fluxes. For non-helical MHD, Poueuait[16]
argued that the ME cascade is forward, i.e., from large-scale to small-scale. However, in the
presence of helicity, they observed that the large-scale magnetic energy brings to equipar-
tition the small-scale kinetic and magnetic excitation by Alvéffect, and the ‘residual
helicity’, Hx — Hwy, induces growth of large-scale magnetic energy and helicity. Pouquet
and Patterson [17] studied this problem using direct numerical simulation and arrived at
similar conclusions. In the present paper we will derive the energy fluxes of non-helical
MHD using field theoretic methods. The energy fluxes of helical MHD are discussed in a
companion paper, Verma [18], referred to as paper II.

Since there are two fieldsandb in MHD, the energy can be transferred frarto u, u to
b, andb to b. The resulting energy fluxes due to these transfers are illustrated in figure 1.
These fluxes have been numerically calculated recently byeDal [19] and Ishizawa
and Hattori [20] for two-dimensional (2D) MHD turbulence. The fluxes are dependent on
well-known parameters: the normalized cross helioiywhich is the ratio of twice cross
helicity and energy and the Aléri ratior», which is the ratio of kinetic energy (2(u - u))
and magnetic energy (2 (u - u)). The numerical values calculated by gl for . ~ 0
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Table 1. The flux ratios computed by Dat al (d = 2,0: ~ 0,ra ~ 0.5).

Mus/m npsm nes/m nps/m npsm K+

-0.13 0.68 —0.09 0.47 0.37 ~4

andra (KE/ME) & 0.5 are listed in table 1. The prime conclusions of @aal’s [19]

and Ishizawa and Hattori’'s [20] 2D numerical study are: (1) the ME cascades from large-
scales to small-scales (forward cascade), (@)ls a significant energy transfer from large
length-scale velocity field to large length-scale magnetic field; this transfer could play an
important role in ME enhancement and (Bgte is an inverse cascade of KE. Recently,
Cho and Vishniac [21] have derived some interesting scaling relationships between the
energy transfer rates and verified them using numerical simulations. Since the direction of
total energy cascade is the same in 2D and 3D (three-dimensional) MHD turbulence, some
of the conclusions drawn by Dat al [19] and Ishizawa and Hattori [20] based on 2D
simulations are expected to hold at least qualitatively in 3D MHD turbulence. Therefore,
in this paper we compare the numerical results of &ad [19] and Ishizawa and Hattori

[20] with our 3D analytic results.

Inthe present paper we have carried out thergy cascade rate calculation for MHD tur-
bulence for thanertial-range wave numbers using perturbative field-theoretic technique.
Here, we assume that the turbulence is homogeneous and isotropic to make the problem
tractable. Even though the real-world turbulence does not satisfy these properties, at least
at the large-scales, many conclusions drawn using this assumption give us important in-
sights into the energy transfer mechanisiss will be discussed in this paper and paper
II. We assume that the mean magnetic field is absent; this assumption is to ensure that
the turbulence is isotropic. Our procedure requires Fourier space integrations of functions
involving products of energy spectrum and the Green'’s functions. Since there is a general
agreement on Kolmogorov-like spectrum for MHD turbulence, we &alke O k=5/3 for
all the energy spectra for MHD. For the Green’s function, we substitute the ‘renormalized’
or ‘dressed’ Green’s function computed by Verma [14]. After this substitution, various
energy fluxes and Kolmogorov’'s constant of MHD are computed. Using the steady-state
condition, we also calculate the energy supply from the large-scale velocity field to the
large-scale magnetic field. This result is quite robust, and is independent of the nature of
large-scale forcing. In this paper we assume both kinetic and magnetic helicities to be
absent. The energy fluxes for helical MHD are discussed in paper Il.

The parameter space of MHD is rathergarbecause of various energy spectra. The
two well-known parameters are the normalized cross heligityand the Alf\én ratio
ra. Calculation of cascadrates for arbitraryo; andra is quite complex. In this pa-
per we limit ourselves to two limiting cases: (&} = 0 and whole range ofa; (2)

o: — 1 andra = 1. Strictly speaking, the parametersed in our calculations are spectral
0c(K) = 2Hc(K) /(EY(K) + EP(K)) andra (k) = EY(k) /EP(K). Since our calculation is con-
fined to inertial-range wave numbers where Kolmogorov’s 5/3 power law is valid for all the
energy spectra of MHD, botti(k) andra (k) can be treated as constants. Note that these
parameters may differ from the globat andra. We carry out our theoretical analysis

in various dimensions. We will show that ouetbretical results araigeneral agreement
with the simulation results of Daat al [19] and Ishizawa and Hattori [20].
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The outline of this paper is as follows: §& we calculate various cascade ratesdige 0
case. The other extreme cage— 1 is considered i§3. Section 4 contains summary and
conclusions.

2. Cascaderatesin MHD turbulence: o.=0

In this section we will analyticallicompute the energy cascade rates whge= 0. We
take the following form of Kolmogorov’s spectrum for kinetic energy (KE) and magnetic
energy (ME):

EY(k) = KYN?/3k5/3, 1)
E°(K) = EY(K)/a, (2)

whereK" is the Kolmogorov’s constant for MHD turbulence ands the total energy flux.
Another Kolmogorov's constam is defined for the total energy,

Ecotal(K) = EY(K) + EP(k) = E(k) = KN%/3k5/3, 3)
with
K=KY(1+r3h. @)

With this preliminaries we start our flux calculation.
The incompressible MHD equations are

Ju

EJr(u-D)u:—Dp+(b-D)b+vD2u, (5)
%Hu-m)b:—(b-m)ummzb, 6)
O.u=0, 7)
0.b=0, ®)

whereu andb are the velocity and magnetic fields respectivelyhe total pressure, and

v andn the kinematic viscosity and magnetic diffusivity respectively. To compute various
energy transfers among various Fourier modes we resort to the energy equations, which
are [16,19,22]

9 2 uu _ 1 i
(E vk > CK ) = G ERTH T e spraco 2T
x[SM(K'|p|a) + S"(K'alp) + S (K'|p|a) + S®(K'|alp)],  (9)

17} bb _ 1 dp
<E + an2> Cok b = (d—1)(2m9s(k + k') /k’+p+q=0 (2m)d
x[SM(K'[pla) + S™(K'|alp) + S™(K|p|a) + S™®(K'|alp)]. (10)
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The above integrals have constraints thiat p+ q = 0 (k = —k’). The equal-time corre-
lation functions used in the energy equations are defined using

(ui(p,H)uj(,t)) = Ry (P)C™(p,t,)3(p + ) (2m)° (11)
(bi(p,t)bj(q,1)) = uj(p)Cb (p,t,t)3(p +q)(2m)° (12)
(ui(p, )by (1)) = Ry (P)C*(p,t,)3(p+ ) (2m)° (13)
and the energy transfer rat8&’|p|q) are defined using
S™(K'lpla) = =0O([K"- u(@)][u(k’) -u(p)l), (14)
SP(K'|pla) = —O(K'- u(@)][b(K") - b(p)]), (15)
SP(K'pla) = O((k' - b(a)][u(K') - b(p))), (16)
S¥(K'|pla) = —S™(p|k'|). (17)

Here[d stands for the imaginary peof the argument. Note th&"? = 0 because, has
been taken to be zero. The above equations are based ot Bl&r formalism, which
is a generalization of those of Pouquettal [16], Stansi¢ [22] and others. In Daet
al’s formalism, the termsS(k|p|q) represent energy transfer from mopethe second
argument ofS) to k (the first argument of) with modeq (the third argument o) acting
as a mediator. Note that in the expressionSdhe field variables with the first and second
arguments are dotted together, while the field variables with the third argument is dotted
with the wavevectok. Daret al's formulas have certain advantages over those of Pouquet
et al [16] and Starsi¢ [22]. Some of the quantities to be defined below were not accessible
in the earlier formalism, but now they can be calculated usingdbal’s formulas. For
detailed comparisons of these methods, refer todba{19]. In addition, the flux formulas
derived using the new scheme are relatively simpler.

After some algebraic manipulation it can be shown that

S"(k'|p|a) + S"(k'|alp) + S"(p|k'|a) + S"(p|alk’)

( ) ( )
+S"(qlk’[p) +S"(qlp|k) =0, (18)
SP(K'|pla) + SP(k'[qlp) + S (p|k'|a) + S°(plalk’)
+8®(q|k'|p) + S™(qlplk’) =0, (19)
SP(K'|plg) + S™(K'|q|p) + S™®(p|K'|a) + S*(p|alk’)
+SP(qlK'[p) + S*(qlp|k’) + SM(K'|p|a)
+8(k'|qlp) + S™(plK'[q) +
( ) ( )

S(plalk’)
+ 0.

These are the statements of ‘detailed conservation of energy’ in MHD triads (when
n =0)[23].

For energy flux study, we split the wave number space into two reglogsky (inside
‘ko-sphere”) ank > kp (outside kg-sphere’). This division is done for both velocity and
magnetic fields. The energy transfer could take place from inside/outdidgphere to in-
side/outsides/b-sphere. In terms d§, the energy flux from inside th€-sphere to outside
theY-sphereis

qlk'|p) + S™(qlp|k’

(20)
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X< _ 1 dk’ dp avx s
whereX andY stand foru or b. The energy fluxes from inside/b-sphere to outside
u/b-sphere can be calculated by earlier formalism, as well as byebDalfs formalism.
However, the fluxes from inside-sphere to insidéd-sphere, and from outsidesphere
to outsideb-sphere can be numerically calculated only by Baal’s formalism [19]. In
this paper we will analytically calculate the above fluxes in the inertial range using the
Kolmogorov-like energy spectrum.

We assume that the kinetic energy is foreédmall wave numbers, and the turbulence
is steady. Therefore,

s = nes +nos, (22)
Input kinetic energy= Mys + Mps + MNgs. (23)

We calculate the energy flux;< using the above steady-state property. Hence the energy
feed into the large-scale magnetic field from the large-scale velocity field could be obtained
theoretically irrespective of theature of large-scale forcing.

We will analytically calculate the above emgy fluxes [eq. (21)] in the inertial range
to the leading order in perturbation series. It is assumedutigtis Gaussian to leading
order. Consequently, the ensemble averag® 6f (S'*), is zero to the zeroth order, but
is non-zero to the first order. The first order terms $5¢ (k| p|q) in terms of Feynman
diagrams are shown below:

<5"“(WDQ)>@ + @ + @ (24)

In the above diagrams the solid, dashed, wiggly (photon), and curly (gluons) lines denote
(uiu;), (bib;),G", and G respectively. In all the diagrams, the left vertex dendtes
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while the filled circle and the empty circles of right vertex represetif 2) Ple and—iR;,

respectively. Sinc&"?, G™ C", andC™ are zero whem, = 0, we have not mcluded the
Feynman diagrams containing these terms. When we substituig, (bib;j) using egs
(11) and (12), we obtain terms involvir@f* (p,t,t’)C¥ (g,t,t'). The resultmg expressions
for various(S™* (k|p|q)) are

(S (pla) = [ a'2m?[Ta(k )G (kt - ')CH(pLOIC (G L)

(

+T5(k, P, q)GUU(p )Cuu(kat,t )Cuu(qvt,t )

+To(k, p,q)G™(a,t —t)CH(k,t,t")C™(p,t,t)], (28)
(

(SP(Kpla) = [ (2P Tak, p. @G  (t ~)C(p. )R 1)
+T7(k, p,a)G™(p,t —t)CM(k t,t')C®(qt,t')
+Taa(k, )G (g, —t)CM (K, t,t)CP(p,t,1)], (29)
t
(S (dpla) = [ o@m°Ta(k,pa)G™(kt ~1)CH(p,t)CP (G,

+T6(k, p, q)Guu(p,t - tl)Cbb(k7t,t,)Cbb(qat,t,)
+Tia(k, p,6)G™(g,t —t)C® (K, t,t")C(p,t, 1), (30)

(S pla) = [ amTalk p @GPkt ~)CP(pL1)C (G L)

+T8(k, p, q)be(p,t - tl)Cbb(k7t,t,)Cuu(qat,t,)
+Tao(k, p, @) G™(a,t —t)C® (K, t,t")C™P(p,t, 1), (31)

whereTi(k, p,q) are functions of wavevectoksp, andq given in Appendix A.
The Green’s functions can be written in terms of ‘effective’ or ‘renormalized’ viscosity
v(K) and resistivityn (k) (see Verma [14] for details) as

GM(k,t —t') = exp(—v(KK*(t - ")), (32)

G™®(k,t —t') = exp(—n (KK (t —1')). (33)

The relaxation time fo€"(k,t,t") is assumed to be the same as thaGlf, and that of
CP(k,t,t') is assumed to be the same as thaGBt. Therefore, the time dependence of
the unequal-time correlation functions will be

CM(k,t,t') = exp(—v(K)K3(t —t")) C™(k,t,1) (34)

CP(k,t,t") = exp(—n (K)K2(t —t)) CP(k,t,t). (35)
The above forms of Green’s and correlation functions are substituted in the expression of

(S}, and thet’ integral is performed. Now egs (21) and (28) yield the following flux
formula forMys (ko):
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M4 (ko) = / dk / dp 1
koko (29 Jp<io (2m)7 V(KK +v(p)p? + v(a)g?
x[Ta(k, p,q)C™(p)C*(q) + Ts(k, p,q)C™ (K)C™(q)
+T9(k7 p, q)CUU(k)CUU(p)] (36)
The expressions for the other fluxes can be obtained similarly.

The equal-time correlation functiof$!(k,t,t) andC™(k,t,t) at the steady state can be
written in terms of one-dimensional energy spectrum as

CW(K,t,t) = %k‘(d‘l)E“(k), (37)
CP(k,t,t) = %k‘(d‘l)Eb(k), (38)

whereS; is the surface area afdimensional unit spheres. We are interested in the fluxes
in the inertial range. Therefore, we subdiiolmogorov’s spectrum (eqgs (1) and (2)) for
the energy spectrum. The effective viscosity and resistivity are proportiokaftd, i.e.,

V(k) — (KU)l/ZI—Il/3k74/3V*, (39)

n(k) — (KU)l/ZI-Il/Bk—4/3n* (40)

and the parameters andn* were calculated in Verma [14].
Thed-dimensional volume integral under the constr&int p +q = 0 is given by [24]

[ da=Sua [ oo (%)™ sinay-2, (41)

wherea is the angle between vectgpsandg. We also non-dimensionalize eq. (36) by
substituting [23]

ke, k. k
which yields
My = (KY)¥2n
451 i d=2(cing\d-3
[d 1251/ dvin( 1/v/1v aw(w)9=2(sina ) I3RS (vw) |
(43)
where the integralBy<= (v, w) are
FU< — 1
v (L4 v wAl)
 [ta (v, W) () T3 g (v wyw 92/ - tg (v w)v 92, (44)
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1

V* + n* (V33 4 w2/3)

x [t (v, W) (W) ~92/3r 22t (v, w)w 923 11

Haa(ww)v o, (45)
1

ViVZ/3 4 n*(1+w?/3)

x [ta(V, W) (vw) ~92/3r 11t (v w)w 4 2/3r 2

Haz(vw)v o, (46)

Fb< — 1
b> V*W2/3+f7*(l+V2/3)

x [ta (v, W) (vw) ~923r 11 4 tg (v w)w 425 2
Hao(v,w)v 9723 2], (47)

b< _
u> -

u< _
Fb> -

Heret; (v,w) = Ti(k, kv, kw)/k?. Note that the energy fluxes are constant and are consistent
with the Kolmogorov's picture. We compute the bracketed terms (denote{éfbmumer-
ically and find that all of them converge. Let us denbote 1S + 125 + 125 + 195, Using

the fact that the total flukl is

M= NYs +n8s +nps +ngs, (48)
we can calculate the value of const&t which is
KU=(1)=%3 (49)

In addition, the energy flux ratios can be computed ugiffg /M = 155 /1. The flux ratio
I'Igj/l'l is obtained using steady-state condition (eq. (22)). The values of coKstamtbe
computed using eq. (4). The flux ratios and Kolmogorov’s constant$ fo8 and various
ra are listed in table 2. The same quantitiesifgr= 1 and various space dimensions are
listed in table 3.

The following trends can be inferred by studying table 2. We find thad fer3, MjS/MN
starts from 1 for largea and decreases nearly to zero near= 0.3. All other fluxes start
from zero and increase up to some saturated values; this implies thatredt, all the
energy fluxes become significant. Clearly, the sigh‘l@I is positive, indicating that ME
cascades from large length-scale to small lersgthle. Under steady state the large-scale
ME is maintained by1;<, which is one of the most dominant transfers maas= 0.5. The
energy fluxip< entering the large scale magnetic energy could play an important role in
the amplification of magnetic energy. In paper I, we will construct a dynamo model based
on the energy fluxes.

The Kolmogorov’s constar for d = 3 is listed in table 2. For ally greater than 0.5,
K is approximately constant and is close to 1.6, same as that for fluid turbutaneex).
SincelN 0 K=%/2, we can conclude that the variation of (redistribution of fluid and
magnetic energy, keeping the total energy fixed) does not change the total cascade rate.
Nearra = 0.3, the constar appears to increase, indicating a sudden drop in the cascade
rate. Wherr is decreased further, negy = 0.25 bothv* andn* became approximately

equal to 0 [14], oK — oo, This signals an absence of turbulencerfonear 0.25. This is
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Table 2. The computed values of energy cascade rates of MHD turbulence for various
ra whend = 3 andoe = 0.

M\ra 5000 100 5 1 0.5 0.3 Trend

nys/mn 1 0.97 0.60 0.12 0.037 0.011 Decreases
I'Ig§/|'| 3.5E-4 1.7E-2 0.25 0.40 0.33 0.36 Increases
then saturates
I‘IB§/I‘I —-1.1E-4 -5.1E-3 -0.05 0.12 0.33 0.42 Increases
then saturates
I'IE§/I'I 2.7E-4 1.3E-2 0.20 0.35 0.30 0.21 Increases
then dips
I'Igjll'l 1.7E-4 8.1E-3 0.15 0.47 0.63 0.63 Increases
then saturates

K+ 1.53 1.51 155 150 1.65 3.26 Approx. const.
till ra ~ 0.5
KY 1.53 1.50 1.29 0.75 0.55 0.75 Decreases

Table 3. The computed values of energy cascade rates of MHD turbulence for various
space dimensiomdwhenog. =0 andrp = 1.

n\d 2.1 2.2 2.5 3 4 10 100

nys/m - 0.02 0.068 0.12 0.17 0.23 0.25
nes/n - 0.61 0.49 0.40 0.34 0.27 0.25
nes/m - —0.027 0.048 0.12 0.18 0.23 0.25
I'Ig;/l'l - 0.40 0.39 0.35 0.31 0.27 0.25
Nps/n - 0.37 0.4 0.47 0.49 0.50 0.50
K+ - 1.4 14 1.50 1.57 1.90 3.46
KY - 0.69 0.72 0.75 0.79 0.95 1.73

consistent with the fact that MHD equations are linear inrghes O (fully magnetic) limit,
hence do not exhibit turbulence. However, it is still surprising that turbulence disappears
nearra = 0.25 itself.

The Kolmogorov’s constari{ computed above can be used to estimate the amount of
turbulent heating in the solar wind. Verneaal [25] and Tu [26] have put constraints
on the turbulent heating in the solar wind from the radial variation of temperature in the
solar wind. Vermaet al [25] observed that wheK = 1, all the heating in the solar wind
for streams witho; ~ 0 can be accounted for by the turbulent heating. Our theoretical
value for this constant in the absence of mean magnetic field is approximately 1.5, larger
than 1. If we takeK =~ 1.5 for solar wind streams witb; ~ 0, only a fraction, possibly
around half (1/1.5)%2), of the heating will be due to turbulence. However, neglect of
mean magnetic field, anisotropy, helicities etc. are gross assumptions, and we can only
claim general consistency of the theoreticdireates with the observational results of the
solar wind.

We have calculated the flux ratios and the constérfor various space dimensions
d > 2.2. Verma [14] has shown that far < 2.2, the RG fixed point is unstable, and the
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renormalized parameters could not be determined. Due to that reason we have calculated
fluxes and Kolmogorov's constant fdr> 2 only. For these calculations we take= 1,

which is a generic case. The calculated valage shown in table 3. It is striking that all

the fluxes are approximately the same for ladigén addition,My</N is approximately 0.5

for all dimensions greater than 4.

We verify thatl\>((>< for constanv* andn* are proportional tal—. In Verma [14] we find
thatv*,n* O d~%2. ThereforeK O d~/3. This result is a generalization of theoretical
analysis of Fourniegt al [24] for fluid turbulence.

In this section we calculated the cascade ratesdes 0. In the next section we take the
other limit oz — 1.

3. Cascaderatesin MHD turbulence: o — 1

In this section we will describe the calctitan of the energy cascade rates for the large
normalized cross helicityoz — 1), and show that the cascade rates crucially depend on
cross helicity. For cases with, — 1, it is best to work with Elasser variablez® = u =+ b.
For the following discussion we will denote the raia=|?) / {|z"|?) byr. Clearlyr < 1.
Here we limit ourselves to, = 1.

The incompressible MHD equations in termszéfare

+
%+(Z¢.D)Zi:—|]p+ v, 0275 +v_ 0?77, (50)
0.z =0, (51)

wherep is the total pressure and. = (v +n)/2. Numerical simulations of Verma [27]

and Dar [28], solar wind observations of Matthaeus and Goldstein [29], and Marsch and
Tu [30], and theoretical calculations of Verma [13,14] show that Kolmogorov-like energy
spectrum is valid even for non-zero cross helicity, i.e.,

L (n®)*?
(n)?

E*(k) =K k573, (52)

whereK* are Kolmogorov’s constants for MHD. The above equation was first derived by
Marsch [3].
The corresponding equations for the energy evolution are

(% + 2v+k2> CHE(k,t,t) +2v_K2CHF(k,t,t)

1 d , ,
= A DI enreo e K IPI) + S=(K gD, (59)

where

S (K'|pla) = ~0([K'- z* (a)][z* (K') - 2°(p)]) (54)

and the equal-time correlation functio$* andC** are defined using
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(7 (.07 (@,0) = Ri(PICT(p,,0)8(p + ) (21, (55)
(7 (.07 (@.0) = Ri(PIC (p,,0)8(p + ) (27", (56)

From eq. (54) it is evident that in the non-linear transfers, the matidésansfer energy
only to z+ while z~ acts as a mediator. Similarly transfers energy only to~ with z~
acting as a mediator. It can be easily shown that

S*(K'Ipla) + S*(k'|alp) + S*(p|k'|q) + S"(p|q|K’)
+S*(glk'|p) + S"(qlp|k’) = 0. (57)

These equations correspond to the ‘detailed conservation of energy’ in MHD triads.
In terms ofz* variables, there are only two types of fluX@s$, one for thez™ cascade
and the other for~ cascade. In terms & these energy fluxe3* are

1 dk
1406) = G0 757 ety @y s (S K191 - 59

As described in the last section, the above fluxes are calculated to the leading order in
perturbation series. To the first ordés = (k’|p|q)) are

($4(Kpl0)) = | (2 Tiglh,p0)G** (ot —1)CT

+T1a(k, p, Q)G (k,t —t')C*(p,t,t")CTT
+T1s(k, p,q)G*T (k,t —t')C*(p,t,t")CTT
+T16(k, p, Q)G T (k,t —t')CT (p,t,t")CT+
+Ti7(k, p,q)GTE(p,t —t")CEF (k,t,t")CT*
+T1g(k, p,0)G** (p,t —t')C* (k,t,t')CFF
+T19(k, p,q)G*T (p,t —t')C= (K, t,t')CTT
+T20(k, p,q)G*T (p,t —t')C*= (K, t,t')CFT
( )GTE(q,t —t')CEF (k,t,t")CEE

( )GT( )C=H(

( )GTH( )C=H(
)ICH(

+To1(k, p,q)GTH(q,t —t’

)
+Too(k, p,q)GTE(q,t —t')CEE (K, t,t/)CEF
+Taa(k, p,q)GTF(q,t —t')CEE(k,t,t")CEF
)

+T24(k, p,q)G:F:F (q’t _tl Ci:F k,tat Cii

N N N N o~ o~ o~~~ o~ —~ —~~
NI AN AN NI NI N N NI N NI N ~—

], (59)

whereTi(k, p,q) are given in Appendix A.
Now we use the approximation thais small. In terms of renormalized matrix

oK) = (,rj, ‘,’3) (60)

the Green’s functio(k,t —t') = exp—[0k2(t —t')] to leading order in is
G(k,t —t')

R 1 Ll
B?

_%(1_;304’)) e R-t) L 19¥ (] _ g Bt-1))
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For derivation and further details on the renormalizedefer to [14]. The correlation
matrixC(k,t —t') is given by

CH(kt,t)) Cr(kt, . [ CTH(K) CH (K
(S+{ke) cfety ) =6t=0 (& &) @

The quantitie€** (k) can be written in terms d&* (k) as

2(2m)¢
Su(d—-1)

We takeC*T (k) = 0 (orra = 1) for simplifying the calculation. We take Kolmogorov's
spectrum folE* (k) (see eq. (52)), and

. r{ a r* ar ()" 43
V(k) = (rw B) (rw* B*>\/K_+(r| )2/3k (64)

Ct* (k) = k(@-DE*(K). (63)

The renormalized parametefs, a*, ¢*, andB* have been calculated in [14]. Finally, the
matricesG(k,t —t') andC(k,t,t') can be written in terms of renormalized parameters and
Kolmogorov's spectrum. .

Now we substituteG(k,t —t') andC(k,t,t') in eq. (59), and keep terms only to the
leading order irr. We find that the terms (1,4,5,8-10) of eq. (59) vanish. The final equation
for the fluxed 1% to the leading order in are

2
ni:r(rlllt) (K+)3/2[ d4311 ;Sj/ dvin (1/v)

X /Hvdw(vw)dZ(Sina)d3Fi(v,w)] , (65)
1

-V
where the integranB* are

—d—2/30"
B*
1 1 —d—23 1
X {B*(1+W2/3) EE } +tas(v, W)W R

230" 1 o1
+t16(V7W)W B* {B*(V2/3+W2/3) B*W2/3}

a1 1
Ftaz7(v, W)V B { B* (v3/3 +w2/3) B*WZ/B}

_d2/30" 1 1
Hagvw € m? { B (1+w2R3)  prw2f3 } ©o

_ d— 1 4 1
F :tlg(V,W)(VW) d Z/BW +t15(V,W)W d 2/3m. (67)

F = tyg(v,w) (vw) ~9-2/3

B*Wz/g + tl4(V7 W) (VW)

We denote the bracketed term of eq. (65)IByand compute them numerically. We find
that the integrals are finite fat = 2 and 3. Also note thdt" are independent af. We
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Table 4. The computed values of Kolmogorov's constants for
0c — 1 andrp = 1 limit for variousr = E~/E* (d = 2,3).

d r K+ K~
0.17 1.4 1.4
0.10 2.1 1.2
3 0.07 2.7 1.07
1073 45 0.26
1076 4528 0.026
0.1 1.2 2.4
0.07 15 2.2
2 0.047 1.9 1.9
103 25 0.52
1076 2480 0.052

calculate the constakt™ of eq. (65) in terms of*; the constant&* are listed in table 4
for various values of in d = 2 and 3. The constanté* depend very sensitively on
Also, there is a change of behaviour neaf (1~ /I )2 =re; K~ <Kt forr <r¢, whereas
inequality reverses far beyondr..

From the equations derived above, we can derive many important relationships. For
example,

n- 1~

Sincel  are independent af we can immediately conclude that the rdflo /M is also
independent of r. This is an important conclusion from our calculation. From the above
equations we can also derive

1 (|—)2/3
+
K = 2B () (69)
+12/3
~_ a7
K =r () (70)
K- 1+\ 2
KF = r (I_—> . (72)
The total energy cascade rate can be written in ternistek) as
n= %(n++n—) = %(I++I‘)(E+(k))3/2k5/2. (72)

Sincel * is independent of, M is a linear function of. When we apply the above formula
to the solar wind stream with= 0.07, we find thak™ = 2.12 andK~ = 0.85.

As mentioned in the previous section, the observed temperature evolution was studied
by Vermaet al [25] and Tu [26]. For streams witb; — 1, Vermaet al [25] had assumed
thatK*+ = K~ = K independent ob,, and derived the total turbulent dissipation rate to be
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VT 32,5/
M= 2 (B ()42 (73)

Clearly the assumption th#¢™ = K~, as well as the above formula (73) is incorrect.
Hence, the calculation of Vernet al [25] needs to be modified. The substitution of the
parameters andK ™ in our formula (72) gives us an estimate of the turbulent heating that is
an order of magnitude higher than the observed overall heating in the solar wind [25]. Some
of the resolutions of this paradox are: (hetassumption that the solar wind has reached
steady state is incorrect, and the formula (72) is inapplicable to the solar wind streams
with large oc; or (2) the constant&* calculated above will be modified significantly by

the mean magnetic field, anisotropy, helicity etc. In case of the former, one needs to
understand the non-equilibrium evolutiohMHD turbulence, while in case of the latter,

the field theoretic calculation has to be generalized in the presence of mean magnetic field
and helicity. Both these generalizatis are beyond the scope of this paper.

4. Summary and conclusions

In this paper we have theoretically calculhtearious energy cascade rates in the inertial
range ofnon-helical MHD turbulence. Our procedure is based on field-theoretic approach.
Using the steady-state condition we also chteithe energy supply rate from the large-
scale velocity field to the large-scale magnetic field. For simplicity of the calculation, we
have taken two special cases: @)= 0; (2) o — 1. Throughout the calculation we
assume that the velocity modes at large length-scales are forced.

We will first summarize the results fa, = 0 case ind = 3. The cascade rateﬁif,

I‘IB; Mps, MBS are approximately the same figr in the range of 0.5-1, but the fluX4S
is rather small. The sign dﬂgi is positive, indicating that the ME cascades forward,
that is from large length-scales to small length-scales. The large-scale magnetic field is
maintained by th&l;< flux. We exploit this result to construct a dynamo model for galaxy.
This result is discussed in paper Il.

Recently Cho and Vishniac (CV) [21] performed numerical simulation of non-helical
MHD turbulence and arrived at the following conclusion based on their numerical results.

In our language, their results for largecan be rephrased as (1)s ~U?; (2) I‘IE‘b<<+b>) R~

UBZ; (3) I'Igj ~ (U —cB)B?, whereU andB are the large-scale velocity and magnetic field
respectively, ana is a constant. When we compare our theoretical findings with CV’s
result, we find our results can explain CV'’s first and second results, but they are only partly
consistent with the third result. From eq. (44) it can be easily seerft{fatlepends on

the KE in the same manner as in fluid turbulence. Hefigg, ~ U3/L, a result consistent

with the first result of CV. Usingl{y ) = MpS + MPs + MBS and the definitions of's

(eqs (46) and (47)) we can easily show that

u<
I_I(b<+b>)

= RTH PaE I e (74)

where--- represents a constant. We estimate the above equation in ther jateit
(EY > EP). In this limit, M ~ U3/L. Hence, to a leading order i *
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b

E 2
M by & Mg ~ UB?/L. (75)

From eqs (44)—(47), we also conclude that
U B2
I'IEZ%(---r,Kle---r;z)I'I% < ........ _> B2. (76)

Note that the first part of the above equatioatohes with CV's first part, but the second
part ofl'lgj differs from CV’s result by a factor dB/U. SinceB/U ~ 1 at steady state,
it is difficult to differentiate our results with that of CV. On the whole, our theoretical
calculation is able to explain the numerical results of CV.

Ford = 3 the Kolmogorov’s constari is approximately constant and is close to 1.5
for all ra greater than 1/2, same as that for fluid turbulemge=£ ). This result implies
that the total cascade rate does not change appreciably under the variatipiisofce
nao K*3/2). The cascade rates vanish negr= 0.25; this result is in the expected lines
because MHD equations become linearin= 0 limit. Comparison with the past results
shows that our result differs from that of Viea and Bhattacharjee’s calculation [31] where
Kolmogorov’s constant changes significantly with the variation,ofNote, however, that
our procedure described here is an improvetrever that of Verma and Bhattacharjee,
where they had assumed a wave-number cutoff for the self-energy integral for curing the
infrared divergence problem. They had also assumed a specific type of self-energy matrix
which can be shown to be correct only in some regime.

When we varyd, we find that for larged, Mis = NS = NS = NS, In addition we
also observe that Kolmogorov’s constant MHD turbulence increases with dimensions as
d%/3. The same variation is observed for fluid turbulence [24]. This result indicates that
the cascade rates decrease in higheredisions. We could calculate fluxes fr> 2.2
because the RG fixed point is unstable for disiens lower than 2.2 [14]. However, the
RG fixed point for fluid turbulence is stable fde= 2, and the Kolmogorov’s constant in the
inverse cascade regime of 2D fluid turbulence comes out to be 6.3. For this computation,
the renormalized viscosity* was taken as-0.6. It is interesting to note that Detral [19]
find negative KE flux 1<) in their 2D MHD turbulence simulation; this is reminiscent of
2D fluid turbulence.

In the other extreme limio, — 1 andra = 1, we find that Kolmogorov’s constans"
andK ™ are not equal, and the ratio /K" depends very sensitively on= E~ (k) /E* (k).

Both the fluxed1+, and also the total flukl, are proportional te. The flux ratior~/Mn+
is found to be independent of We also discuss the implications of our flux results to the
heating of the solar wind.

In this paper we have restricted ourselves to non-helical turbulence. Helical MHD turbu-
lence is very important specially for the growth of magnetic energy (dynamo). The energy
fluxes for helical MHD have been discussed in paper Il. The study of the effects of mean
magnetic field using field theory has been relegated for future.

Appendix A: Values of T;

The algebraic expressions fg¢k, p,q) are given below.
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=kp((d—3)z+ (d—2)xy+ 22+ 2xyZ + X°2) , (A1)
Ta(k, p,d) = kiP;2,(K)Pja(P)Po(a)

=K (([d-2)(1-y)+Z +xy2), (A2)

Ts(k, p,0) = kiP5, (P)Pja(K)Pb(9)
= —kp((d—3)z+ (d—2)xy+ 22+ 2xyZ +¥*2) , (A3)

Tz(k, p,d) = —kiP,(P)Pja(K)Pib(0)
=—kp((2—-d)xy+ (1-d)z+y?%2), (A4)
To(k, p,0) = —kiPL,(A)Pja(K)Pib(p) = —ka (x2— 2’2 —yZ) , (A5)
T1(k, p,0) = —kiP,(@)Pja(k)Pib(p) = —kaz(x+y2), (A6)
Ton(k, p,q) = —Ton—1(K, p,q) forn=1,...,6, (A7)
T1315(k, P,0) = kiMjan(K')Pja(p)Pb(q) = —kpyz(y +x2), (A8)
T1a16(K, P, 0) = kiMjap(K)Pjp(P)Pa(a) = k(1 —y?)(d — 2+ 2), (A9)
T17,19(k, p,0) = kiMjan(P)Pja(k)Rb () = kpxz(X +yz), (A10)
Tig20(k, p,q) = —T1a(k, p,Q), (Al11)
To123(K, P,0) = kMian(Q)Pja(K)Pjo(p) = —kpxy(1—2), (A12)
T2224(k, p,q) = —Taiz(k, p,q), (A13)

wherek = p + g, andx, y,z are defined by

p-g=—pax; q-k=oaky; p-k=pkz (A14)
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