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On the invariance properties of the Klein—Gordon equation
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Abstract. Here we attempt to find the nature of the external electromagnetic field such that the KG
equation with external electromagnetic field is invariant. Lie's extended group method is applied to
obtain the class of external electromagnetic field which admits the invariance of the KG equation.
Though, the field potential only explicitly appears iretequation, the constras for the invariance

are only on the electromagnetic field.
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1. Introduction

In a previous paper [1], the consequences effitesence of external electromagnetic field

on the invariance of the Dirac equation was investigated. This paper is devoted to the same
problem for the Klein—Gordon equation. There exists a lot of literature on the problem,
but all of these investigations are confined to the case of free particle equation, i.e. in the
absence of an external electromagnetic field [2]. We introduce infinitesimal transformation
of space-time coordinates as well as the wave function to construct the extended group
following Lie [3]. Then we apply the operator of the extended group of the equation to
obtain the nature of admissible infinitesimal transformations. Since the KG equation is of
second-order we have to develop the first and second prolongations for the Lie’s extended
group. This leads us to the conditions for tingariance. Then we obtain the explicit
nature of the admissible infinitesimal transformations. As in the case of the Dirac equation,
here also the maximal symmetry group for the free particle namely, the Peigaaup is
constrained by the presence of electromagnetic field. Finally, we obtain the general nature
of the field for the invariance of the KG equation.

*since deceased.
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2. The Klein—Gordon equation

The Klein—Gordon (KG) equation in the presence of external electromagnetic field is given
by

2 2
{(po+§Ao) - (P+3A) —Mzcz} y=0, (1)
explicitly
o’y .. oY M?2¢?
6xﬂdxﬂ+|2A“W_(A“.AFH_?)LI]:O' @

(Notations: xo = ict = i1, Ag = i®, sub and superscripis, v,...,],k,... run through
0,1,2,3. Repeated Greek sub or supersc(iptsdistinction between them) in a term im-
plies summation. But repeated roman ones are free (no sum).)

2.1Infinitesimal transformations

Let us consider the infinitesimal transformations

Xt =xH 4+ e&H(x, ) (3)
and

P(X) = Y(x) + DX, ). (4)

€ is an infinitesimal quantity. The first prolongation is given by

s(2%) _(ov) _odu
(W)‘ ) o
(0 oy o g oY o&H\ ay
—(W+Ww>“"<axv+mw>w

()

and the second prolongation is thus

5( d%)_(%)_ %y
Oxkaxk | T\ axkaxk Oxkaxk
9% oY 920 oY\ 2 o2
= XXk TSk apaxk (W) EIE
%8V oy Q&Y 9%w Q&M Q%Y Ay
- [axkakaJr XK OXOXY | Qu axkaxk axi
dEV oy 9%y 9%EH 9y oy
Y AXK XX axkawﬁﬁ]'

(6)

In these derivationg’ and are considered as independent variables.
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Invariance properties of Klein-Gordon eguation
3. Invariance of the equation

In order that the KG equation is invariant umdee infinitesimal transformation eqs (3)
and (4),

0%y 7} oy 7} 7} 7}
6(—2>7+6<—>7+5w—+5x“—}(KG)=0- ()
92 U 9 M
{ OxH a(dx_:g) ox a(%) oy ox
Here,dzw/dsz, dw/ox%, g andx are considered as independent variables. From eq. (2),
d(KG 0(KG .
;m) 1 XK,
a7 o(5%)
d(KG) . oA dy _OA,
o oo Caa Y
I(KG) M?2c?
Za = (w5
Y=, oxH=EHH (8)

Equation (7) should be satisfied identicallyynand its derivatives along with the original
eg. (2) with an indeterminate multiplier, sByi.e., with the equation

2y .. oy MZ2c2 B
P{dX“dXH_‘_IZA“W_<AVAV+7>}L‘U_0. (9)

3.1 Determination of & and ®

Writing eq. (7) in full, with the help of eqs (5), (6) and (8), one observes that
there is only one term each &@w/dx¥)2 with the coefficientd?p/dy? and as
(O] axX€) (8% Ix<ox") with coefficientd&V /dy. Hence,

ZLL;E:O and %:O (10)
so that

@ =Db(x) +B(X) (11)
and

&H=2&H(x). (12)
Next collecting the coefficients of terndgy/dx? andd?y/dxaxi (k # j), one obtains

p q
B+P:2%:2% (13)
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and

9&k  9¢!
—_— 14
o+ ax =0 (K# ). (14)
It is important to note that these relations are independent of the potantial of E and
H. SinceB andP carry no index, the right-hand side of eq. (13) are the same for all the
four indices. Equations (13) and (14) are sufficient to deterrdiheniguely. Since the

result is well-known, we omit the proof and quote the result as
1
EP =a,x,xP — SapXuXy + XY +BxP+ TP, (15)
ay, rg, B andTP being independent constants, excluding the relations

re+ri=o. (16)

There are 15 independent parameter@mduces the well-known conformal transforma-
tion. We will see later thalf is associated with rotation and Lorentz transformation,
generates translation aﬂdeads to dilatation.

3.2Equationsfor B, Pand b

Next, collecting the coefficients @y /dxX, @ and terms independent gf one gets

OB Q2&kK JEK A

Tk~ +i2A(B+P) — |2Au—+|26“0 =0, a7)
XK IxHIXH OxH OxH

B .. 0B LY M2¢?
W_FIZA“W_ZE E “A (AHAIJ-F =2 >(B+P):0, (18)
9°%b . db M?2c?
m-“l “(9 m (AV,AV+ ﬁz >b:O (19)

The above equation (19) faxis exactly the same as that ¢f(eq. (2)), but from eq. (11)
b(x) is a function ofx alone and independent gf. Thus,

b(x) =0. (20)
From (17), on further differentiating, one gets
B .

Eliminating dB/dx, between eqs (17) and (18), and taking note of egs (13) and (14) one
obtains

22 ZCZ
Mﬁc (B+P) = 2'\"?(aux“+3):o, (22)

sinceM #0,a, =0andB =0, i.e., the KG equation with mass term does not admit confor-

mal invariance. It needs to be pointed out that our results up to this stage are independent
of A i.e., the presence of the external field.
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4., Nature of A for the invariance

SinceB+ P =0 (eq. (22)),B can be eliminated from eq. (1By differentiating further
to obtaind?B/dx ax (k # ) and subtracting it frond@?B/dx)dx¥. We finally obtain the
relation betweerd # andA, as

&K o&i 17}
a1~ g = g @3
where
M= 5 T o (24)

are the electric and magnetic field intensities. Equation (23) is the master equation which
leads to inter-relation between the field intensities for the invariance. It is important to note
that the final constraints are only on the electig and magneti¢H) field intensities.

5. The relations between electric and magnetic fields

Since in the expressions fgK the constantf'j‘ andTK are all independent parameters,
we can investigate their roles individually. It may be pointed out that eq. (23) is linear
and homogeneous iéi's. Hence the relations are independent of the parameters of the
transformation.

5.1The constraintson E and H dueto I'§
We first take one of thE§ # 0 and then fix suitable pairs ¢&¥,x!).

5.1.1 Let both indices be spatial ondst)I'y # 0. With the choice of pairs ofx¥,xl) as
stated below, eq. (23) gives

OH,

(%) ol 0, (25a)
OHx

(¥,2) : Hy — 0_:5|z =0, (25b)

(zX) : Hx+ Z—?’ =0. (25¢)

Here and in the sequé), ¢y andg, are azimuthal angles abouy andz-axis respectively.

O0Ex
X, %) : BEy— =— =0, 26a
(X,%0) : By 99, (26a)
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(mxo):Ex+»§§z —o, (26b)
(zxo) : Z—i =0. (26¢)

These equations show the relations between different components of magnetic field and
those of electric field among themselves under rotation aboutdlves (see Appendix).

Forly # 0 andr'z # 0, one obtains similarly six relatihs each with cyclic permutations
of x, yandz

5.1.2 Let one of the indices be time and the other, spg&g-f # 0, (T = ct).

With the choice of pairs ofx,x), eq. (23) gives

(X,1): g—)E(;( =0, (27a)
0E
(y, ) : Ho+ d—xi =0, (27b)
(z,T) 1 Hy — g—)E(Z =0, (27¢)
X

(tanhxq = x9/et, X4 = (x,Y,2))

oH
mwfw,;za (28a)
X
AH
(ya Z) (B - 0Xy = O, (28b)
X
(v2): 2 _g (28¢)
IX:
X

These equations show the inter-relation between the components of the electric and mag-
netic fields, under Lorentz transformation (see Appendix II) with velocity alongkthe
direction.

Forl'} #0 andrZ # 0, one obtains similarly six relaths each with cyclic permutations
of x,y andz
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5.1.3TP#0, eq. (23) leads to

9
oxP

They express translation invariance of the electric and magnetic fields in the respective
directions.

F = 0. (29)

6. Discussion

The above analysis shows that the KG equation with the introduction of the electromag-
netic field may admit the same invariance properties as that of the field free equation
namely the Poincargroup consisting of translation, rotation and Lorentz transformation.
This result is quite expected from the structure of the equation. But an important point to
emphasize is that exhaustive investigation of infinitesimal transformation shows that there
are no other groups. Further, it is quite natural that the invariances are restricted by the
exact nature of the electromagnetic field which has been worked out in detail.

Appendix |

With the non-vanishingy = y (say) from eq. (3) for infinitesimal transformation
5=¢eyy and & = —eyx. (A1)

Again from the operator on the right-hand side of eq. (23)

0 7]

(yﬁ — Xc9_y> X=Y, (A2a)
0 7]

(3735 2= a0

leads to the same infinitesimal changes as above. Introducing a finite parérfreterthe
infinitesimal onecy as defined by

6 =eyn,
wheren is a very large positive integer, we get
_ 6 _ 6
X1 = <X+ ﬁy> y V1= <y— HX> (A3)
so that
_ . i :
(%t i) = (1—;) (x+iy). (A%)

The subscript indicates transformeedndy after the first stage. Hence aftestages,
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(X+iy)n = <1—§>n(x+iy). (A5)
The finite change is obtained as—+ . Thus

X+iy=e9(x+iy) (A6)
leading to

X = xcos6 +ysiné,

y = —xsin6 +ycosf (A7)

which is the expression for rotation about thexis.

Appendix Il

With the non-vanishing% = y (say) from eqg. (3)
ox=¢eyt and OT=c¢eyx (A8)

As before from the right-hand side of eq. (23),

0 7]
(Ta_)( +XE> X=T (A9a)
and
7} 7
(Ta—)(‘FXE) T=X (Agb)

leads to the same infinitesimal changes. Introducing a finite paragétan the infinites-
imal oneey as defined by

X=eym,
wheremis a large positive integer, one gets

— X = X

= = = =X Al

X1 = X+ mT and T; T—l—mX (A10)

Hence,
Tt 1)y = X
(X£1)1= (1i m) (X£1) (A11)

so that for finite change
m
T — (1i§) (X T)(M = 00) = X (XL T). (AL2)

Thus
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xcoshy + tsinhy,

X
T = xsinhy + tcoshy. (A13)

Introducing a new parametév/c) = tanhy, one gets the usual form of Lorentz transfor-
mation with velocityv along thex-direction.
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