
PRAMANA c
 Indian Academy of Sciences Vol. 60, No. 4
— journal of April 2003

physics pp. 829–840

Quarkonium suppression

P PETRECZKY
Fakultät für Physik, Universit¨at Bielefeld, P.O. Box 100131, D-33501 Bielefeld, Germany

Abstract. I discuss quarkonium suppression in equilibrated strongly interacting matter. After a
brief review of basic features of quarkonium production I discuss the application of recent lattice
data on the heavy quark potential to the problem of quarkonium dissociation as well as the problem
of direct lattice determination of quarkonium properties in finite temperature lattice QCD.
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1. Introduction

The behavior of the heavy quarkonium states in hot strongly interacting matter was pro-
posed as a test of its confining nature, since a sufficiently hot deconfined medium will
dissolve any binding between the quark–antiquark pair [1]. Another possibility of disso-
ciation of certain quarkonium states (subthreshold states atT = 0) is the decay into open
charm (beauty) mesons due to in-medium modification of both the quarkonia and heavy–
light meson masses [2,3].

The production ofJ=ψ andϒ mesons in hadronic reactions occurs in part through pro-
duction of higher excitedcc̄ (or bb̄) states and their decay into quarkonia ground state.
Since the lifetime of different subthreshold quarkonium states is much larger than the typ-
ical lifetime of the medium which may be produced in nucleus–nucleus collisions, their
decay occurs almost completely outside the produced medium. This means that the pro-
duced medium can be probed not only by the ground state quarkonium but also by different
excited quarkonium states. Since different quarkonium states have different sizes (binding
energies), one expects that higher excited states will dissolve at lower temperature than
the smaller and more tightly bound ground states. These facts may lead to a sequential
suppression pattern inJ=ψ andϒ yield in nucleus–nucleus collision as a function of the
energy density [4].

The rest of the paper is organized as follows: Inx2 a brief review of the basic features
of quarkonium production is presented. The possibility of quarkonium dissociation below
deconfinement is discussed inx3. The use of lattice data on the heavy quark potential to
determine the dissociation temperatures due to color screening is discussed inx4. Finally
the problem of direct lattice determination of quarkonium properties at finite temperature
is discussed inx5 followed by the conclusions presented inx6.
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2. Quarkonium production and feed-down

It is well-known thatJ=ψ production in hadron–hadron collision is, to a considerable ex-
tent, due to the production and subsequent decay of higher excitedcc̄ states [5–7]. The
feed-down from higher excited states was systematically studied in proton–nucleon and
pion–nucleon interactions with 300 GeV incident proton (pion) beams [7]. In these studies
the cross sections for direct production of different charmonium states (excluding feed-
down) were measured. Then making use of the known branching ratiosB[χ 1(1P) !
ψ(1S)] = 0:27� 0:02, B[χ2(1P) ! ψ(1S)] = 0:14� 0:01, andB[ψ(2S) ! ψ(1S)] =
0:55� 0:05, one obtains the fractional feed-down contributionsf i of the different char-
monium states to the observedJ=ψ production. These are shown in the second and third
columns of table 1.

In the case of bottomonium the experiment provides only the inclusive (i.e. including
also the feed-down from higher states) cross-section for different(nS) states [8]. The feed-
down from(nP) states is known only for transverse momentapT� 8 GeV/c [8]. To analyze
the complete feed-down pattern, we thus have to find a way to extrapolate these data to
pT = 0 as well as to determine the direct cross-section for different(nS) states. This can
be done using the most simple and general model for quarkonium production, the color
evaporation model [9]. In particular this model predicts that the ratios of cross-sections
for production of different quarkonium states are energy independent. This prediction
was verified for a considerable range of energies [10]. The ratios between the different
χJ(1P) states in this model are predicted to be governed essentially by the orbital angular
momentum degeneracy [9]; we thus expect for the corresponding cross-sections

χ0(1P) : χ1(1P) : χ2(1P) = 1 : 3 : 5: (1)

From table 1 we have forπ�N collisionsχ2(1P)=χ1(1P) ' 1:44�0:38 and thus reason-
able agreement with the predicted ratio 1.67. Actually, forpN interactions, the experiment
measures only the combined effect ofχ1 andχ2 decay (30% of the overallJ=ψ produc-
tion); the listed values in table 1 are obtained by distributing this in the ratio 3 : 5.

Using considerations based on color evaporation model, in particular eq. (1), the feed-
down from higher excitedbb̄ states toϒ production can be predicted [11]; the feed-down
fractions are summarized in table 1. Alternatively the feed-down fraction from higher
excitedbb̄ states can be predicted using NRQCD factorization formula [11]. The results of
this analysis are summarized in the last column of table 1.

Table 1. Feed-down fractions from higher excited states to theJ=ψ andϒ states.

State fi(π
�N) (%) fi(p N) (%) State fi(pp̄) (%) f NRQCD

i
(pp̄) (%)

J=ψ(1S) 57� 3 62� 4 ϒ(1S) 52� 9 52� 34
χ1(1P) 20� 5 16� 4 χb(1P) 26� 7 24� 8
χ2(1P) 15� 4 14� 4 ϒ(2S) 10� 3 8� 7
ψ(2S) 8� 2 8� 2 χb(2P) 10� 7 14� 4

ϒ(3S) 2� 0.5 2� 2
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3. Quarkonium dissociation below deconfinement

Recent lattice calculations of the heavy quark potential show evidence for the string break-
ing at finite temperature [12]. On the lattice the potential is calculated from the Polyakov
loop correlator, to which it is related by

V(r;T) =� lnhL(r)L†(0)i+C; (2)

whereL(r) is the Polyakov loop (see e.g. ref. [12] for definition). The normalization con-
stantC contains both the cut-off dependent self-energy and the entropy contributions�TS
(for T 6= 0,� lnhL(r)L†(0)i is actually the free energy of the staticQQ̄ pair). For a properly
chosen normalization constantC, V(r;T) is the ground state energy of an infinitely heavy
QQ̄ pair. In the absence of dynamical quarks (quenched QCD)V(r;T) is linearly rising
with r for large separations indicating the existence of a flux tube (string). If dynamical
quarks are present, the flux tube can decay (the string can break) by creating a pair of
light quarksqq̄ from the vacuum onceV(r;T) is larger than twice the binding energy of
a heavy–lightQq̄ (qQ̄) meson [12a] Thus the potential at very large distances is constant
V∞(T) and is equal to twice the binding energy of a heavy–light meson.

It is expected that medium effects are not important at very short distances. Therefore,
at very short distances the potentialV(r;T) should be given by the Cornell potential [13]

V(r) =�e
r
+σ r: (3)

We use this fact to determine the normalization constantC and set the potential to be
of the Cornell form at the the smallest distancerT = 0:25 available in lattice studies of
[12], with e= 0:4 as expected for(2+1)-flavor QCD [14]. The resulting potential and
V∞(T) are shown in figure 1. Note the strong temperature dependence ofV∞(T). Since for
sufficiently heavy quarks (mQ � ΛQCD) it does not matter whether the quark is infinitely
heavy or just merely heavy, the open charm (beauty) meson masses are approximately
given by 2MD;B(T) = 2mc;b+V∞(T).

Now the temperature dependence of the different quarkonium states should be ad-
dressed. At zero temperature the heavy quark masses permit the application of potential
theory for the description of quarkonium spectroscopy (see e.g. [15]). Furthermore, it turns
out that the time scale of gluodynamics relevant for quarkonium spectroscopy is smaller
than(mQv)�1 (v being the heavy quark velocity) [15]. For sufficiently heavy quarks this

time scale is much smaller than the typical hadronic time scaleΛ�1
QCD� 1 fm. The decay

of the flux-tube like all other hadronic decays has time scale of order 1 fm. Therefore
in the potential theory the potential must always be of Cornell form (i.e. linearly rising
at large distances). These considerations have direct phenomenological support. Namely,
simple potential models with linearly rising potential can describe reasonably well also the
quarkonium states above the open charm (beauty) threshold. Many of these higher excited
states have an effective radius of order of or even larger than 1 fm [14,13]. Contrary to
this situation in the case of the potential becoming flat around 1 fm (the expected radius of
string breaking atT = 0) the higher excited states above the open charm (beauty) threshold
simply do not exist. Therefore, the temperature dependent quarkonium masses have been
determined from the Schr¨odinger equation
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Figure 1. The heavy quark potential and its asymptotic value below deconfinement at
different temperatures. The line on the bottom figure is a fit to the data points.
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This form of the potential describes quite well the temperature dependence of the heavy
quark potential in quenched QCD for appropriately chosenσ(T) [17]. In order to make
contact to real QCD we sete=0:4 and useTc=

p
σ =0:425 from [12] for the deconfinement

temperature (byσ we always denote the string tension at zero temperature). Furthermore
we use the following values of the heavy quark masses,mc = 1:3 GeV andmb = 4:72 GeV
as well as

p
σ = 0:44 GeV for the zero temperature string tension. This set of parameters
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Figure 2. The masses of different quarkonia states and the open charm (beauty) thresh-
old as a function of temperature. Shown are the charmonia masses and open charm
threshold (top) and bottomonia masses and open beauty threshold (bottom) as function
of the temperature. The thick solid line is the open charm (beauty) threshold obtained
from normalization atr = 1=(4T). The thin solid line is the open charm (beauty) thresh-
old obtained from normalization atr =

p
2=(4T) (see text).

gives a fairly good description of the observed quarkonium spectrum at zero temperature.
The temperature dependence of the string tension was taken from [17]. The resulting
quarkonia masses are shown in figure 2.

Since the smallest distance available on lattice is only 0:25T�1, one may worry about
possible medium effects at this distance and their role in the determination ofV∞(T). Nor-
malizing the Polyakov loop correlator (2) atr = 1=(4T) with eq. (5), we thus obtain what
might be a more reliable estimate of the plateauV∞(T) than with theT = 0 form (3). It
turns out, however, that the two forms of short distance behavior resulting from the zero
temperature Cornell potentials (3) and (5) are practically identical, so that the normaliza-
tion is in fact not affected by the in-medium modifications at larger distances. To consider
further possible uncertainties of the normalization procedure, the Polyakov loop correlator
has been normalized also at the next smallest distancer =

p
2=(4T). The resulting two
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forms ofV∞(T) are shown in figure 2. The difference between the two curves ofV∞(T)

provides an estimate of the normalization error. Except for the region very nearT = Tc,
the uncertainty is seen to be quite small.

From figure 2 one can see thatψ 0 andχc states become an open charm states well below
Tc and can dissociate by decaying intoDD̄. The situation is similar forϒ(3S) andχb(2P)
states which can decay intoBB̄ belowTc. For J=ψ , χb(1P) andϒ(2S) it is not possible
to say whether they will dissociate aboveTc or just belowTc. Finally, theϒ(1S) state will
definitely dissociate above the deconfinement. We are going to estimate the dissociation
temperatures of these states in the next section.

4. Quarkonium dissociation by color screening and the sequential suppression
pattern

In the deconfined phase it is customary to choose the constantC in (2) to be the value
of the correlator at infinite separationC = T lnhL(r)L†(0)ijr!∞ � ln jhLij2. The resulting
connected correlator defines the so-called color averaged potential [18]

V(r;T) =�T ln
hL(r)L†(0)i
jhLij2

: (6)

The color averaged potential written as the thermal average of the potentials in color singlet
V1(T; r) and color octetV8(T; r) states

exp(�V(r;T)=T) =
1
9

exp(�V1(r;T)=T)+
8
9

exp(�V8(r;T)=T): (7)

In potential models it is assumed that quarkonium is dominantly a singletQQ̄ state. Fur-
thermore the octet channel is repulsive (at least in perturbation theory) and therefore only
a singletQQ̄ pair can be bound in the deconfined phase. Thus we need to know the singlet
potential. Lattice data in the relevant case of 3 flavor QCD exist only for the averaged
potential [12,19]. The averaged potential in 3 flavor QCD is shown in figure 3 for three
representative temperatures. Note that within the present accuracy of the lattice calcu-
lations the potential vanishes beyond some distancer 0(T) denoted by vertical arrows in
figure 3. In perturbation theory, the leading terms for both singlet and octet potentials are
of Coulomb form at high temperature and smallr (r � T �1)

V1(r;T) =�4
3

α(T)

r
; V8(r;T) = +

1
6

α(T)

r
; (8)

with α(T) for the temperature-dependent running coupling. In the region just above the
deconfinement pointT = Tc, there will certainly be significant non-perturbative effects of
unknown form. We attempt to parameterize the existing non-perturbative effects by the
following form

V1(r;T) =�4
3

α(T)

r
expf�µ(T)rg; V8(r;T) =

1
6

c(T)
α(T)

r
expf�µ(T)rg;

(9)
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Figure 3. The color average potential calculated on lattice.

whereµ(T) denotes the effective screening mass in the deconfined medium. We fit the
lattice data of [12,19] by eqs (7) and (9) assumingα(T), µ(T) andc(T) to be unknown
functions ofT. Since the present data are not precise enough to determineα(T), µ(T) and
c(T) simultaneously, some additional constraints coming from simulations of pure gauge
theory [20–23] should be invoked in the fit procedure. The fit procedure is described in
detail in ref. [11]. Here it is sufficient to mention thatα(T) can be well described by
the 1-loop formula for the QCD running coupling withΛ QCD = (0:34� 0:01)Tc and the
screening massµ(T) is constant in units of the temperatureµ(T) = (1:15�0:02)T [11].

Now we are in a position to discuss quarkonium dissociation due to color screening. It
is natural to assume that the heavyQQ̄ pair cannot exist as a bound state if its effective
binding radius (the mean distance betweenQ and Q̄) is larger than the screening radius of
the medium. The effective radii for different bound states are calculated from eq. (4) with
V(r) =V1(r;T). The screening radius of the medium can be identified with 1=µ(T). How-
ever, the value ofµ(T) strongly depends on assumptions we have made to determine it. A
less model dependent and more conservative approach would be to identify the screening
radius withr0(T) defined above. We use the latter approach. In figure 4 we show the
effective radius ofJ=ψ andϒ states and the screening radius as functions of temperature.
The intersection of these curves defines the dissociation temperature ofJ=ψ andϒ states.
Similar analysis was done for excited states which may survive aboveTc.

Alternatively one can define the dissociation temperatures as the temperature where the
effective bound state radius diverges [24] and the quark–antiquark pair is unbound. It is
clear from figure 4 that such definition will lead to larger, though not very different value of
the dissociation temperature. However, one should note that once the radius of the bound
state is larger than the screening radius the present treatment based on Schr¨odinger equa-
tion is clearly not valid and the effect of the medium becomes so strong that quarkonium
dissociation is very likely to happen.

Now the dissociation temperatures are known for all quarkonium states and summarized
in table 2. Combining these dissociation temperature with the feed-down fractions de-
termined inx2 we can predict the sequential suppression pattern ofJ=ψ andϒ states as
functions of temperature. These are summarized in figure 5.
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Figure 5. The suppression pattern ofJ=ψ (left) and ϒ yield (right) as functions of
temperature.

Table 2. Dissociation temperatures of different quarkonium states.

qq̄ J=Ψ χc ψ 0 ϒ(1S) χb(1P) ϒ(2S) χb(2P) ϒ(3S)

T=Tc 1.10 0.74 0.2 2.31 1.13 1.10 0.83 0.75

5. Lattice determination of quarkonium properties at finite temperature

At zero temperature, quarkonium properties (masses, decay constants etc.) can be obtained
from the behavior of the mesonic correlators at large Euclidean time separations

hO(τ ;~p);O(0;�~p)iτ!∞ = ∑
n

Ane�mnτ : (10)

HereO(τ ;~p) = ∑~xei~p~xO(τ ;x) is the mesonic operator bilinear in quark fieldsO(τ ;~x) =
q̄(x)Γq(x); Γ = γ5;γµ for the pseudo-scalar and the vector channel, respectively. Direct
application of eq. (10) for the determination of quarkonium masses is difficult because
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at large separations statistical errors in the correlation function become very large. To
improve the situation one usually uses smeared (improved) operatorsÕ instead ofO such
that only one coefficientAn in eq. (10) is significantly different from zero. A possible
choice of the operator̃O which has an optimal projection onto a given quarkonium state is

Õ(τ ;~z) =∑
~y

ω(~y)q̄(τ ;~z)Γq(τ ;~z+~y); (11)

whereω(~y) is the trial wave function [24a] (see [25] for further details).
At finite temperature further difficulties appear in direct lattice determination of quarko-

nium masses. First of all, eq. (10) is not applicable in principle because the time extent
is limited by the inverse temperature. Since the temporal lattice size becomes smaller as
the temperature is increased, fewer data points on the temporal correlators are available.
Another problem which is also present at zero temperature but becomes more serious at fi-
nite temperature (just because one is enforced to consider mesonic correlators also at short
distances) is the discretization errors of ordermQa with mQ being the heavy quark mass
anda being the lattice spacing.

To study quarkonium properties at finite temperature in quenched QCD correlators of
smeared operators were calculated on anisotropic lattices [26,27]. To deal with large dis-
cretization errors in [26] the NRQCD formalism was used (where the scalemQ is integrated
out). In this calculation the mesonic correlators corresponding to the ground state quarko-
nium show only small changes up to temperature 1:2Tc compared to the zero temperature
case while the first excited state shows very dramatic change with the temperature. The
authors of [27] used a different formalism, namely they used the Fermilab action [28] on
anisotropic lattices which has no discretization error of ordermQa at tree level. They ob-
served more dramatic changes of the mesonic correlators as the deconfinement point is
crossed. However, the correlators are very far from the free ones even at temperatures as
high as 1:5Tc indicating possible existence of bound states at this temperature.

There are several problems with the approach presented in [26,27]. The most serious
one is the use of optimized correlators which assumes existence of well-defined quarko-
nium states at finite temperature. Clearly, different particle states at zero temperature will
appear as quasiparticles with finite width at non-zero temperature. The implementation
of NRQCD formalism in [26] does not assume anti-periodic boundary condition in time
direction for the quark propagators and therefore it is not clear to what extent the meson
correlators calculated in [26] can be related to some finite temperature (retarded) correla-
tion functions. In [27] the spatial lattice spacing was quite large and the effect of doublers
cannot be completely neglected.

Another possibility to extract quarkonium properties in lattice QCD is to calculate usual
point-to-point correlatorsG(τ ;~p) = hO(τ ;~p)O(0;�~p)i (i.e. correlators of point sources)
in imaginary time and extract the spectral function. The information on the bound state are
then encoded in the peaks of the spectral function.

The imaginary time correlator can be related to the retarded meson propagatorG R(ω ; p)
by analytic continuation

G(iωn; p) =
Z 1=T

0
eiωnτG(τ ; p); G(iωn ! ω + iε ; p) = GR(ω ; p): (12)

which allows to write down the spectral representation forG(τ ; p),
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G(τ ; p) =
Z ∞

0
dωσ(ω ; p)

cosh(ω(τ�1=(2T))
sinh(ω=(2T))

: (13)

In principle this equation allows to determineσ(ω) from G(τ ; p). However, in practice the
value ofG is available only forNτ=2� 8 differentτ-values. For reasonably fine discretiza-
tion in ω-space one hasNω � 700 degrees of freedom to be reconstructed. This problem
can be solved only using the maximum entropy method (MEM) (see [29] for a review).
Mesonic spectral functions in different channels were successfully reconstructed using this
method [30]. Very recently it has been demonstrated that spectral function also at finite
temperature can be reconstructed using this method and isotropic lattices withNτ = 12; 16
sites in temporal direction [31,32]. Thus a natural alternative to the approach presented in
[26,27] could be the calculation of point-to-point mesonic correlators using isotropic lat-
tice with non-perturbatively improved clover action [32]. Compared to [27] this approach
has the advantage that all lattice artifacts of orderTa paare completely removed but also
the disadvantage thatmQa effects are present even at the tree level. The latter, however,
can be controlled ifa is small enough. This approach is currently being investigated [33].
Calculations so far have been performed on 483�16, 483�12 and 643�16 lattices and
gauge couplingβ = 6:499; 6:640 and 6:872. These parameters correspond to temperatures
T = 0:9Tc; 1:2Tc and 1:5Tc and lattice spacing froma�1 = 6:5 GeV, 4.9 GeV and 4.0 GeV.
The quark mass in these calculations was about 1.5 GeV. The discretization errors in the
correlation function turns out to be large, e.g the value ofG(τ = 1=(2T)) at 1:5Tc calcu-
lated witha�1 = 4:9 GeV anda�1 = 6:5 GeV differs by 16% while the same difference
in the light quark sector is about 1%. Because of this MEM cannot be applied to extract
the spectral function unless extrapolation to the continuum limit is performed. Neverthe-
less, correlation functions themselves can provide some information about the existence of
quarkonium bound states. Figure 6 shows the ratio of the meson correlator calculated at
1:2Tc (483�12,β = 6:499) to the one calculated at 0:9Tc (483�16,β = 6:499). Except
the last point atτ ' 0:3 fm this ratio stays very close to unity at 1σ level. The devia-
tion atτ ' 0:3 fm is simply due to periodic boundary condition (τ ' 0:3 fm corresponds
to τ = 1=(2T) on 483� 12 lattice). While this fact does not necessarily imply that the
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quarkonium spectral function does not change as the deconfinement point is crossed, it
does imply that the propagation of heavy quarks in the deconfined phase is far from free
propagation ofQQ̄ pair in agreement with studies performed in [26,27].

6. Conclusions

I have considered quarkonium dissociation in hot strongly interacting matter below as well
as above the deconfinement. In a confined medium, dissociation of certain quarkonium
states occurs due to in-medium modification of the open charm (beauty) threshold as well
as the quarkonia masses. In the deconfined medium quarkonium, dissociation is due to
color screening. In this analysis quarkonium masses were extracted from Schr¨odinger’s
equation. The singlet potential used in Schr¨odinger’s equation was extracted from lattice
data on the Polyakov loop correlator using some additional assumptions. For a more accu-
rate determination of the quarkonium suppression patterns, it would be desirable to carry
out direct lattice studies of the color singlet potential and of its quark mass dependence,
which may become important near the critical temperature. Furthermore, to make contact
with nuclear collision experiments, a more precise determination of the energy density via
lattice simulations is clearly needed, as is a clarification of the role of a finite baryochemi-
cal potential. For the latter problem, lattice studies are so far very difficult; nevertheless, a
recent new approach [34] could make such studies feasible.

In x5 the problem of direct lattice determination of quarkonium properties was dis-
cussed. An unbiased determination of these properties free of lattice artifacts seems to
be very difficult and not available so far even in the quenched approximation. Such an
analysis will be a very important check of the results obtained from the simple potential
picture discussed inxx3 and 4.
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