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Abstract. We review recent work on the phase structure of QCD at very high baryon density. We
introduce the phenomenon of color superconductivity and discuss the use of weak coupling methods.
We study the phase structure as a function of the number of flavors and their masses. We also
introduce effective theories that describe low energy excitations at high baryon density. Finally, we
comment on the possibility of kaon condensation at very large baryon density.
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1. Color superconductivity

In the interior of compact stars, matter is compressed to densities several times larger than
the density of ordinary matter. Unlike the situation in relativistic heavy-ion collisions,
these conditions are maintained for essentially infinite periods of time and the material is
quite cold. At low density quarks are confined, chiral symmetry is broken, and baryonic
matter is described in terms of neutrons and protons as well as their excitations. At very
large density, on the other hand, we expect that baryonic matter is described more effec-
tively in terms of quarks rather than hadrons. As we shall see, these quarks can form new
condensates and the phase structure of dense quark matter is quite rich.

At very high density the natural degrees of freedom are quark excitations and holes in
the vicinity of the Fermi surface. Since the Fermi momentum is large, asymptotic free-
dom implies that the interaction between quasiparticles is weak. In QCD, because of the
presence of unscreened long range gauge forces, this is not quite true. Nevertheless, we
believe that this fact does not essentially modify the argument. We know from the theory
of superconductivity that the Fermi surface is unstable in the presence of even an arbitrarily
weak attractive interaction. At very large density, the attraction is provided by one-gluon
exchange between quarks in a color anti-symmetric3̄ state. High density quark matter is
therefore expected to behave as a color superconductor [1–4].

Color superconductivity is described by a pair condensate of the form

φ = hψTCΓDλCτFψi: (1)
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Here,C is the charge conjugation matrix, andΓD;λC;τF are Dirac, color, and flavor matri-
ces. Except in the case of only two colors, the order parameter cannot be a color singlet.
Color superconductivity is therefore characterized by the breakdown of color gauge invari-
ance. As usual, this statement has to be interpreted with care because local gauge invari-
ance cannot really be broken. Nevertheless, we can study gauge invariant consequences of
a quark pair condensate, in particular the formation of a gap in the excitation spectrum.

In addition to that, color superconductivity can lead to the breakdown of global sym-
metries. We shall see that in some cases there is a gauge invariant order parameter for the
U(1) of baryon number. This corresponds to true superfluidity and the appearance of a
massless phonon. We shall also find that forNf > 2 color superconductivity leads to chiral
symmetry breaking. Finally, if the effects of finite quark masses are taken into account we
find additional forms of long-range order.

2. Phase structure in weak coupling

2.1QCD with two flavors

In this section we shall discuss how to use weak coupling methods in order to explore
the phases of dense quark matter. We begin with what is usually considered to be the
simplest case, quark matter with two degenerate flavors, up and down. Renormalization
group arguments suggest [5,6], and explicit calculations show [7,8], that whenever possible
quark pairs condense in ans-wave. This means that the spin wave function of the pair is
anti-symmetric. Since the color wave function is also anti-symmetric, the Pauli principle
requires the flavor wave function to be anti-symmetric too. This essentially determines the
structure of the order parameter [9,10]

φa
= hεabcψbCγ5τ2ψci: (2)

This order parameter breaks the colorSU(3)! SU(2) and leads to a gap for up and down
quarks with two out of the three colors. Chiral and isospin symmetry remain unbroken.

We can calculate the magnitude of the gap and the condensation energy using weak
coupling methods. In weak coupling the gap is determined by ladder diagrams with the
one gluon exchange interaction. These diagrams can be summed using the gap equation
[11–15]
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Here,∆(p0) is the frequency dependent gap,g is the QCD coupling constant andG and
F are the self-energies of magnetic and electric gluons. This gap equation is very similar
to the BCS gap equations that describe nuclear superfluids. The main difference is that
because the gluon is massless, the gap equation contains a collinear cosθ � 1 divergence.
In a dense medium the collinear divergence is regularized by the gluon self-energy. For
~q! 0 and to leading order in perturbation theory we have
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F = 2m2; G=
π
2

m2 q0

j~qj ; (4)

with m2 = Nf g
2µ2=(4π2). In the electric part,m2

D = 2m2 is the familiar Debye screening
mass. In the magnetic part, there is no screening of static modes, but non-static modes are
modes dynamically screened due to Landau damping.

We can now perform the angular integral and find

∆(p0) =
g2

18π2

Z
dq0 log

�
bµ

jp0�q0j
�

∆(q0)q
q2

0+∆(q0)
2
; (5)

with b = 256π 4(2=Nf )
5=2g�5. We can now see why it was important to keep the fre-

quency dependence of the gap. Because the collinear divergence is regulated by dynamic
screening, the gap equation depends onp0 even if the frequency is small. We can also see
that the gap scales as exp(�c=g). The collinear divergence leads to a gap equation with a
double-log behavior. Qualitatively

1� g2

18π2

h
log
�µ

∆

�i2
; (6)

from which we conclude that∆ � exp(�c=g). The approximation (6) is not sufficiently
accurate to determine the correct value of the constantc. A more detailed analysis shows
that the gap on the Fermi surface is given by

∆0 ' 512π4(2=Nf )
5=2µg�5exp

�
� 3π2
p

2g

�
: (7)

We should emphasize that, strictly speaking, this result contains only an estimate of the
pre-exponent. It was recently argued that wave function renormalization and quasiparticle
damping giveO(1) contributions to the pre-exponent which substantially reduce the gap
[15,16].

For chemical potentialsµ < 1 GeV, the coupling constant is not small and the appli-
cability of perturbation theory is in doubt. If we ignore this problem and extrapolate the
perturbative calculation to densitiesρ ' 5ρ0, we find gaps∆' 100 MeV. This result may
indeed be more reliable than the calculation on which it is based. In particular, we note that
similar results have been obtained using realistic interactions which reproduce the chiral
condensate at zero baryon density [9,10].

2.2QCD with three flavors: Color-flavor-locking

If quark matter is formed at densities several times nuclear matter density we expect the
quark chemical potential to be larger than the strange quark mass. We therefore have to
determine the structure of the superfluid order parameter for three quark flavors. We begin
with the idealized situation of three degenerate flavors. From the arguments given in the
last section we expect the order parameter to be color and flavor anti-symmetric matrix of
the form
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φab
i j = hψa

i Cγ5ψb
j i: (8)

In order to determine the precise structure of this matrix we have to extremize grand canon-
ical potential. We find [17,18]

∆ab
i j = ∆(δ a

i δ b
j �δ b

i δ a
j ); (9)

which describes the color-flavor locked phase proposed in [19]. Both color and flavor
symmetries are completely broken. There are eight combinations of color and flavor sym-
metries that generate unbroken global symmetries. The symmetry breaking pattern is

SU(3)L�SU(3)R�U(1)V ! SU(3)V : (10)

This is exactly the same symmetry breaking that QCD exhibits at low density. The spec-
trum of excitations in the color-flavor-locked (CFL) phase also looks remarkably like the
spectrum of QCD at low density [20]. The excitations can be classified according to their
quantum numbers under the unbrokenSU(3), and by their electric charge. The modi-
fied charge operator that generates a true symmetry of the CFL phase is given by a lin-
ear combination of the original charge operatorQem and the color hypercharge operator
Q = diag(�2=3;�2=3;1=3). Also, baryon number is only broken modulo 2/3, which
means that one can still distinguish baryons from mesons. We find that the CFL phase
contains an octet of Goldstone bosons associated with chiral symmetry breaking, an octet
of vector mesons, an octet and a singlet of baryons, and a singlet Goldstone boson related
to superfluidity. All of these states have integer charges.

With the exception of theU(1) Goldstone boson, these states exactly match the quan-
tum numbers of the lowest lying multiplets in QCD at low density. In addition to that, the
presence of theU(1) Goldstone boson can also be understood. TheU(1) order parameter
is h(uds)(uds)i. This order parameter has the quantum numbers of a 0+ ΛΛ pair conden-
sate. InNf = 3 QCD, this is the most symmetric two-nucleon channel, and a very likely
candidate for superfluidity in nuclear matter at low to moderate density. We conclude that
in QCD with three degenerate light flavors, there is no fundamental difference between the
high and low density phases. This implies that a low density hyper-nuclear phase and the
high density quark phase might be continuously connected, without an intervening phase
transition.

2.3Other phases

Color-flavor locking can be generalized to QCD with more than three flavors [17]. Chiral
symmetry is broken for allNf � 3, but only in the caseNf = 3 do we find theT = µ = 0
pattern of chiral symmetry breaking,SU(N f )L�SU(Nf )R! SU(Nf )V .

The caseNf = 1 is special [8]. In this case the order parameter is flavor-symmetric
and the Cooper pairs carry non-zero angular momentum. ForNc = 3 the spin direction
can become aligned with the color orientation of the Cooper pair. In the color-spin locked
phase color and rotational invariance are broken, but a diagonalSO(3) survives.

If the number of colors is very large,Nc!∞, color superconductivity is suppressed and
the ground state is very likely a chiral density wave [21]. This state is analogous to spin
density waves in condensed matter physics. If the baryon density is large, the transition
from color superconductivity to chiral density waves requires very large values ofNc of the
order ofNc > 1000 [22].
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3. The role of the strange quark mass

At baryon densities relevant to astrophysical objects distortions of the pure CFL state due
to non-zero quark masses cannot be neglected [23–28]. This problem can be studied using
the effective chiral theory of the CFL phase [29] (CFLχTh). This theory determines both
the ground state and the spectrum of excitations with energies below the gap in the CFL
phase. Using the effective theory allows us to perform systematic calculations order by
order in the quark mass.

3.1CFL chiral theory (CFLχTh)

For excitation energies smaller than the gap the only relevant degrees of freedom are the
Goldstone modes associated with the breaking of chiral symmetry and baryon number. The
interaction of the Goldstone modes is described by an effective Lagrangian of the form [29]

Leff =
f 2
π
4

Tr
�
∇0Σ∇0Σ†�v2

π∂iΣ∂iΣ
†�+[CTr(MΣ†)+h:c:]

+[A1Tr(MΣ†)Tr(MΣ†)+A2Tr(MΣ†MΣ†)

+A3Tr(MΣ†
)Tr(M†Σ)+h:c:]+ � � � : (11)

Here Σ = exp(iφ aλ a= fπ) is the chiral field, fπ is the pion decay constant andM is a
complex mass matrix. The chiral field and the mass matrix transform asΣ ! LΣR† and
M ! LMR† under chiral transformations(L;R) 2 SU(3)L�SU(3)R. We have suppressed
the singlet fields associated with the breaking of the exactU(1)V and approximateU(1)A
symmetries. The theory (11) looks superficially like ordinary chiral perturbation theory.
There are, however, some important differences. Lorentz invariance is broken and Gold-
stone modes move with the velocityvπ < c. The chiral expansion has the structure

L � f 2
π ∆2

�
∂0

∆

�k
 
~∂
∆

!l �
Σ
�m�Σ†�n

: (12)

Loop graphs are suppressed by powers of∂=(4π f π). We shall see that the pion decay con-
stant scales asfπ � pF. As a result higher order derivative interactions are parametrically
more important than loop diagrams with the leading order vertices.

Further differences as compared to chiral perturbation theory in vacuum appear when
the expansion in the quark mass is considered. The CFL phase has an approximate(Z2)A
symmetry under whichM !�M andΣ! Σ. This symmetry implies that the coefficients
of mass terms that contain odd powers ofM are small. The(Z2)A symmetry is explicitly
broken by instantons. The coefficientC can be determined from a weak coupling instanton
calculation andC � (ΛQCD=pF)

8 [17,30]. BCS calculations show that the CFL phase

undergoes a phase transition to a less symmetric phase whenm2=(2pF)� ∆ [23,24]. This
suggests that the expansion parameter in the chiral expansion isM 2=(pF∆). We shall see
that this is indeed the case. However, the coefficientsAi of the quadratic terms inM turn
out to be anomalously small
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AiM
2 � ∆2M2 � f 2

π ∆2
�

M2

p2
F

�
; (13)

compared to the naive estimateAiM
2 � f 2

π ∆2[M2=(pF∆)].
The pion decay constantfπ and the coefficientsAi can be determined using matching

techniques. Matching expresses the requirement that Green functions in the effective chiral
theory and the underlying microscopic theory, QCD, agree. The pion decay constant is
most easily determined by couplingSU(Nf )L;R gauge fieldsWL;R to the left and right flavor
currents. As usual, this amounts to replacing ordinary derivatives by covariant derivatives.
The time component of the covariant derivative is given by∇ 0Σ = ∂0Σ+ iWLΣ� iΣWR,
where we have suppressed the vector index of the gauge fields. In the CFL vacuumΣ = 1
the axial gauge fieldWL�WR acquires a mass by the Higgs mechanism. From (11) we get

L =
f 2
π
4

1
2
(WL�WR)

2: (14)

The coefficientsA1;2;3 can be determined by computing the shift in the vacuum energy due
to non-zero quark masses in both the chiral theory and the microscopic theory. In the chiral
theory we have

∆E =�[A1(Tr(M))
2
+A2Tr(M2)+A3Tr(M)Tr(M†)+h:c:]: (15)

We note that differentO(M2) mass terms produce distinct contributions to the vacuum
energy. This means that the coefficientsAi can be reconstructed uniquely from the vacuum
energy.

3.2High density effective theory (HDET)

In this section we shall determine the mass of the gauge field and the shift in the vacuum
energy in the CFL phase of QCD at large baryon density. This is possible because asymp-
totic freedom guarantees that the effective coupling is weak. The QCD Lagrangian in the
presence of a chemical potential is given by

L = ψ̄
�
iD=+µγ0

�
ψ� ψ̄LMψR� ψ̄RM†ψL�

1
4

Ga
µνGa

µν ; (16)

whereDµ = ∂µ + igAµ is the covariant derivative,M is the mass matrix andµ is the baryon
chemical potential. If the baryon density is very large, perturbative QCD calculations can
be further simplified. The main observation is that the relevant degrees of freedom are
particle and hole excitations in the vicinity of the Fermi surface. We shall describe these
excitations in terms of the fieldψ+(~vF;x), where~vF is the Fermi velocity. At tree level,
the quark fieldψ can be decomposed asψ = ψ++ψ�, whereψ� = 1

2(1�~α � v̂F)ψ . To
leading order in 1=pF we can eliminate the fieldψ� using its equation of motion. Forψ�;L
we find

ψ�;L =
1

2pF
(i ~α? �~Dψ

+;L + γ0Mψ
+;R): (17)
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Figure 1. This figure shows the contribution to the vacuum energy from the effective
chemical potential terms in the high density effective theory. Figure (a) shows the
diagrams that are matched against the(MM†)2 term and (b) shows the diagram that is
matched against theMM†ΣM†MΣ term in the chiral theory.

There is a similar equation forψ�;R. The longitudinal and transverse components ofγ µ are
defined by(γ0;~γ)k = (γ0;~v(~γ �~v)) and(γµ )? = γµ � (γµ)k. To leading order in 1=pF the
Lagrangian for theψ

+
field is given by [31–33]

L = ψ†
L+(iv �D)ψL+�

∆
2
(ψai

L+Cψb j
L+(δaiδb j �δa jδbi)+h:c:)

� 1
2pF

ψ†
L+

�
(D=?)

2
+MM†�ψL++

�
R$ L;M $M†�

+ � � � ; (18)

with vµ = (1;~v) andi; j; : : : anda;b; : : : denote flavor and color indices. In order to perform
perturbative calculations in the superconducting phase we have added a tree level gap term
ψai

L;RC∆ai;b jψ
b j
L;R

. In the CFL phase this term has the structure∆ai;b j = ∆(δaiδb j � δa jδbi).
The magnitude of the gap∆ is determined order by order in perturbation theory from the
requirement that the thermodynamic potential is stationary with respect to∆. With the gap
term included the perturbative expansion is well-defined. There are no additional infra-red
divergences. In particular, there is no need to include additional gap parameters at higher
order in 1=pF, such as the anti-particle gap or modifications of the particle gap due to
non-zero quark masses [34].

The screening mass of the flavor gauge fieldsWL;R can be determined by computing
the corresponding polarization function in the limitq0 = 0,~q! 0. We findΠLL

00 = ΠRR
00 =

�ΠLR
00 = m2

D=4 with m2
D = (21�8log(2))p2

F=(36π2). Matching this result against eq. (14),
we get [35]

f 2
π =

21�8log(2)
18

�
p2

F

2π2

�
: (19)

Our next task is to compute the mass dependence of the vacuum energy. To leading order
in 1=pF there is only one operator in the high density effective theory

L =� 1
2pF

�
ψ†

L+MM†ψL++ψ†
R+M†MψR+

�
: (20)

This term arises from expanding the kinetic energy of a massive fermion aroundp= p F.
We note thatMM†=(2pF) and M†M=(2pF) act as effective chemical potentials for left
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and right-handed fermions, respectively. Indeed, to leading order in the 1=p F expansion,
the Lagrangian (18) is invariant under a time dependent flavor symmetryψ L ! L(t)ψL,
ψR!R(t)ψR whereXL = MM†=(2pF) andXR = M†M=(2pF) transform as left- and right-
handed flavor gauge fields. If we impose this approximate gauge symmetry on the CFL
chiral theory we have to include the effective chemical potentialsXL;R in the covariant
derivative of the chiral field [27],

∇0Σ = ∂0Σ+ i

�
MM†

2pF

�
Σ� iΣ

�
M†M
2pF

�
: (21)

XL andXR contribute to the vacuum energy atO(M 4),

∆E =
f 2
π

8p2
F

Tr
�
(MM†

)(M†M)� (MM†
)
2� : (22)

This result can also be derived directly in the microscopic theory [27]. The corresponding
diagrams are shown in figure 1. We also note that eq. (22) has the expected scaling behavior
E � f 2

π ∆2[M2=(pF∆)]2.
O(M2) terms in the vacuum energy are generated by terms in the high density effective

theory that are higher order in the 1=pF expansion. We recently argued that these terms
can be determined by computing chirality violating quark–quark scattering amplitudes for
fermions in the vicinity of the Fermi surface [34]. Feynman diagrams forqL+qL! qR+qR
are shown in figure 2a. To leading order in the 1=pF expansion the chirality violating
scattering amplitudes are independent of the scattering angle and can be represented as
local four-fermion operators

L =
g2

8p4
F

((ψA
L

†
CψB

L
†
)(ψC

RCψD
R )ΓABCD+(ψA

L
†ψB

L )(ψ
C
R

†ψD
R )Γ̃ACBD): (23)

There are two additional terms with(L$R) and(M $M†). We have introduced the CFL
eigenstatesψA defined byψ a

i = ψA(λ A)ai=
p

2, A= 0; : : : ;8. The tensorsΓ is defined by

ΓABCD=
1
8

�
Tr
�
λ AM(λ D)Tλ BM(λC)T�
� 1

3
Tr[λ AM(λ D)T ]Tr[λ BM(λC)T ]

�
: (24)

The second tensor̃Γ involves bothM andM† and only contributes to terms of the form
Tr[MM†] in the vacuum energy. These terms do not contain the chiral fieldΣ and therefore
do not contribute to the masses of Goldstone modes. We can now compute the shift in the
vacuum energy due to the effective vertex (23). The leading contribution comes from the
two-loop diagram shown in figure 2b. We find

∆E =�3∆2

4π2f(Tr[M])2�Tr[M2]g+(M $M†): (25)

Using this result we can determine the coefficientsA1;2;3 in the CFL chiral theory. We
obtain

704 Pramana – J. Phys.,Vol. 60, No. 4, April 2003



Superdense matter

(a) (b)

Figure 2. Figure (a) shows the effective chirality violating four-fermion vertex in the
high density effective theory. Figure (b) shows the corresponding contribution to the
vacuum energy. As explained in the text, there are additional vertices which involve
MM†, but they do not contribute to the masses of Goldstone modes.

A1 =�A2 =
3∆2

4π2 ; A3 = 0; (26)

which agrees with the result of Son and Stephanov [35]. We also note thatE � f 2
π ∆2(∆=pF)

[M2=(pF∆)] which shows that the coefficientsAi are suppressed by(∆=pF). The effective
Lagrangian (18) and (23) can also be used to compute higher order terms inM. The
dominantO(M4) term is the effective chemical potential term eq. (22). OtherO(M 4) terms
are suppressed by additional powers of(∆=pF).

3.3Kaon condensation

Using the results discussed in the previous section we can compute the masses of Goldstone
bosons in the CFL phase. Inx3.1 we argued that the expansion parameter in the chiral
expansion of the Goldstone boson masses isδ =m2=(pF∆). The first term in this expansion
comes from theO(M2) term in (11), but the coefficientsA contain the additional small
parameterε = (∆=pF). In a combined expansion inδ andε theO(εδ) mass term and the
O(δ 2) chemical potential term appear in the same order. At this order, the masses of the
flavored Goldstone bosons are

mπ� =�m2
d�m2

u

2pF
+

�
4A
f 2
π
(mu+md)ms

�1=2

;

mK�
=�m2

s�m2
u

2pF
+

�
4A
f 2
π

md(mu+ms)

�1=2

;

m
K0;K̄0 =�m2

s�m2
d

2pF
+

�
4A
f 2
π

mu(md +ms)

�1=2

: (27)
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We observe that the pion masses are not strongly affected by the effective chemical poten-
tial but the masses of theK+ andK0 are substantially lowered while theK� andK̄0 are
pushed up. As a result theK+ andK0 meson become massless ifms�m1=3

u;d
∆2=3. For larger

values ofms the kaon modes are unstable, signaling the formation of a kaon condensate.
Once kaon condensation occurs the ground state is reorganized. For simplicity, we con-

sider the case of exact isospin symmetrymu = md �m. Kaon condensation can be studied
using an ansatz of the formΣ = exp(iαλ4). The vacuum energy is

V(α) =� f 2
π

 
1
2

�
m2

s�m2

2pF

�2

sin(α)2+(m0
K)

2(cos(α)�1)

!
; (28)

where(m0
K)

2 = (4A= f 2
π )mu;d(mu;d + ms) is the O(M2) kaon mass in the limit of exact

isospin symmetry. Minimizing the vacuum energy we obtainα = 0 if m2
s=(2pF)<m0

K and
cos(α) = (m0

K)
2=µ2

s with µs = m2
s=(2pF) if µs > m0

K . We observe that the vacuum energy
is independent ofθ1;θ2;φ . The hypercharge density is given by

nY = f 2
π µs

�
1� (m0

K)
4

µ4
s

�
: (29)

We observe that within the range of validity of the effective theory,µ s < ∆, the hyper-
charge density satisfiesnY < ∆p2

F=(2π2). This means that the number of condensed kaons
is bounded by the number of particles contained within a strip of width∆ around the Fermi
surface. It also implies that near the unlocking transition,µ s� ∆, the CFL state is signif-
icantly modified. In this regime, of course, we can no longer rely on the effective theory
and a more microscopic calculation is necessary.

Let us summarize what we have learned about the effects of a non-zero strange quark
massms. The effect ofms is controlled by the parameterm2

s=(pF∆). If m2
s=(pF∆) � 1,

color-flavor-locking breaks down and a transition to a less symmetric phase will occur.
In the regimem2

s=(pF∆) < 1 the phase structure can be established using the effective
chiral theory of the CFL phase and dimensional analysis. We have argued that there is a
new small scalem2

s=(pF∆) � (
pmu;dms=pF)� 1 which corresponds to the onset of kaon

condensation. If perturbative QCD is reliable we can be more quantitative. To leading
order ing, the critical strange quark mass for kaon condensation is

msjcrit = 3:03�m1=3
d

∆2=3: (30)

This result suggests that for values of the strange quark mass and the gap that are relevant
to compact stars CFL matter is likely to support a kaon condensate.

4. Conclusion: The many phases of QCD

We would like to conclude by summarizing some of the things we have learned about the
phase structure of QCD-like theories at finite temperature and chemical potential. We begin
with the case of two massless flavors, figure 3a. If we move along the chemical potential
axis at temperatureT = 0, there is a minimum chemical potential required in order to
introduce baryons into the system. Since nuclear matter is self-bound, this point is a first
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N =3
f

m   =m =0u,d s

N =2 m=0
f

���
���
���
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���

���
���
���
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���

d)

b)
T

T

2SC

µ

µ
CFL-K
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LOFF

a) N =2 m=0
f

c) N =3 m=0
f

T

T

µ

µ

Τ
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hadrons

nuclear
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QGP QGP

QGP

CSC
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Figure 3. Schematic phase diagram of QCD at finite temperature and density. Fig-
ures (a)–(d) correspond to different numbers of massless and massive flavors, see the
discussion in the text.

order transition. Along the temperature axis, the line of first order transitions eventually
ends in a critical point: This is the endpoint of the nuclear liquid–gas phase transition. If
we continue to increase the chemical potential, we encounter the various phases of nuclear
matter at high density. Many possibilities have been discussed in the literature, and we
have nothing to add to this discussion. At even higher chemical potential, we encounter
the transition to quark matter and the two flavor quark superconductor. Model calculations
suggest that this transition is first order. In the case of two massless flavors, universality
arguments suggest, and lattice calculations support the idea that the finite temperature zero
chemical potential chiral phase transition is second order. In this case, the line of first order
µ 6= 0 transitions would have to meet theT 6= 0 transition at a tricritical point [36,37].

This tricritical point is quite remarkable, because it remains a true critical point, even if
the quark masses are not zero (figure 3b). A non-zero quark mass turns the second order
T 6= 0 transition into a smooth crossover, but the first orderµ 6= 0 transition persists. While
it is hard to predict where exactly the tricritical point is located in the phase diagram it
may well be possible to settle the question experimentally. Heavy ion collisions at rela-
tivistic energies produce matter under the right conditions and experimental signatures of
the tricritical point have been suggested [38].

We have already discussed the phase structure ofNf = 3 QCD with massless or light
degenerate quarks inx2.2. We emphasized that atT = 0, the low density hadronic phase
and the high density quark phase might be continuously connected. On the other hand,
there has to be a phase transition that separates the color-flavor locked phase from the
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T = µ = 0 hadronic phase. This is because of the presence of a gauge invariantU(1)
order parameter that distinguishes the two. In the case ofN f = 3 massless flavors the finite
temperature phase transition is known to be first order. We expect the transition from the
superconducting to the normal phase atT 6= 0 and largeµ to be first order, too. This means
that there is no tricritical point in figure 3c.

The phase diagram becomes more complicated if we take into account the effects of a
finite strange quark mass (figure 3d). Ifm2

s=(4µ)� ∆, there is a phase transition between
the Nf = 2+ 1 phase with separate pairing in theud andsssectors and the CFL phase
with pairing in bothud andus as well asds sectors. Near this phase transition we may
encounter phases with inhomogeneous BCS (LOFF) pairing [25]. Inside the CFL phase
kaon condensation is a possibility.

The phase diagram shown in figure 3d should, at best, be considered an educated guess.
Whether for realistic values of the quark masses there is an interlude of the 2SC phase
along theµ 6= 0 axis, instead of a direct transition between the CFL phase and nuclear
matter, cannot be decided on the basis of currently available calculations. We know that
there is at least one phase transition, because nuclear matter and the color-flavor locked
phase are distinguished by a gauge invariantU(1)s order parameter. This, of course, is
based on our belief that nuclear matter is stable with respect to strange quark matter or
hyperonic matter. Current calculations have also not conclusively answered the question
whether the transition along theT 6= 0 axis is a smooth crossover, as indicated in figure 3d
and favored by some lattice calculations, or whether the transition is first order, as would
be the case ifms is sufficiently small. This is clearly an important question in connection
with the existence of the tricritical point.

The challenge ahead of us is to find experimental observables, both in heavy ion colli-
sions and the observation of neutron stars, that will allow us to determine the phase diagram
of hot and dense matter.
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