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Strain field due to self-interstitial impurity in Ni
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Abstract. The embedded-atom method have been applied to study the strain field produced by the
self-interstitial impurity at the octahedral site in Ni. The calculation have been carried out consis-
tently on the basis of discrete lattice theory, using Kanzaki method. The atomic force constants are
evaluated using Wills and Harrison interatomic potential. The dynamical matrix and external force
are evaluated considering the interaction up to first nearest neighbors. The atomic displacements are
tabulated up to 20NN’s. These displacements are of oscillatory nature and of decreasing magnitude
with NN’s distance. The physical properties such as self-interstitial formation energy and volume
change calculated using atomic displacements are in accordance with the earlier studies.
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1. Introduction

We had investigated the strain field in bcc (V, Fe, and Cr) [1,2] and fcc (Ni and Pd) [3]
metals due to substitutional impurities using Kanzaki lattice static method based on discrete
lattice theory. This method enables us to calculate the actual displacements from normal
coordinates which are essentially the Fourier inverses of the direct space displacements.
The data obtained from these calculations are of vital importance to study the elastic and
electronic properties of dilute alloys [4–7].

In this paper the Kanzaki method has been extended to study the interstitial defects. The
embedded atom method (EAM) has been applied to study the short range interactions due
to self-interstitial Ni atom in Ni crystal. The atomic force constants are evaluated using
Wills and Harrison potential. The paper is organized as follows: The necessary formalism
and details of the embedded atom method is given inx2. The calculations and results are
presented inx3 and these are discussed inx4.

2. Formalism

For a perfect crystal with self consistent pair potentialφ(r), the total interaction energyΦ 0
is given as
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Φ0 =∑
n

φ(~R0
n) (1)

where~R0
n is the equilibrium position of thenth host atom. If an impurity is introduced at

the origin, the lattice gets strained, and the host atoms move to new equilibrium positions
~Rn = ~R0

n+~u(~R0
n), where~u(~R0

n) are the atomic displacements. Kanzaki assumed that these
displacements~u(~R0

n) are produced by an appropriate distribution of external forces in the
crystal which depend upon the nature of the impurity. The potential energy of the strained
lattice under applied external forces is expanded in powers series of the displacements
which in the harmonic approximation is given as

Φ = Φ0�∑
n;α

uα(~R
0
n)Fα(~R

0
n)+

1
2 ∑

n;α
∑
n0;β

uα(~R
0
n)uβ (

~R0
n0)φαβ (n;n

0) (2)

whereΦ0 is the potential energy of the perfect lattice, and the force components

Fα(~R
0
n) =�

∂Φ
∂uα(~R0

n)

����
uα (~R0

n)=0
(3)

and the force constants

φαβ (n;n
0) =

∂ 2Φ
∂uα(~R0

n)∂uβ (
~R0

n0
)

����
uα (~R0

n)=uβ (
~R0

n0
)=0

: (4)

Hereα ;β (x;y;z) denote Cartesian components,Fα(~R0
n) is theα component of the external

force applied on the atomR0
n andφαβ (n;n

0) are the force constants which obey the crys-

tal symmetries. The equilibrium values of theu(R0
n) are obtained by minimizingΦ with

respect touα(R0
n). One finds

Fα(~R
0
n) = ∑

n0;β
φαβ (n;n

0)uβ (
~R0

n0): (5)

Evidently the displacements can be evaluated ifFα(~R0
n) andφαβ (n;n

0) are known.
In the Kanzaki lattice static method the displacements are expanded in normal coordi-

nates

uα(~R
0
n) =∑

~q

Qα(~q)exp(ı~q�~R0
n); (6)

where~q is a wave vector and the expansion coefficients~Q(~q) are normal coordinates known
in dynamical theory. Since we are considering a periodic superlattice of defects, the wave
vectorsq must satisfy periodic boundary conditions, and all such physically distinctq
vectors will be contained within the first Brillouin zone.~Q(~q) are in general, complex and,
to ensure the reality condition for displacements, we must have

Q(�q) = Q�(q); (7)

where the asterisk stands for the complex conjugate. Using eq. (6), one gets the Fourier
transform of the total energyΦ of the strained lattice as
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Φ = Φ0�∑
αq

Fα(~q)Qα(~q)+
N
2 ∑

αβ
∑
q

φαβ (~q)Qα(~q)Qβ (~q) (8)

where

Fα(~q) =∑
n

Fα(~R
0
n)exp(ı~q�~R0

n); (9)

and

φαβ (~q) = ∑
n�n0

φαβ (n�n0)exp
h
�ı~q� (~R0

n�~R0
n0)
i
; (10)

N is the number of lattice points in the crystal.Fα(~q) andφαβ (~q) are the Fourier transforms

of Fα(~R0
n) andφαβ (n� n0), respectively. The equilibrium condition in Fourier space in

conjunction with eq. (8) gives

∑
β

h
Nφαβ (�~q)Qβ (~q)�Fβ(~q)δαβ δ

�~q;~q

i
= 0: (11)

Equation (11) gives three simultaneous equations for three componentsQ β (q) for each
value ofq. If φαβ (q) andFβ (q) are known, eq. (11) can be solved forQ(q) which, in turn,

givesuα(~R0
n) from eq. (5).

For a central ion–ion potential, the dynamical matrix is written as

φαβ (n) =
∂ 2φ

∂ rα ∂ rβ

����
r=R0

n

=
R0

nαR0
nβ

j~R0
nj

2
(An�Bn+δαβ Bn); (12)

where

An =
∂ 2φ
∂ r2

����
r=R0

n

; Bn =
1

j~R0
nj

∂φ
∂ r

����
r=R0

n

: (13)

In metallic crystals the ions are screened by the conduction electrons thereby decreasing
the ionic potential faster, which exhibit oscillatory behavior at large distances. It has been
found that in d-band metals the screening is very heavy [8–10]. Therefore, major contribu-
tion toφαβ (~q) andFα(~q) in these metals is expected to arise from the few NN’s. Including
the interactions up to 1NN’s,φαβ (~q) for fcc structure, from eqs (10) and (11) becomes

φαα (~q) = 2(A1+B1)

�
1�cos

�qαa
2

��
cos

�qβ a

2

�
+cos

�qγa

2

���
(14)

φαβ (~q) = 2(A1�B1)

�
sin

�qαa
2

�
sin

�qβ a

2

��
; (15)

whereα 6= β 6= γ anda is the lattice parameter.
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Since the interstitial impurity interacts with short-range interactions, the external force
is expected to arise appreciably only from 1NN’s contribution. The force obtained using
eq. (8) evaluated at the 1NN shell of the interstitial impurity is

Fα(q) = i2FI sin(qαa); (16)

whereFI is the force acting on the 1NN site of the interstitial impurity. With the knowledge
of φαβ (~q) andFα(~q), eq. (11) is solved for~Q(~q) for radial forces on the 1NN’s of the

impurity. These values of~Q(~q) are used in eq. (6), summation is replaced by integration
and~u(~R0

n) are calculated for different values of~R0
n (using quadrature method of numerical

integration).

2.1Estimation FI using embedded atomic potential

The interstitial impurities in fcc metal occupy octahedral site and their interaction with the
host atom could be best described by short range potential or first principle calculations.
One such method to describe the interactions in the transition metals is EAM. The short
range interaction in TM can be described using EAM method. The EAM is based on the
density-functional theory. In this method, energy required to place a small impurity atom
in a lattice is taken solely as a function of electron density at that particular site. The energy
of each atom is computed from the energy needed to embed the atom in the local-electron
density as provided by the other atoms in the metal. This electron density is approximated
by the superposition of atomic-electron densities. The total energy of the system is

Φtotal=∑
i

Fi(ρhi)+
1
2 ∑

i= j ;i 6= j

φi j (Ri j ): (17)

Fi(ρhi) is the energy to embed atomi in an electron densityρhi andφi j is the two body
central potential betweeni and j. ρhi is the electron density at the atomi due to all other
atoms.

ρhi = ∑
j(6=i)

fi(Ri j ) (18)

fi is the electron density of atomj as a function of distance from it’s center.Ri j is the
distance between atoni and j. The embedding function is universal, it does not depend on
the source of the background density. Thus same embedding function is used to calculate
the energy of an alloy that is used in the pure metal.

To use embedded atom method in a lattice model calculation, thef andF functions must
be specified for such atomic species. In the EAM calculations, the embedding function is
determined by complex fitting procedure. Foiles [11] has recently introduced a straight-
forward scheme which is also used in the present calculations. The pair-interaction term
φi j (Ri j ) is purely repulsive and is considered of the form

φi j (Ri j ) =
Zi(Ri j )Zj(Ri j )

Ri j
(19)
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whereZ(R) is parameterized to

Z(R) = Z0(1+βRν)exp(�αR): (20)

The value ofZ0 is the number of outer electrons of the atom and for Ni,Z0 = 10. The other
parameters,α ;β andν are determined empirically. It was found thatν = 1 leads to a good
representation of elastic constants for Ni. Rest of the parameters have been determined for
Ni, so as to yield the elastic constants and vacancy-formation energy of each material as
well as the dilute limits of the heat of solution of the binary alloys [11]. The external force
calculated from eq. (17) is of the form

Fα(R
0
n) =�

∂F
∂ρ

∂ρ
∂R

����
R=R0

n

�
1
2

∂φ
∂R

����
R=R0

n

: (21)

The slope of the embedding function and density are evaluated from the variation of em-
bedding function with density and variation of density with distance, which are explicitly
solved for Ni.

3. Calculations and results

The Kanzaki method was applied to calculate strain field due to self-interstitial Ni atom
in Ni crystal. Some of the physical parameters, force constantsA1 andB1 calculated from
the Wills and Harrison potential [3] and the calculated external force using embedded
atom method (EAM) are given in table 1. The physical parameters for defining the pair-
interaction in EAM are given in table 2.

The embedding function as a function of density for Ni are derived empirically from the
data in [11] which is shown in figure 1. The atomic density of Ni are calculated from the
spherically averaged s and d like densities which are computed from Clementi and Roetti
[12]. The variation of the atomic density with distance are plotted in figure 2. The total
energy is defined using eq. (17) and external force using eq. (21). The interstitial impurity
experiences short range interactions with host atoms. Therefore, it is adequate to assume
that the defect exerts an appreciable force only on its first nearest neighbors and so force
FI can be evaluated at the 1NN’s.

Table 1. Some physical parameters (all in a.u.) for Ni.a is the lattice constant,Ω0 is
the equilibrium volume,A1 andB1 are the force constants andF1 is the external force.

Host a Ω0 A1 B1 F1

Ni 6.65 90 0.028 �0.00089 0.252

Table 2. Physical parameters used to define the effective charge for the pair interactions
between Ni–Ni atoms.Z0 is the outer electrons,α, β , andν are empirical parameters.
ns is the number of s electrons in the outer orbit of Ni.

Z0 α β ν ns

10 1.2950 0.0595 1 0.8478
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Figure 1. The variation of embedding functionF(ρ) with background density for Ni.
The embedding energy is in eV, electron densities inÅ�3.

Figure 2. The variation of atomic densitiesρ vs. r for Ni, computed using densities
of s and d electrons, which are associated with their Hartree–Fock wave functions. The
atomic densities are in̊A�3 units andr is in Å.

These values ofFI and the calculated values ofA1 andB1, are used to calculateφαβ (~q)

and hence~Q(~q) with the help of eq. (11). The inverse Fourier transform of~Q(~q), as given
in eq. (6), gives~u(~R0

n). The numerical calculations are simplified if we integrate over the
cube of edge 4π=a which inscribes the first Brillouin zone (BZ) and using the fact that, for
any functionF(q)

Z
BZ

F(q)dq=
1
2

Z
cube

F(q)dq (22)

for fcc structures. The integration is carried out by the Gaussian quadrature method.
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Table 3. Atomic displacements of the NN’s of Ni self-interstitial impurity. The dis-
placements are expressed in terms of lattice constanta. (n1;n2;n3) are the coordinates
of NN’s and(ux;uy;uz) are the Cartesian coordinates of the displacements.

NN’s Displacement components

(n1;n2;n3) ux uy uz juj

100 0.2465 0.0000 0.0000 0.2465
111 0.0047 0.0047 0.0047 0.0081
210 0.0392 0.0325 0.0000 0.0509
221 0.0103 0.0103 0.0090 0.0172
300 0.0054 0.0000 0.0000 0.0054
311 0.0136 0.0078 0.0078 0.0175
320 0.0135 0.0135 0.0000 0.0191
331 0.0073 0.0073 0.0041 0.0111
333 0.0052 0.0052 0.0052 0.0090
410 0.0034 0.0025 0.0000 0.0043
421 0.0067 0.0054 0.0029 0.0090
430 0.0065 0.0065 0.0000 0.0092
432 0.0053 0.0047 0.0036 0.0079
441 0.0046 0.0046 0.0017 0.0068
443 0.0037 0.0037 0.0031 0.0061
520 0.0027 0.0023 0.0000 0.0035
522 0.0039 0.0024 0.0024 0.0052
533 0.0037 0.0026 0.0026 0.0052
540 0.0037 0.0035 0.0000 0.0051
544 0.0028 0.0022 0.0022 0.0042
630 0.0023 0.0015 0.0000 0.0027
641 0.0027 0.0018 0.0005 0.0033

The atomic displacements due to self-interstitial impurity, in units of lattice constant,
are tabulated in table 3. The 1NN shows maximum displacement of 0.24, away from
the self-interstitial Ni atom. The other NN’s are also displaced away from the impurity
atom, i.e., the lattice shows expansion. The magnitude of these displacements decreases
oscillatory with NN distance. The calculated value of the self-interstitial formation volume,
i.e., ∆V=Ω is 1.87 whereas its value obtained from earlier work is 2.11 [11]. The self-
interstitial formation energy or relaxation energy is given by

Er =�
1
2 ∑

n;α
unαFnα ; (23)

whereFα is isotropic in nature and the atomic displacements of 1NN’s from table 3 are
used to evaluate relaxation energy. The relaxation energy comes out to be 5.58 eV whereas
earlier calculated value is 5.05 eV [11]. Since the values of relaxation energy and change
in volume are in agreement with the values from earlier work, it can be concluded that
our calculation using discrete lattice theory is consistent with the actual description of the
atomic displacements of the defected system.

4. Discussion

We have used here embedded atom method [11] for the self-interstitial impurity in Ni.
The embedded atom is based on background density of the host and has been applied to
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the transition metal, to describe various properties such as bulk modulus, lattice constants,
force constants etc. The universality of the embedding function makes it a valuable tool
to study the transition metal based alloys. The lattice displacements due to interstitial im-
purities are difficult to evaluate due to lack of appropriate potential for the system as most
of the potential fails in this range. The reasonable agreement in the calculated results with
the earlier work justifies that results obtained using the discrete lattice model for interstitial
defects are consistent with the potential considered and the more exact description of the
interatomic interactions would certainly improve the results.

In the numerical calculations the cubic symmetry of the lattice is retained although the
exact anisotropy of the Brillouin zone is not accounted for. This may not introduce serious
error considering other simplifications in the calculations.

The tabulated values of displacements may be quite useful to investigate heat of so-
lution, electric field gradients, asymmetry parameter, wipe out number, Knight shift and
other properties of the defect lattice where impurity induced displaced positions of the host
atoms in dilute alloys of Ni are needed. This will help in the basic understanding of the
alloy formation. Further, these study will explain the strength at high temperature, high
stiffness, low coefficient of thermal expansion and chemical compatibility in a variety of
environments.
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