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Abstract. Lagrangian density of riccions is obtained with the quartic self-interacting potential us-
ing higher-derivative gravitational action in (4+D)-dimensional space-time withSD as a compact
manifold. It is found that the resulting four-dimensional theory for riccions is one-loop multiplica-
tively renormalizable. Renormalization group equations are solved and its solutions yield many inter-
esting results such as (i) dependence of extra dimensions on the enegy mass scale showing that these
dimensions increase with the increasing mass scale up toD = 6, (ii) phase transition at 3:05�1016

GeV and (iii) dependence of gravitational and other coupling constants on energy scale. Results also
suggest that space-time above 3:05�1016 GeV should be fractal. Moreover, dimension of the com-
pact manifold decreases with the decreasing energy mass scale such thatD = 1 at the scale of the
phase transition. Results imply invisiblity ofS1 at this scale (which is 3:05�1016 GeV).

Keywords. Quantum field theory; higher-dimensional and higher-derivative gravity; one-loop renor-
malization.
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1. Introduction

Theory of gravity with the action containing higher-derivative terms of curvature tensor is
an interesting candidate for the past many years. It obeys basic principles of the general
relativity, namely, principle of covariance as well as principle of equivalence. While quan-
tizing gravity (quantizing components of the metric tensor), this theory has problem at the
perturbation level, where ghost terms appear in the Feynman propagator of the graviton
[1].

Recently a different feature of higher-derivative gravity has been noticed. The present
paper deals with the new feature of this theory, where it is obtained that, in the high-energy
regime, the Ricci scalar also behaves like a physical field in addition to its usual nature like
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a geometrical field. Thus, at a high energy level, the Ricci scalar manifests itself in dual
manner [2–7].

Here dual roles of the Ricci scalarR(like a matter field as well as a geometrical field) are
exploited. The ghost problem does not appear here if coupling constants in the gravitational
action is taken properly ( the condition to avoid the ghost problem is given in the following
section). The matter aspect ofR is represented by a scalar field̃R=ηR(whereη has length
dimension in natural units defined below).

In quantum field theory, fields are treated as mathematical concepts describing parti-
cles. After the name of the great mathematician Ricci, particle described byR̃ is called as
riccion.

In earlier works [2–4,6,7], riccions were obtained from the four-dimensional action for
R2-gravity and, in [5,8], it was obtained from the (4+D)-dimensionalspace-time geometry.
In [2–4,6], phase transition for riccions are discussed. In [5], it is discussed that riccions
decouple to riccinos and anti-riccinos when parity is voilated. In [7], it is showed that
riccions also behave like instantons. The main aim of the present paper is to discuss one-
loop renormalization of the theory of riccions.

In what follows, like in ref. [8], riccions are obtained from the higher-dimensional
geometry with topologyM4NSD (M4 is the four-dimensional space-time with the signa-
ture(+;�;�;�) andSD is D-dimensional sphere which is an extra-dimensional compact
space. The distance function is defined as

dS2
= gµνdxµdxν �ρ2dΩ2 (1.1a)

with

dΩ2
= dθ 2

1 +sin2 θ1dθ 2
2 + � � �+sin2 θ1 � � �sin2 θ

(D�1)dθ 2
D: (1.1b)

Heregµν (µ ;ν = 0;1;2;3) are components of the metric tensor inM 4, ρ is the radius of
D-dimensional sphereSD which is independent of coordinatesxµ and 0� θ1;θ2; : : : ;θ(D�1)
� π and 0� θD � 2π : As usual, the space-time manifold is taken to beC∞-connected,
Hausdorff and paracompact without boundary [7,8].

The paper is organized as follows: Inx2, taking the action for higher-derivative gravity in
(4+D)-dimensional space-time, action for the riccion is obtained. Section 3 contains one-
loop quantum correction to riccions in the background geometry, calculation of counter-
terms and renormalization. Renormalization group equations are obtained and solved in
x4. Section 5 is the concluding section where results are discussed.

Natural units are defined asκB = ~ = c = 1 (whereκB is Boltzman’s constant,~ is
Planck’s constant divided by 2π andc is the speed of light), which are used throughout the
paper.

2. Riccions from (4+DD)-dimensional geometry

The action for the higher-derivative gravity is taken as

S(4+D)
g =

Z
d4xdDy

q
�g

(4+D)

� R(4+D)

16πG
(4+D)

+α
(4+D)R

2
(4+D)+ γ

(4+D)R
3
(4+D)�2η2RDΛ

(4+D)

�
; (2.1a)
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where

G
(4+D) = GVD; α

(4+D) = αV�1
D ; γ

(4+D) =
η2

3!(D�2)
V�1

D ;

RD =
D(D�1)

ρ2 and Λ(4+D) =
Λ

(4+D)VD
:

HereVD is the volume ofSD, g(4+D) is the determinant of the metric tensorgMN (M;N =

0;1;2; : : : ;(4+D)) andR
(4+D) = R+RD. α is a dimensionless coupling constant,R is

the Ricci scalar,η2RDΛ=(4+D) is the cosmological constant andG is the gravitational
constant in a four-dimensional theory.

It is important to mention here that higher-derivative terms in the action given by eq.
(2.1a) are significant at the energy mass scale given by

M2 �
"

2η2

3!(D�2)

#
�1"

�α +

s
α2+

1
24πG(D�2)

#
: (2.1b)

M is obtained using the method described in Appendix A. In caseG = GN (Newtonian
gravitational constant),M � 2:2�109 GeV. It shows that higher-derivative terms are rele-
vant in the gravitational action at high energy level.

Invariance ofS(4+D)
g under transformationsgMN ! gMN +δgMN yields [9,10]

(16πG
(4+D))

�1
�

RMN� 1
2gMNR

(4+D)

�
+α

(4+D)H
(1)
MN

+ γ
(4+D)H

(2)
MN

+η2RDΛ(4+D)gMN = 0; (2.2a)

where

H(1)
MN

= 2R;MN�2gMN2(4+D)R(4+D)� 1
2gMNR2

(4+D)+2R
(4+D)RMN; (2.2b)

and

H(2)
MN

= 3R2
;MN�3gMN2(4+D)R

2
(4+D)� 1

2gMNR3
(4+D)+3R2

(4+D)RMN (2.2c)

with semi-colon (;) denoting curved space covariant derivative and

2(4+D) =
1q

�g
(4+D)

∂
∂xM

 q
�g(4+D) gMN ∂

∂xN

!
:

Trace of these field equations is obtained as"
� D+2

32πG
(4+D)

#
R
(4+D)�α

(4+D)

h
2(D+3)2

(4+D)R(4+D)+
1
2DR2

(4+D)

i

�γ
(4+D)

h
3(D+3)2

(4+D)R
2
(4+D)+

1
2(D�2)R3

(4+D)

i
+(4+D)η2RDΛ(4+D) = 0 (2.3)
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In the space-time described by the distance function defined in eq. (1.1),

2
(4+D)R(4+D) =2R=

1p�g
∂

∂xµ

 
p�ggµν ∂

∂xν

!
R; (2.4)

using the definition ofR(4+D) given in eq. (2.1).

As2
(4+D)R

2
(4+D) is a total divergence, using the Gauss’s divergence theorem one obtains

Z
Ω

d(4+D)x
q
�g

(4+D)2(4+D)R
2
(4+D) =

Z
∂ Ω

d(4+D)x
q
�g

(4+D)R
2
(4+D);MnM;

whereΩ is the volume of the space-time manifold, which is taken to beC∞-connected,
Hausdorff and paracompact without boundary as usual [11].nM are components of unit
vector normal to the (D+3)-dimensional hypersurface. So,∂Ω = 0, being the boundary
of the space-time manifold under consideration. As a result

Z
∂ Ω

d(4+D)x
q
�g(4+D)R

2
(4+D);MnM

= 0;

which implies that
Z

Ω
d(4+D)x

q
�g(4+D)2R2

(4+D) = 0

yielding

2
(4+D)R

2
(4+D) = 0: (2.5)

Connecting eqs (2.3), (2.4) and (2.5) as well as usingR
(4+D);Λ(4+D);G(4+D);α(4+D) and

γ
(4+D) from eq. (2.1), one obtains

�
D+2
32πG

�
(R+RD)+α

�
2(D+3)2R+

1
2

D(R+RD)
2
�

+
η2

3!(D�2)

�
3(D+3)2R2

+
1
2
(D�2)(R+RD)

3
�
�η2RDΛ = 0; (2.6)

which is re-written as�
2+

1
2

ξ R+m2
+

λ
3!

η2R2
�
R=

1
2α(D+3)

�
η2RDΛ� D+2

32πG
RD

�1
2

αDR2
D�

1
12

η2R3
D

�
(2.7a)

with

ξ =
D

2(D+3)
+η2λRD (2.7b)

m2
=

(D+2)λ
16πG

+
DRD

2(D+3)
+

1
2

η2λR2
D (2.7c)
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λ =
1

4(D+3)α
; (2.7d)

whereα > 0 to avoid the ghost problem [12].
Multiplying by η and recognizingηRas R̃, eq. (2.7a) is re-written as�

2+
1
2

ξ R+m2
+

λ
3!

R̃2
�
R̃=

η
2α(D+3)

�
η2RDΛ� D+2

32πG
RD

�1
2

αDR2
D�

1
12

η2R3
D

�
: (2.7e)

The reason for multiplying byη is given below. Now the question arises how to interpret
the physical meaning of eq. (2.7e). For this purpose, it is convenient to find an analogy
in the existing theories. From field theories, it is known that a scalar fieldφ satisfies an
equation �

2φ +ξφ R+m2
φ +

λφ

(3!)
φ2
�

φ = 0; (2.8)

whereξφ ;λφ are coupling constants andm2
φ is the (mass)2 term forφ :

Equation (2.7e) can be analogous to eq. (2.8) if

Λ = η�2
�

D+2
32πG

+
DRD

8(D+3)λ
+

1
12

η2R2
D

�
: (2.9a)

It means that, in a four-dimensional theory, the cosmological constantη 2RD(Λ=(4+D)) is
caused by the extra-dimensional compact componentSD of the higher-dimensional space-
time.

So, eq. (2.7e) looks like�
2+

1
2

ξ R+m2
+

λ
3!

R̃2
�
R̃= 0 (2.9b)

with ξ ;m2 andλ defined by eqs (2.7b), (2.7c) and (2.7d).
Equation (2.8) is derived from the action

Sφ =

Z
d4x

p�g

�
1
2
fgµν∂µφ∂ν φ � (ξφ R+m2

φ)φ
2g� λ

4!
φ4
�

(2.10)

using its invariance under transformationφ ! φ +δφ :
Mass dimension ofφ is 1, whereas mass dimension ofR is 2 which is a combination of

second order derivative as well as squares of first order derivative of metric tensor com-
ponents with respect to space-time coordinates. So,R is multiplied byη (having length
dimension) to get̃R (as above) with mass dimension 1.

According to discussions given above, eq. (2.9b) is possible only when higher-derivative
terms are significantly present in the gravitational action, given by eq. (2.1).

High frequency modes probe the geometry in the small vicinity of a space-time point
with coordinatesfx0µ ; µ = 0;1;2;3g:Components of the metric tensorgµν have asymptotic
expansion around a pointfx0g as [9,10]
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gµν(x) = gµν(x
0

)+
1
3Rµανβ (x

0

)yαyβ � 1
6∂γRµανβ (x

0

)yαyβ yγ

+

h
1
20Rµανβ ;γδ +

2
45Rµαβ λ Rλ

γνδ

i
(x0)yαyβ yγ yδ

+ � � � ;

whereyα
= xα �x0α (α = 0;1;2;3) andgµν(x

0

) = ηµν :
Using these expressions, one obtains the operator

2=
1p�g

∂
∂xµ

�p�ggµν ∂
∂xν

�
as

2= gµν
(x0)

∂ 2

∂xµ ∂xν +Bν
(x;x0)

∂
∂xν

with

gµν
(x) = gµν

(x0)� 1
3Rµν

αβ (x
0

)yαyβ � 1
6∂γRµν

αβ (x
0

)yα yβ yγ

�
h

1
20Rµν

αβ ;γδ +
2
45Rµ

αβ λ Rλν
γδ

i
(x0)yαyβ yγ yδ

+ � � �

and

Bν
(x;x0) =

h
1
6∂γRγν

αβ �
1
12∂ ν Rαβ

i
(x0)yαyβ �

h
1
20Rν

β ;γδ

+
2
45Rβ λ Rλ ν

γδ

i
(x0)yβ yγyδ

+

h
1
20Rν

α;γδ

+
2
45Rβ λ Rλ ν

γδ

i
(x0)yα yγyδ �

h
1
20Rµν

α;γδ +
2
45Rµ

αβ γRγν
µδ

i
(x0)

�yαyβ yδ �
h

1
20Rµν

αβ ;γµ +
2
45Rµ

αβ λ Rλν
γµ

i
(x0)yαyβ yγ

�1
6Rγδ (x

0

)

h
1
6∂γ Rγν

αβ �
1
12∂ ν Rαβ

i
(x0)yαyβ yγ yδ

+ � � � :

Thus, at high energy level, one can work in the small neighborhood of a pointfx 0g,
where2 depends on curvature terms evaluated at this particular point andR̃(x) is defined
at an arbitrary point in its neighborhood. So, at high energy, it is possible to haveR̃ inde-
pendent of2 and can be treated similar toφ :

Moreover,2R̃ is a scalar. In a locally inertial coordinate system, whereBµ
= 0 and

gµν = ηµν

2R̃= η µν ∂ 2

∂xµ ∂xν R̃

showing that2 is a similar operator for̃Ras it is forφ : According to the principle of equiv-
alence (in the general relativity), this characteristic feature of2 with R̃will be maintained
at the global scale also [13] as2R̃ is a scalar. It means that (i)2R̃ is linear inR̃ at local as
well as global scales, (ii) the scalar operator2 is a similar operator forR̃ as it is forφ at
local as well as global scales.

On the basis of these analyses, it is inferred that, at high energy level, the Ricci scalar not
only behaves as a geometrical field, but also as a spinless physical field [2,7]. At the low
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energy level, where higher-derivative terms are not significant, it behaves like a geometrical
field only. Starobinsky has also found this kind of behavior of the Ricci scalar as a particle
and termed it as scalaron [12]. The scalaron has mass dimension 2 in the natural units,
whereas the riccion has mass dimension 1. It is so as the riccion is represented through the
scalar fieldR̃= ηR; but the scalaron is represented through the scalar fieldR:

To exploit the matter aspect of the four-dimensional Ricci scalarR (obtained from the
higher-dimensional geometry),̃R is treated as a basic physical field. Now, one can argue
‘If R̃ is a physical field, there should be an actionS

R̃
yielding eq. (2.9b) when invariance of

S
R̃
, under transformations̃R! R̃+δ R̃; is used asSφ , given by eq. (2.10), yields eq. (2.8)

when it is invariant underφ ! φ +δφ :’ To support this argument,S
R̃

is obtained in what
follows.

If such an action exists, one can write

δS
R̃
=�

Z
d4x

p�gδ R̃

�
2+

1
2

ξ R+m2
+

λ
3!

R̃2
�
R̃ (2.11a)

which yields eq. (2.9b) ifδS
R̃
= 0 under transformations̃R! R̃+δ R̃: From eq. (2.11a)

δS
R̃
=�

Z
d4x

p�gδ R̃

�
2+

1
2η

ξ R̃+m2
+

λ
3!

R̃2
�
R̃

=

Z
d4x

p�g

�
gµν∂µR̃∂ν(δ R̃)�

�
1

2η
ξ R̃2

+m2R̃+
λ
3!

R̃3
�

δ R̃

�

=

Z
d4xδ

�p�g

�
1
2

gµν∂µR̃∂νR̃�
�

1
3!η

ξ R̃3
+

1
2

m2R̃2
+

λ
4!

R̃4
���

�
Z

d4x
p�g

δ (
p�g)p�g

�
1
2

gµν∂µR̃∂νR̃�
�

1
3!η

ξ R̃3
+

1
2

m2R̃2
+

λ
4!

R̃4
��

�
Z

d4x
p�g

1
2

δgµν∂µR̃∂νR̃: (2.11b)

As in the integral

Z
d4x

p�g
δ (
p�g)p�g

�
1
2

gµν∂µR̃∂νR̃�
�

1
3!η

ξ R̃3
+

1
2

m2R̃2
+

λ
4!

R̃4
��

;

δ (
p�g)=

p�g is invariant under cooordinate transformations being a scalar. So, there is
no harm, if it is evaluated in a locally inertial coordinate system (because a scalar is not
different at local as well as global scales), where

δ (
p�g)p�g

=
1
2

gµνδgµν
=

1
2

ηµνδηµν
= 0

with ηµν being components of the Minkowskian metric (which are components of the
metric tensor in a locally inertial coordinate system). Thus, one obtains

Z
d4x

p�g
δ (
p�g)p�g

�
1
2

gµν∂µR̃∂νR̃�
�

1
3!η

ξ R̃3
+

1
2

m2R̃2
+

λ
4!

R̃4
��

= 0:

(2.11c)
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Similarly

Z
d4x

p�g
1
2

δgµν∂µ R̃∂ν R̃= 0 (2.11d)

asδgµν∂µ R̃∂ν R̃= 0 in a locally inertial coordinate system which is true at global scales
also according to the principle of equivalence.

Now, using eqs (2.11c) and (2.11d), eq. (2.11b) reduces to

δS
R̃
=

Z
d4xδ

�p�g

�
1
2

gµν∂µR̃∂ν R̃�
�

1
3!η

ξ R̃3
+

1
2

m2R̃2
+

λ
4!

R̃4
���

yielding

S
R̃
=

Z
d4x

p�g

�
1
2

gµν∂µR̃∂νR̃�
�

1
3!η

ξ R̃3
+

1
2

m2R̃2
+

λ
4!

R̃4
��

: (2.12)

It is important to mention here that althoughR̃ behaves like other scalar fieldsφ , results
obtained below forR̃ are novel. Such results are not possible forφ . The main reason for
this difference to happen is the dependence of (mass)2 for R̃ on the gravitational constant,
dimensionality of the space-time and the coupling constantα which is given by eq. (2.7c),
whereas mass ofφ does not depend on these constants. Moreover,R̃= ηR, whereas there
exists no such relation betweenR andφ .

3. One-loop quantum correction and renormalization

TheS
R̃

with the Lagrangian density, given by eq. (2.9), can be expanded around the clas-
sical minimumR̃0 in powers of quantum fluctuatioñRq = R̃� R̃0 as

S
R̃
= S(0)

R̃
+S(1)

R̃
+S(2)

R̃
+ � � � ;

where

S(0)
R̃

=

Z
d4x

p�g

�
1
2

gµν∂µR̃0∂νR̃0�
�

1
3!η

ξ R̃3
0+

1
2

m2R̃2
0+

λ
4!

R̃4
0

��

S(2)
R̃

=

Z
d4x

p�gR̃q

�
2+

1
2

ξ R+m2
+

λ
2!

R̃2
0

�
R̃q

and

S(1)
R̃

= 0

as usual, because this term contains the classical equation.
The effective action of the theory is expanded in powers of~ (with ~= 1) as

Γ(R̃) = S
R̃
+Γ(1)+Γ0

with one-loop correction given as [9]
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Γ(1) =
i
2

ln Det(D=µ2
); (3.1a)

where

D�
δ 2S

R̃

δ R̃2

����
R̃=R̃0

=2+
1
2

ξ R+m2
+

λ
2!

R̃2
0 (3.1b)

andΓ0 is a term for higher-loop quantum corrections. In eq. (3.1),µ is a mass parameter
to keepΓ(1) dimensionless.

To evaluateΓ(1), the operator regularization method [14] is used. Up to adiabatic order
4 (potentially divergent terms are expected up to this order only in a four-dimensional
theory), one-loop correction is obtained as

Γ(1) = (16π2
)
�1 d

ds

�Z
d4x
p
�g(x)

�
M̃2

µ2

�
�s� M̃4

(s�2)(s�1)

+
M̃2

(s�1)

�
1
6
� 1

2
ξ
�

R+

�
1
6

�
1
5
� 1

2
ξ
�
2R+

1
180

Rµναβ Rµναβ

� 1
180

RµνRµν +
1
2

�
1
6
� 1

2
ξ
�2

R2
�������

s=0
; (3.2a)

where

M̃2
= m2

+(λ=2)R̃2
0: (3.2b)

Here it is important to note that both matter as well as geometrical aspects of the Ricci
scalar are used in eq. (3.2). The matter aspect is manifested byR̃ and the geometrical
aspect byR. Ricci tensor componentsRµν and curvature tensor componentsRµναβ are the
same as mentioned above.

After some manipulations, the Lagrangian density inΓ (1) is obtained as

Γ(1) = (16π2
)
�1
�
(m2

+(λ=2)R̃2
0)

2
�

3
4
� 1

2
ln

�
m2

+(λ=2)R̃2
0

µ2

��

�
�

1
6
� 1

2
ξ
�

R(m2
+(λ=2)R̃2

0)

�
1� ln

�
m2

+(λ=2)R̃2
0

µ2

��

� ln

�
m2

+(λ=2)R̃2
0

µ2

��
1
6

�
1
5
� 1

2
ξ
�
2R+

1
180

Rµναβ Rµναβ

� 1
180

RµνRµν +
1
2

�
1
6
� 1

2
ξ
�2

R2
��

: (3.3)

Now the renormalized form of Lagrangian density can be written as

Lren=
1
2

gµν∂µR̃0∂ν R̃0�
ξ

3!η
R̃3

0�
1
2

m2R̃2
0�

λ
4!

R̃4
0+Λ

+ε0R+
1
2

ε1R2
+ ε2RµνRµν + ε3Rµναβ Rµναβ

+ε42R+Γ(1)
+Lct (3.4a)
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with bare coupling constantsλ i � (m2;λ ; Λ;ξ ;ε0;ε1;ε2;ε3;ε4);Γ
(1) given by eq. (3.3) and

Lct given as

Lct =�1
2

δξRR̃2
0�

1
2

δm2R̃2
0�

δλ
4!

R̃4
0+δΛ+δε0R+

1
2

δε1R2

+δε2RµνRµν +δε3Rµναβ Rµναβ +δε42R: (3.4b)

In eq. (3.4b),δλ i � (δm2;δλ ;δΛ;δξ ;δε0;δε1;δε2;δε3;δε4) are counter-terms, which
are calculated using the following renormalization conditions [15,16]

Λ = LrenjR̃0=R̃
(0)0;R=0

(3.5a)

λ =� ∂ 4

∂ R̃4
0

Lren

����
R̃0=R̃

(0)1;R=0
(3.5b)

m2
=� ∂ 2

∂ R̃2
0

Lren

����
R̃0=0;R=0

(3.5c)

1
2

ξ =�η
∂ 3

∂R∂ R̃2
0

Lren

����
R̃0=R̃

(0)2;R=0
(3.5d)

ε0 =
∂

∂R
Lren

����
R̃0=0;R=0

(3.5e)

ε1 =
∂ 2

∂R2 Lren

����
R̃0=0;R=R5

(3.5f)

ε2 =
∂

∂ (RµνRµν)
Lren

����
R̃0=0;R=R6

(3.5g)

ε3 =
∂

∂ (Rµναβ Rµναβ )
Lren

����
R̃0=0;R=R7

(3.5h)

ε4 =
∂

∂ (2R)
Lren

����
R̃0=0;R=R8

: (3.5i)

As R̃= ηR, whenR= 0; R̃
(0)0 = R̃

(0)1 = R̃
(0)2 = 0 andR5 = R6 = R7 = R8 = 0 when

R̃0 = 0.
Equations (3.4) and (3.5) yield counter-terms as

16π2δΛ =
m4

2
ln(m2=µ2

) (3.6a)

16π2δλ =�3λ 2ln(m2=µ2
) (3.6b)

16π2δm2
=�λm2 ln(m2=µ2

) (3.6c)

16π2δξ =�3λ
�

ξ � 1
3

�
ln(m2=µ2

) (3.6d)

16π2δε0 =
m2

2

�
ξ � 1

3

�
ln(m2=µ2

) (3.6e)
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16π2δε1 =
1
4

�
ξ � 1

3

�2

ln(m2=µ2
) (3.6f)

16π2δε2 =� 1
180

ln(m2=µ2
) (3.6g)

16π2δε3 =
1

180
ln(m2=µ2

) (3.6h)

16π2δε4 =
1
6

�
1
5
� 1

2
ξ
�

ln(m2=µ2
): (3.6i)

4. Renormalization group equations and their solutions

The effective renormalized Lagrangian can be improved further by solving renormalization
group equations for coupling constantsλ i(R) (suffix R stands for renormalization, which is

dropped onwards). For this purpose one-loopβ -functions, defined by the equation [1,8,9]

βλi
= µ

d
dµ

(λi +δλi)

����
λi

(4.1)

with counter-termsδλi from eqs (3.6a)–(3.6i), are obtained as

βΛ =� m4

16π2 (4.2a)

βλ =
3λ 2

8π2 (4.2b)

β
m2 =

λm2

8π2 (4.2c)

βξ =
3λ
�
ξ � 1

3

�
16π2 (4.2d)

βε0
=�m2

�
ξ � 1

3

�
16π2 (4.2e)

βε1
=�

�
ξ � 1

3

�2

32π2 (4.2f)

βε2
=

1
1440π2 (4.2g)

βε3
=� 1

1440π2 (4.2h)

βε4
=� 1

48π2

�
1
5
� 1

2
ξ
�

(4.2i)

using the fact thatµ(d=dµ)λ i = 0 for bare coupling constantsλ i .
The renormalization group equations are given as

dλi

dt
= βλi

; (4.3)

Pramana – J. Phys.,Vol. 60, No. 1, January 2003 39



S K Srivastava

wheret = 1
2 ln(m2

c=µ2
) with µ being a mass parameter andmc being a reference mass

scale such thatµ � mc: Using β functions for different coupling constants given by eqs
(4.2a)–(4.2i), solutions of differential equation (4.3) are derived as

Λ = Λ0+
m4

0

2λ0

��
1� 3λ0t

8π2

�1=3

�1

�
(4.4a)

λ = λ0

�
1� 3λ0t

8π2

�
�1

(4.4b)

m2
= m2

0

�
1� 3λ0t

8π2

�
�1=3

(4.4c)

ξ =
1
3
+

�
ξ0�

1
3

��
1� 3λ0t

8π2

�
�1

(4.4d)

ε0 = ε00+
m2

0

�
ξ0� 1

3

�
2λ0

�
1�
�

1� 3λ0t

8π2

�
�1=3�

(4.4e)

ε1 = ε10+

�
ξ0� 1

3

�2

4λ0

�
1�
�

1� 3λ0t

8π2

�
�1�

(4.4f)

ε2 = ε20+
t

1440π2 (4.4g)

ε3 = ε30�
t

1440π2 (4.4h)

ε4 = ε40�
t

1440π2 �
�
ξ0� 1

3

�
36λ0

ln

�
1� 3λ0t

8π2

�
; (4.4i)

whereλi0 = λi(t = 0) andt = 0 atµ = mc according to definition oft given above.
These results show that asµ ! ∞ (t ! �∞), λ ! 0, m2 ! 0 and 1

2ξ ! 1
6. Thus it

follows from these expressions that in the limitµ ! ∞, the theory is asymptotically free.
Using these limits in eq. (2.7b), it is obtained thatD! 6 asµ ! ∞. Also eqs (2.1a) and

(2.7b) imply that

RD =
D(D�1)

ρ2 = (1=η2λ )

�
ξ � D

2(D+3)

�
: (4.5)

Moreover, eq. (2.7c) yields

m2

2λ
=

(D+2)
32πG

+
DRD

4λ (D+3)
+

1
4

η2R2
D (4.6a)

and

Λη2
=

(D+2)
32πG

+
DRD

8λ (D+3)
+

1
12

η2R2
D (4.6b)

respectively. Connecting eqs (4.5) and (4.6), one gets a quadratic equation forD as
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(1+A1+A2)D
2
+3(2A1+A2)D+9A1 = 0; (4.7a)

where

A1 = 6

�
8η2λ 2

�
m2

2λ
�Λη2

�
� 4

3
ξ 2
�

(4.7b)

A2 = 2ξ : (4.7c)

As D is the dimension of the extra-dimensional space, the physically relevant root of eq.
(4.7) is

D = 1:5

������
�(2A1+A2)+

q
A2

2�4A1

(1+A1+A2)

������ (4.8)

with D0 = 1 atµ = mc. HereA1 andA2 are defined in eqs (4.7b) and (4.7c). Dependence
of m2;λ andξ on the energy mass scaleµ is given by eqs (4.4a)–(4.4i). It is given below
howη2 depends on the energy mass scaleµ .

Using eq. (4.8) in eqs (2.7b)–(2.7e) atµ = mc

ξ0 =
1
8

(4.9a)

λ0 =
1

16α0
=

1
16

(4.9b)

m2
0 =

3λ0

16πG0
=

3M2
P

256π
(4.9c)

Λ0 =
3

32πG0η2 =
3M2

P

32πη2 (4.9d)

takingα0 = 1 andG0 = GN = M�2
P whereG0 is the Newtonian gravitational constant.

From eq. (4.5), it is obtained that

ρ2
=

D(D�1)
16λ (D+3)

�
m2

2λ
�Λη2

�
�1

�
"

1+

s
1+

128λ 2η2(D+3)2

3D2

�
m2

2λ
�Λη2

�#
(4.10a)

ρ = ρ0 at µ = mc can be evaluated from eq. (4.10a) re-writing the same as

ρ2
=

D(D�1)
8(D+3)m2

�
1+

2λΛη2

m2 + � � �
�

�
"

1+

s
1+

128λ 2η2(D+3)2

3D2

�
m2

2λ
�Λη2

�#
:
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As given above atµ = mc;D = 1 and(m2=2λ) = Λη2: So, eq. (4.10a) implies that

ρ2
0 = 0: (4.10b)

From table 1, it is found that as the energy mass scaleµ comes down(Λ�Λ 0) decreases.
Whenµ comes down from 1:000001mc to mc, a huge amount of energy of the order of
3:05�1016 GeV (with density 8:7�1066 GeV4) is released. This abrupt change shows a
phase transition at

mc = 3:05�1016 GeV: (4.11)

Equations (4.10) and (4.11) imply that atµ = mc = 3:05� 1016 GeV, D = 1 and the
radius of extra-dimensional compact spaceSD is vanishing. It is difficult to think of aS1

(circle) with vanishing radius. However, on physical grounds, the smallest length that can
be thought of is the Planck lengthLP. So, it is reasonable to take

ρ2
0 = L2

P = 10�38 GeV�2 � 0 (4.12)

at the energy mass scalemc given by eq. (4.11), as the length of the order of Planck length
is invisible at 3:05�1016 GeV.

It means that when phase transition takes place,SD shrinks to an unobservable tiny circle
leading to compactification of the higher-dimensional space-time to the observable four-
dimensional space-time.

But at µ > mc;ρ should be observed, otherwise higher-dimensional space-time will be
redundant. It is possible only when

ρ2�m�2
c : (4.13)

Table 1. (Λ�Λ0);G=GN and dimension of the space-time(4+D) are tabulated below
againstµ=mc with mc = 1:76�1016 GeV takingλ0 = 1:

(Λ�Λ0)
µ=mc in GeV4 G=GN (4+D) ρ=LP

1 0�1 4 1
1.000001 6.74�1065 1.000000007 5.000000251 1.156�103

1.00001 6.59�1065 1.000000013 5.000000448 1.544�103

1.0001 6.59�1066 1.000000149 5.000004556 4.924�103

1.001 6.00�1067 1.000002188 5.000047621 1.592�104

1.01 6.5�1068 1.000015127 5.000454132 4.918�104

1.1 6.28�1069 1.000143985 5.004346587 1.29�105

2 4.55�1070 1.001001195 5.03143937 4.168�105

10 1.494�1071 1.002933661 5.102936483 7.855�105

100 3.45�1071 1.008601892 5.213725181 1.15�106

348.48 3.713�1071 1.0055123958 5.25371926 1.25�106

105 7.06�1071 1.005638664 5.475523461 1.98�106

1010 1.33�1072 1.001327407 5.868452973 3.23�106

1020 2.392�1072 0.958094676 7.479989382 5.83�106

1030 3.3�1072 0.91729725 7.928639028 7.68�106

1050 4.7�1072 0.824345225 8.553063893 1.195�107

∞ ∞ 0 10 ∞
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This condition can be easily satisfied by eq. (4.10a) if�
m2

2λ
�Λη2

�
= 1:32�10�9m2

c: (4.14a)

Connecting eqs. (4.4b), (4.4c) and (4.9c) with eq. (4.14a), it is obtained that

η2
=

8m2
0X2=3�1:32�10�9m2

c

8m2
0X1=3

=
8m2

0X2=3�3:29�10�12m2
0

8m2
0X1=3

' X1=3

m2
0

(4.14b)

with

η2
0 = m�2

0 (4.14c)

and

X = 1+
3λ0

8π2 ln(µ=mc): (4.14d)

From eq. (4.8), it is obtained thatD! 6; whenµ !∞ asλ 2η2! 0 andξ ! 1=6. Also
from eqs (4.4), (4.5), (4.6a), (4.9) and (4.14), one obtains

G=
(D+2)G0

3X2=3

�
1� 128πD2

(D�1)X1=3L2
P

3(D+3)ρ2

�2048π2D2
(D�1)2X�1=3L4

P

9ρ4

�
�1

(4.15)

whereD andρ are given by eqs (4.8), (4.10a) and (4.14d) respectively. HereG 0 is the
Newtonian gravitational constant which is'M�2

P .

5. Concluding remarks

The higher-dimensional space-time, considered here, has the topologyM 4
SD with M4

as the four-dimensional space-time andSD as theD-dimensional sphere (a compact mani-
fold). In x2, it is shown thatΛ is caused by the geometry of the compact manifold which
behaves as vacuum energy density. It is evident from table 1 that as the energy mass scale
comes down,(Λ�Λ0) decreases (hereΛ0 = Λ(µ = mc)). Moreover, dimension and radius
of SD also decrease with the decreasing mass scale. When the phase transition takes place
at µ = mc, extra-dimensional space becomes too small to be observed. As a result, only
four-dimensional space-time is observable at this energy mass scale. It means that with the
fall in the mass scale, energy is transferred fromSD to M4 which is the presently observed
component of the (4+D)-dimensional space-time.
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In the Kaluza–Klein type theories, extra-dimensional space in a(4+D)-dimensional
theory is supposed to be caused when the other three fundamental forces (other than
gravity) after unification also behave like gravity described by the geometry of a com-
pact manifoldSD. Here extra-dimensional space is observable atµ > mc = 3:05�1016

GeV. It means that the behavior of other forces like gravity described by the geometry
of a compact manifold is possible atµ > mc: Shrinking of the compact manifold to an
observable tiny circle atµ � mc shows that the other forces become distinct from the
four-dimensional gravity at this scale. Thus with the phase transition at 3:05�1016 GeV,
spontaneous symmetry breaking takes place, and other forces dissociate from gravity. As
a result, higher-dimensional gravity reduces to the four-dimensional gravity. Moreover,
energy of the order of 3:05� 1016 GeV is transferred from the compact manifold to the
observable four-dimensional space-time. Also, at this stage,Λ0 is obtained as

Λ0 ' 1:1�1072 GeV;

but the effective four-dimensional cosmological constant

η2
0RDΛ0

D+4
=

(D�1)
(D+4)m2

0L
2
P

Λ0 = 0

asD = 1 atµ = mc:
It is interesting to see that as the energy mass scale goes above 3:05�1016 GeV, dimen-

sion of the compact manifold becomes non-integral showing its fractal nature [17,18]. It
means that above 3:05�1016 GeV,SD is not a smooth surface whereasM4 is smooth. As
discussed above,SD is caused by forces other than gravity (according to Einstein’s theory)
which are effective forces among elementary particles. So the reason for non-smoothness
of SD may be the zig-zag paths followed by these particles. As the energy scale increases,
the nature of particles to move in zig-zag manner is aggravated leading to more fractality
due to more and more closeness between particles as well as high momentum.

When the energy mass scale comes down tomc, fluctuations inM4 will be large withSD

hidden in it and the energy ofSD will be transferred toM4, which is our observed universe.

Appendix A

The four-dimensional higher-derivative gravitational action is taken as [2–4]

Sg =

Z
d4x

p�g

�
R

16πG
+ α̃RµνRµν + β̃R2� (1=3!)λη2R3

�
; (A1)

whereα̃ , β̃ andλ are dimensionless coupling constants.
To decide the energy mass scaleM where higher-derivative terms will dominate over

R=16πG, mass scale representation of these terms can be useful. In natural units,R=16πG
corresponds toM2M2

P=16π . (MP is the Planck mass andG= M�2
P ; [α̃RµνRµν + β̃R2

] cor-
responds to[α̃ + β̃g]M4 as well as(1=3!)λη2R3 corresponds to(1=3!)λη 2M6 because
R andRµν are linear combinations of second derivatives and squares of first derivatives
of components of the metric tensorgµν (being defined through dS2

= gµνdxµdxν ) w.r.t.
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space-time coordinates.gµν are dimensionless. Thus, it is found that higher-derivative
terms are significant only when

M2 �
3[α̃ + β̃ ]+

q
9(α̃ + β̃)2+(3=8π)λη2M2

P

λη2 : (A2)
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