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Abstract. Lagrangian density of riccions is obtained with the quartic self-interacting potential us-

ing higher-derivative gravitational action in 44D)-dimensional space-time wit# as a compact
manifold. It is found that the resulting four-dimensional theory for riccions is one-loop multiplica-
tively renormalizable. Renormalization group equations are solved and its solutions yield many inter-
esting results such as (i) dependence of extra dimensions on the enegy mass scale showing that these

dimensions increase with the increasing mass scale Dp=td, (i) phase transition at.85x 106
GeV and (jii) dependence of gravitational and other coupling constants on energy scale. Results also

suggest that space-time abov83x 106 GeV should be fractal. Moreover, dimension of the com-
pact manifold decreases with the decreasing energy mass scale subh=tHaat the scale of the

phase transition. Results imply invisiblity 8F at this scale (which is.B5x 106 GeV).
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1. Introduction

Theory of gravity with the action containing higher-derivative terms of curvature tensor is
an interesting candidate for the past many years. It obeys basic principles of the general
relativity, namely, principle of covariance as well as principle of equivalence. While quan-
tizing gravity (quantizing components of the metric tensor), this theory has problem at the
perturbation level, where ghost terms appear in the Feynman propagator of the graviton
[1].

Recently a different feature of higher-derivative gravity has been noticed. The present
paper deals with the new feature of this theory, where it is obtained that, in the high-energy
regime, the Ricci scalar also behaves like a physical field in addition to its usual nature like
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a geometrical field. Thus, at a high energy level, the Ricci scalar manifests itself in dual
manner [2-7].

Here dual roles of the Ricci scalRi(like a matter field as well as a geometrical field) are
exploited. The ghost problem does not appear here if coupling constants in the gravitational
action is taken properly (the condition to avoid the ghost problem is given in the following
section). The matter aspect®fs represented by a scalar figRkk= nR (wheren has length
dimension in natural units defined below).

In quantum field theory, fields are treated as mathematical concepts describing parti-
cles. After the name of the great mathematician Ricci, particle describ&idyalled as
riccion.

In earlier works [2—4,6,7], riccions were obtained from the four-dimensional action for
R?-gravity and, in [5,8], it was obtained from the-{£)-dimensional space-time geometry.

In [2—4,6], phase transition for riccions are discussed. In [5], it is discussed that riccions
decouple to riccinos and anti-riccinos when parity is voilated. In [7], it is showed that
riccions also behave like instantons. The main aim of the present paper is to discuss one-
loop renormalization of the theory of riccions.

In what follows, like in ref. [8], riccions are obtained from the higher-dimensional
geometry with topolog*® SP (M* is the four-dimensional space-time with the signa-

ture (+,—, —, —) andSP is D-dimensional sphere which is an extra-dimensional compact
space. The distance function is defined as

dS? = gy udxtdx’ — p?dQ? (1.1a)
with

dQ? = d6f +sir’ 6,d6F + - + sin’ 6, - sin’ 6, _,, d63. (1.1b)

Hereg,y (u4,v =0,1,2,3) are components of the metric tensoMt, p is the radius of
D-dimensional spherg® which is independent of coordinatésand 0< 0,,6,,..., 9(0_1)
< mand 0< 6, < 2. As usual, the space-time manifold is taken tod3&-connected,
Hausdorff and paracompact without boundary [7,8].

The paper is organized as follows:§ld, taking the action for higher-derivative gravity in
(4+ D)-dimensional space-time, action for the riccion is obtained. Section 3 contains one-
loop quantum correction to riccions in the background geometry, calculation of counter-
terms and renormalization. Renormalization group equations are obtained and solved in
84. Section 5 is the concluding section where results are discussed.

Natural units are defined as; = A = ¢ = 1 (wherekg is Boltzman’s constant; is
Planck’s constant divided byandc is the speed of light), which are used throughout the
paper.

2. Riccions from (4+D)-dimensional geometry
The action for the higher-derivative gravity is taken as
Rasp)

4+D):/d4XdDy g {
Sg (4+D) 167TG(4+D)

2
+a(4+D)R%4+D) + V(4+D)R(34+D) —20"RoNyip) | (2.1a)
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where

I’]Z

— = St = >
Giaio) = Giaio) = 06" Yaro) = gp "

(4+D)
_ D(D-1) B A
Ry = 2 and Ay p = G+ DNV

HereVD is the volume ofsP, g (4+D) 1S the determinant of the metric tensgyy (M,N =
0,1,2,...,(4+D)) and Raip) = R+ Ry. a is a dimensionless coupling constaRtjs
the Ricci scalarn?Ry/\/(4+ D) is the cosmological constant alis the gravitational
constant in a four-dimensional theory.

It is important to mention here that higher-derivative terms in the action given by eq.
(2.1a) are significant at the energy mass scale given by

1
2n? 1
3!(D—2)] _a+\/az+24nG(D—2)]' (2.10)

M is obtained using the method described in Appendix A. In €seG, (Newtonian
gravitational constanti > 2.2 x 10° GeV. It shows that higher-derivative terms are rele-
vant in the gravitational action at high energy level.

Invariance ofS{{*"?) under transformatiorgy,y — gy + 99y Yields [9,10]

M2 >

2
(167G 4, )~ (RMN ngNR(4+D)) + a(4+D)HI\(/IIZI *Va+o) H

+n2RD/\(4+D)gMN =0, (2.2a)
where
HUt = 2Rwn = 20unD 4. 0)Riasp) ~ 39wnRoai) + 2R 4y p)Runs  (2:2b)
and
Hy = 3R = 30unD 42 0)Ras0) — 39unRaso) + 3R )Ry (2.20)

with semi-colon (;) denoting curved space covariant derivative and

1 0 VI
Doy = —7————3m |/ 940 9
Yia10)
Trace of these field equations is obtained as
D+2
T 321G, .| 4+D) a(4+D) [Z(D + 3)D(4+D) R(4+D + 2DR24+D }
(4+D)
~VYa+D) [3(D+3)D(4+D)R%4+D) +3(D- Z)R(34+D)]
+(4+ D)nZRD/\(4+D) =0 (2.3)
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In the space-time described by the distance function defined in eq. (1.1),

1
_ ny
Blaro)Rao) = R= =250 (V 99 0Xv> (2.4)

4+D) givenin eq. (2.1).
is a total divergence, using the Gauss’s divergence theorem one obtains

using the definition oR(

AsO R2

(41D) (4+D)

/ d 4+D 4+D)D(4+D)R%4+D / d 4+D) 4+D RZ4+D v

whereQ is the volume of the space-time manifold, which is taken t@Beconnected,
Hausdorff and paracompact without boundary as usual [a¥].are components of unit
vector normal to thel§ + 3)-dimensional hypersurface. S3Q = 0, being the boundary
of the space-time manifold under consideration. As a result

44D
%0 d*+P)x 944D R24+D =0,
which implies that
/ d*+Px 4+D DRZ4+D
yielding
D410y Riarp) = 0. (2:9)
Connecting egs (2.3), (2.4) and (2.5) as well as uEiE]‘gD),A(4+D),G(4+D),a(4+D) and

Yiaip) from eq. (2.1), one obtains
D+2 1 5
{%] (R+Rp)+a|2(D+3)0R+ ED(R+ Ry) ]
n* 1 o
+m |:3(D+3)DRZ+§(D—2)(R+RD) j| -n RD/\_07 (2.6)
which is re-written as
1 A oo|lp 1 ) D+2
{D+§ER+mZ+ 3" Rz] R= TS [f) RoA = 55
1 1,
—5aDRE — 51 R%} (2.7a)
with
2(D+3) D .
w= O o }nZ/\R% (2.7¢)

16nG ' 2(D+3)

32 Pramana — J. Phys.Vol. 60, No. 1, January 2003



Riccion from higher dimensional space-time

1
A=— - 2.7
4D+3)a’ (2.7d)
wherea > 0 to avoid the ghost problem [12].
Multiplying by n and recognizingjRasR, eq. (2.7a) is re-written as

1 Asols n 2 _D+2
D+55R+”'2+§R2]R_ 2a(D+3) ['7 oM~ 35mG
1 1,
~2aDRy— 1 Rg] (2.7€)

The reason for multiplying by is given below. Now the question arises how to interpret
the physical meaning of eq. (2.7e). For this purpose, it is convenient to find an analogy
in the existing theories. From field theories, it is known that a scalar fieddtisfies an
equation

A
[D<p+ ER+M ot ] =0 (2.9)

wheref(p,)\(p are coupling constants amﬁ is the (mas)term for ¢.
Equation (2.7e) can be analogous to eq. (2.8) if

,[D+2 DR, 1
_ -2 1 5
A=n [3271@ T8o+an 12" RZD} ' (2.93)

It means that, in a four-dimensional theory, the cosmological congtRy (A /(4+D)) is
caused by the extra-dimensional compact compd®mtf the higher-dimensional space-
time.

So, eq. (2.7¢e) looks like

[m%gmmu%fﬂfz:o (2.9b)

with &, m? andA defined by egs (2.7b), (2.7¢) and (2.7d).
Equation (2.8) is derived from the action

_ [ 4
S(p—/d Xv/—0

using its invariance under transformatipns @+ o¢.

Mass dimension of is 1, whereas mass dimensionRis 2 which is a combination of
second order derivative as well as squares of first order derivative of metric tensor com-
ponents with respect to space-time coordinates.R3s,multiplied byn (having length
dimension) to geR (as above) with mass dimension 1.

According to discussions given above, eq. (2.9b) is possible only when higher-derivative
terms are significantly present in the gravitational action, given by eq. (2.1).

High frequency modes probe the geometry in the small vicinity of a space-time point
with coordinategx'¥; u = 0,1, 2,3}. Components of the metric tenggy, have asymptotic
expansion around a poifix’} as [9,10]

(6" 0,00,0- (ER+ 1)) - 30" 210)
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Guv(x) = + 3Ry YV = FO,R 0, s (X)YYPYY

w (X) +
[ZLR avp; y6+ 45 /Ja,B)\ Iy\yvé] ( )yayByyy5+ )

wherey” = x% —x? (a = 0,1,2,3) andg,,(X) = Nyv-
Using these expressions, one obtains the operator

/— UV
‘/ dxﬂ( 99 de)
as
0= ghv(x) s +B"(X'x’)i
=9 OXHIxV " oxv
with
9"’ (x) = g (X) — 3REZ (X)y7YF — 30, REC (X )y yPyY
[1R5/V3 o+ R vﬁ] WYY+
and

BY(x;X) = [10RVV H50'R, ](X’)yay'g [1R/‘§y5

+& ﬁAR/;\/] ypyyy6+[2o s
+ AR RY] ()yiyno — [ AR+ ZRE R (X)
xyTyPy? —[1R5‘£; W+45R5,3A vu]( X )y“yPyY

—ER,5 (<) [BORY = H0VR, 5| ()Y Py + -

Thus, at high energy level, one can work in the small neighborhood of a pdiht
whereO depends on curvature terms evaluated at this particular poinRands defined
at an arbitrary point in its neighborhood. So, at high energy, it is possible tofRawae-
pendent ofd and can be treated similar

Moreover,0OR is a scalar. In a locally inertial coordinate system, whgfe= 0 and
Ouv = Nuv

2

R
OxHoxVv

showing thafl is a similar operator foR as it is forg. According to the principle of equiv-
alence (in the general relativity), this characteristic featuf@ afith R will be maintained
at the global scale also [13] atRis a scalar. It means that (JRis linear inR at local as
well as global scales, (ii) the scalar operdibis a similar operator foR as it is forg at
local as well as global scales.

On the basis of these analyses, itis inferred that, at high energy level, the Ricci scalar not
only behaves as a geometrical field, but also as a spinless physical field [2,7]. At the low

= r’[JV
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energy level, where higher-derivative terms are not significant, it behaves like a geometrical
field only. Starobinsky has also found this kind of behavior of the Ricci scalar as a particle
and termed it as scalaron [12]. The scalaron has mass dimension 2 in the natural units,
whereas the riccion has mass dimension 1. It is so as the riccion is represented through the
scalar fieldR = nR, but the scalaron is represented through the scalarfield

To exploit the matter aspect of the four-dimensional Ricci sdal@btained from the
higher-dimensional geometryR is treated as a basic physical field. Now, one can argue
‘If Ris a physical field, there should be an act®yyielding eq. (2.9b) when invariance of
S under transformatior® — R+ R, is used as,, given by eq. (2.10), yields eq. (2.8)
when it is invariant undep — @+ d¢." To support this argumengy is obtained in what
follows.

If such an action exists, one can write

6S§:—/d4x\/—_géF§{D+%ER+mz+%F§2}F~% (2.11a)
which yields eq. (2.9b) i6S, = 0 under transformatior® — R+ R. From eq. (2.11a)
85, = —/d4x\/—_géli[D+%Eli+ mz+%li2} R
- /d“x\/—_g {g“"duliﬁv(éli) - (%Eﬁz+ MR+ %R3> 5&]
:/d“xé{\/—_g[%g“"auﬁdvﬁ— (%sm%n@m%ﬁ‘*)]}
—/d“x\/—_g% ngcauﬁavfz— <%5§3+ %mz|§2+ %R“)}
- / d4x\/—_g%c$g“"d“f€dv|§. (2.11b)

As in the integral

5(v/=9) [1 50 1,5 1 500 A
x/—0 oMo, RIR- | =—ER+ PR+ R
/dX g =3 59 duRa, 3!nE +5 + 2 ;
o(v/—0)/+/—g s invariant under cooordinate transformations being a scalar. So, there is
no harm, if it is evaluated in a locally inertial coordinate system (because a scalar is not
different at local as well as global scales), where

5(v-9 _1
=g = ngagﬂv = Efluv&l‘“’ =0

with n,, being components of the Minkowskian metric (which are components of the

metric tensor in a locally inertial coordinate system). Thus, one obtains

fotfd

1

1 s ca e 1 g 1 oy A
Eg“ 9,R9,R— <%£R3+§mZR2+ER4>] =0.

(2.11c)
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Similarly
/ d4x,/——géagwauﬁeavﬁa: 0 (2.11d)

asoghvoy RA,R= 0 in a locally inertial coordinate system which is true at global scales
also according to the principle of equivalence.
Now, using egs (2.11c) and (2.11d), eq. (2.11b) reduces to

1 ~ 1 2 1 ,~ A=
N —ql =gtV Y - Z
6S§_/d xé{\/_g{zg 9,R9,R (3!nER3+ 2mZR2+4!R4>H
yielding
.= [ d*x/—=0 Lo Ra,R— ifﬁ?’+}n12§2+ A (2.12)
%= 929" uRvR= {31, 2 as )| '

Itis important to mention here that althougbehaves like other scalar fielgssresults
obtained below foR are novel. Such results are not possiblegoiThe main reason for
this difference to happen is the dependence of (Mdes)R on the gravitational constant,
dimensionality of the space-time and the coupling constamhich is given by eq. (2.7c),

whereas mass @ does not depend on these constants. More®er/)R, whereas there
exists no such relation betweRrand .

3. One-loop quantum correction and renormalization

The S; with the Lagrangian density, given by eq. (2.9), can be expanded around the clas-
sical minimumR,, in powers of quantum fluctuatioR, = R— R, as

S=S9+50 D+,
where
1 ~ o~ 1 ~ 1 5« A~
S| /d“x\/—_g{ég“"dpRodvRo— (ﬁ“‘gﬁ”‘%* ERgﬂ
ng):/d4x¢fg%{u+%fl?+rr?+%ﬁ%]§q
and
sV=o0
R

as usual, because this term contains the classical equation.
The effective action of the theory is expanded in powers @¥fith 2 = 1) as

MR =S+TV+r

with one-loop correction given as [9]
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r— 'é In Det(D/2), (3.1a)
where
3284 1 A~
= —= =04 = — .
D= 57 lns, +25R+mz+2!F\% (3.1b)

andl’ is a term for higher-loop quantum corrections. In eq. (3.1 a mass parameter
to keepr (Y dimensionless.

To evaluatd™ (D), the operator regularization method [14] is used. Up to adiabatic order
4 (potentially divergent terms are expected up to this order only in a four-dimensional
theory), one-loop correction is obtained as

u?
M2 /1 1 1/1 1 1 _vap
-1 (é—?f)R* [6<§_§E>DR+ 1807 Ruvag
1 1/1 1,)\2
1R 5 (6 24) ® ] .
where
M? =P + (A /2)Rs. (3.2b)

Here it is important to note that both matter as well as geometrical aspects of the Ricci
scalar are used in eg. (3.2). The matter aspect is manifesté&dand the geometrical
aspect byR. Ricci tensor componenR,,, and curvature tensor componeﬁﬁ,aﬁ are the
same as mentioned above.

After some manipulations, the Lagrangian densit ¥ is obtained as

r@ = (16m)* [(mz+ (A /2)%)2{2 - % In (%) }

_<%_%E>R(mz+()\/2)f\%){l_ln (%ﬂ

m+A/2QR\ (1/1 1 1 uvap
_In<T>{6<§_EE>DR+1_80R“ RHVGB

1 1/1 1.\?
__—_RHV “(z-_=z
sR RW+2<6 25) RZH (3.3)
Now the renormalized form of Lagrangian density can be written as
1 N o E s 1 5np A=
Lren:EguvdﬂROdvRo_%F%_émzRg_ng+A

1
+ER+ Egle +ERVRyy + 8RR g

e, OR+TW 4+ L, (3.42)
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with bare coupling constants = (M2, A, A, &, €y, &, €5, &, &,),T Y given by eq. (3.3) and
L. given as

1 ~ 1 o A~ 1
L= _EagRRg - E5mZR5 - %Rng SN+ de R+ 5(SelR2
+552RWRW+553RW“ERMB +0¢,0R. (3.4b)

Ineq. (3.4b)JA; = (6P, 8A, 0N, 8E, 0g,, 8¢, 0¢,, 8¢5, 0¢,) are counter-terms, which
are calculated using the following renormalization conditions [15,16]

N= Lren|ﬁ0=ﬁ(0)0’R=o (3.53)
04
A = _—~Lren . . (35b)
IRS Ry=R ¢)1,R=0
02
m=—-—=L 3.5
oR? ren R,=0,R=0 (3:59)
1 93
&=- ~L 3.5d
ZE n IROR2 -en o=l ( )
7}
& ﬁLren om0 (3.5e)
02
& =—-=L (3.5f)
LA Ry=0,R=R
7]
& d(RHVRy,y) Lren R ~ORR, (3.50)
7}
&= ————Lren (3.5h)
3 0(R[JVCX,B RIJV[XB) RO—O,R—R7
0
&=—-——-L . (3.5i)
4 9(@Rr) " Ry=0.R=Ry
As R=nR, whenR =0, ﬁ(O)O = Ii(o)l = Ii(O)Z =0 andR; = R; = R, = Ry = 0 when
Ry =0.
Equations (3.4) and (3.5) yield counter-terms as
165N = g In(m?/u?) (3.6a)
165X = —3A2In(m?/u?) (3.6b)
16m23n? = —An?In(m?/u?) (3.6¢)
16m23E = —3A (5 - %) In(m?/ u?) (3.6d)
16m25¢, = g (5 - %) In(n?/u?) (3.6€)
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1615, = % (5 - %) 2In(mz/u2) (3.6f)
161d¢, = —%m(mz/uz) (3.69)
1625, = l—éom(mz/uz) (3.6h)
16m25¢, = é <% - %5) In(m?/u?). (3.6i)

4. Renormalization group equations and their solutions

The effective renormalized Lagrangian can be improved further by solving renormalization
group equations for coupling constahgﬁq) (suffix R stands for renormalization, which is

dropped onwards). For this purpose one-I@efpinctions, defined by the equation [1,8,9]

d
B, = Mo (X +5N)
)\I d” 1 I N

with counter-term®A; from egs (3.6a)—(3.6i), are obtained as

nt*
Pr="Tem
3\2
B)\:ﬁ
Am?
P =g
3 (E-1)
By = 167'[23
_ m(E-3)
Bey =~ 1672
(-
Be, 3212
1
Pe, = 12207
B 1
Pe, 144072

using the fact thati(d/du)A; = 0 for bare coupling constands.
The renormalization group equations are given as

dA;
EI = BAi )
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(4.2¢)
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(4.29)

(4.2h)

(4.2i)

(4.3)
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wheret = 3In(mg/u?) with p being a mass parameter amg being a reference mass
scale such thgtt > m.. Using 8 functions for different coupling constants given by eqs
(4.2a)—(4.2i), solutions of differential equation (4.3) are derived as

B mg A\ 3
/\_A0+§O[< _W> —1] (4.43)
A :)\0[ 38’\021 (4.4b)
-1/3
m = n%{ 3’\0t] (4.4c)
1 1 3t

E=3+ <<‘o— —) { 87;’2] (4.4d)

&= ‘gooﬂL [ < 8—> } (4.4e)
_ ; -1

& =&+ % {1— (1— %) ] (4.4f)

&= 0t Ty (4.49)
t

&= &0~ 1535 (4.4h)
t &— 1 3t .

f4 = 80 12202 ~ ( ?26)\03) n ( - 8—7'?2> (4-4)

whereA,, = A;(t = 0) andt = 0 atu = m according to definition af given above.
These results show that gs—  (t - —»), A — 0, m? -+ 0 and3& — . Thus it
follows from these expressions that in the limit— o, the theory is asymptotically free.
Using these limits in eq. (2.7b), it is obtained tBat> 6 asu — . Also egs (2.1a) and
(2.7b) imply that

DO-1) ., D
RD_T (1/n /\)[ m] (4.5)

Moreover, eq. (2.7c) yields

n? _ (D+2) DR, 1 )
%= 3G TaApad o

(4.6a)

and

_(D+2 DR, 1
=75 Tarpis T2 o (4.6b)

respectively. Connecting egs (4.5) and (4.6), one gets a quadratic equafibasor
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(1+A,+A,)D?+3(2A, +A,)D+9A, =0, (4.7a)
where
me 4
— 242 (10 2\ _ g2
A1_6{8n A (2)\ An ) 3¢ } (4.7b)
A, =2¢. (4.7¢)

As D is the dimension of the extra-dimensional space, the physically relevant root of eq.

(4.7)is
—(2A1+A,) + /A3 - 4A,

(1+A +A) (4.8)

D=15

with Dy, = 1 atpy = m.. HereA; andA, are defined in egs (4.7b) and (4.7c). Dependence
of m?,A and& on the energy mass scaleis given by egs (4.4a)—(4.4i). It is given below
how n? depends on the energy mass s¢ale

Using eq. (4.8) in egs (2.7b)—(2.7e)at= m¢

1
== 4.
& 3 (4.9a)
1 1
Ao = 160, ~ 16 (4.90)
3%,  3M3
o = 16nG,  256m (4.9¢)
3 Mp (4.9d)

/\ = =
07 32nGyn2 ~ 32mn?2

takinga, = 1 andG, = Gy, = M52 whereG; is the Newtonian gravitational constant.
From eq. (4.5), it is obtained that

o DO (1 Anz>l

P=tedr3\2r -

2n2 2
1+\/1+ 128120%(D + 3) <ﬁ—/\f12>

x (4.10a)

3D2 2A

p = py atu = me can be evaluated from eq. (4.10a) re-writing the same as

, D(MD-1 (1 2/\/\172+___>

8(D + 3)n? m2
12812n2(D +3)2 [ 1P )
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As given above ajt = m¢,D = 1 and(n?/2A) = An?. So, eq. (4.10a) implies that
pé=0. (4.10b)

Fromtable 1, itis found that as the energy mass gcalemes dowfA — A ;) decreases.
When u comes down from .00000In; to m;, a huge amount of energy of the order of
3.05x 106 GeV (with density 87 x 10% GeV?) is released. This abrupt change shows a
phase transition at

me = 3.05x 10*® GeV. (4.11)

Equations (4.10) and (4.11) imply that at= m¢ = 3.05x 10'6 GeV,D = 1 and the
radius of extra-dimensional compact sp&&eis vanishing. It is difficult to think of &8t
(circle) with vanishing radius. However, on physical grounds, the smallest length that can
be thought of is the Planck length. So, it is reasonable to take

ps=L3=1038Gev 2~0 (4.12)

at the energy mass scatg given by eq. (4.11), as the length of the order of Planck length
is invisible at 305x 106 GeV.

It means that when phase transition takes pl&€ehrinks to an unobservable tiny circle
leading to compactification of the higher-dimensional space-time to the observable four-
dimensional space-time.

But at 4 > mg, p should be observed, otherwise higher-dimensional space-time will be
redundant. It is possible only when

p?>mg2. (4.13)

Table 1. (A—A,),G/G, and dimension of the space-tie+ D) are tabulated below
againsty/mg with me = 1.76 x 10'6 GeV taking, = 1.

(N="Ng)
u/me in GeV# G/Gy (4+D) p/Lp
1 0x1 4 1
1.000001 6.7410% 1.000000007 5.000000251 1.3580°
1.00001 6.5910°° 1.000000013 5.000000448 1.5440°
1.0001 6.5%10%® 1.000000149 5.000004556 4.9210
1.001 6.06 1087 1.000002188 5.000047621 1.50p0"
1.01 6.5¢10P8 1.000015127 5.000454132 4,948
1.1 6.28¢107° 1.000143985 5.004346587 1:200°
2 4.55¢1070 1.001001195 5.03143937 4.1680°
10 1.494¢10't 1.002933661 5.102936483 7.85BF
100 3.45¢107! 1.008601892 5.213725181 1456
348.48 3.71%101 1.0055123958 5.25371926 1:260°
10° 7.06x10"1 1.005638664 5.475523461 1,980
1010 1.33x10'2 1.001327407 5.868452973 3280
1020 2.392¢1072 0.958094676 7.479989382 5:88¢
10% 3.3x1072 0.91729725 7.928639028 7680
10°0 4.7x10"2 0.824345225 8.553063893 1.2080
0 0 0 10 0
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This condition can be easily satisfied by eq. (4.10a) if

m?

(5 —/\n2> =1.32x 10 °n¢. (4.14a)

Connecting egs. (4.4b), (4.4c) and (4.9c) with eq. (4.14a), it is obtained that
2 8MgX*/°—1.32x10~°n¢

8MEX1/3
_ 8MgX?/3-3.29x 10~ 12m}
B 8mgx1/3
Xl/3
~2 (4.14b)
mg
with
né = my? (4.14c)
and
3\
X =14—3In(u/m). (4.14d)

8rr!

From eq. (4.8), it is obtained thBX— 6, whenu — o asA 2n? — 0 andé — 1/6. Also
from eqgs (4.4), (4.5), (4.6a), (4.9) and (4.14), one obtains

c_ O+2Gy[ 1281D?(D — 1)X/3L3
3x2/3 3(D +3)p2
_ 2048PD2(D - 1)2X LA
9p*

(4.15)

whereD andp are given by egs (4.8), (4.10a) and (4.14d) respectively. Begyés the
Newtonian gravitational constant whichisM52.

5. Concluding remarks

The higher-dimensional space-time, considered here, has the topaéfbgys® with M*

as the four-dimensional space-time &tas theD-dimensional sphere (a compact mani-

fold). In §2, it is shown that\ is caused by the geometry of the compact manifold which
behaves as vacuum energy density. It is evident from table 1 that as the energy mass scale
comes down(A—A\,) decreases (herg, = A(u = m)). Moreover, dimension and radius

of SP also decrease with the decreasing mass scale. When the phase transition takes place
at u = m;, extra-dimensional space becomes too small to be observed. As a result, only
four-dimensional space-time is observable at this energy mass scale. It means that with the
fall in the mass scale, energy is transferred fi®frto M* which is the presently observed
component of the (4 D)-dimensional space-time.
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In the Kaluza—Klein type theories, extra-dimensional space (#h-aD)-dimensional
theory is supposed to be caused when the other three fundamental forces (other than
gravity) after unification also behave like gravity described by the geometry of a com-
pact manifoldSP. Here extra-dimensional space is observablg at m. = 3.05x 106
GeV. It means that the behavior of other forces like gravity described by the geometry
of a compact manifold is possible at> m¢. Shrinking of the compact manifold to an
observable tiny circle att < m; shows that the other forces become distinct from the
four-dimensional gravity at this scale. Thus with the phase transitiold53L01¢ GeV,
spontaneous symmetry breaking takes place, and other forces dissociate from gravity. As
a result, higher-dimensional gravity reduces to the four-dimensional gravity. Moreover,
energy of the order of.85x 106 GeV is transferred from the compact manifold to the
observable four-dimensional space-time. Also, at this stagés obtained as

Ny~ 11x107°GeV,

but the effective four-dimensional cosmological constant

ngRoNy _ (D1
D+4  (D+4)miL3

asD=1laty =me.

It is interesting to see that as the energy mass scale goes abéveI®'® GeV, dimen-
sion of the compact manifold becomes non-integral showing its fractal nature [17,18]. It
means that above@5 x 106 GeV, S is not a smooth surface whergd$ is smooth. As
discussed aboveP is caused by forces other than gravity (according to Einstein’s theory)
which are effective forces among elementary particles. So the reason for non-smoothness
of S° may be the zig-zag paths followed by these particles. As the energy scale increases,
the nature of particles to move in zig-zag manner is aggravated leading to more fractality
due to more and more closeness between particles as well as high momentum.

When the energy mass scale comes downddluctuations irtM* will be large withSP
hidden in it and the energy 8P will be transferred td1#, which is our observed universe.

Ag=0

Appendix A

The four-dimensional higher-derivative gravitational action is taken as [2—4]

Sg:/d“x\/—_g[%deR“"R“ﬁ-BRz—(1/3!)/\/72R3 , (A1)

wherea, ﬁ andA are dimensionless coupling constants.

To decide the energy mass scMewhere higher-derivative terms will dominate over
R/16nG, mass scale representation of these terms can be useful. In naturR(b6sG
corresponds tM?M3/16m. (Mp, is the Planck mass ar@l= M52, [dRHVR,,, + BR?] cor-
responds tdd + Bg]M* as well as(1/3!)A 2R3 corresponds t¢1/3!)A n2M® because
RandR,, are linear combinations of second derivatives and squares of first derivatives
of components of the metric tensgy;,, (being defined throughs¥ = guvdxHdx” ) w.rt.
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space-time coordinateg,,, are dimensionless. Thus, it is found that higher-derivative
terms are significant only when

36+ B+ \/9(& + B)2 + (3/8m)AnM

2
>
M > A2

(A2)
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