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Classical stochastic approach to cosmology revisited

MONCY V JOHN�, C SIVAKUMAR and K BABU JOSEPH
Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
�Permanent Address: Department of Physics, St. Thomas College, Kozhencherri 689 641, India
Email: moncy@stthom.ernet.in; sivakumarc@cusat.ac.in

MS received 2 April 2001; revised 22 July 2002

Abstract. The classical stochastic model of cosmology recently developed by us is reconsidered.
In that approach the parameterw defined by the equation of statep= wρ was taken to be fluctuat-
ing with mean zero and we compared the theoretical probability distribution function (PDF) for the
Hubble parameter with observational data corresponding to a universe with matter and vacuum en-
ergy. Even though qualitative agreement between the two was obtained, an attempt is herein made to
introduce a more realistic assumption for the mean ofw and use it for the calculations. In the present
theory the mean values of bothp andw are taken to be nonzero. The theoretical and observational
PDFs are compared for different epochs and values of the Hubble parameter. The corresponding
values of the diffusion constantD obtained are approximately constant. We use the scatter in the
observed redshift-magnitude data of Type Ia supernova to place limits on the stochastic variation in
expansion rate and consequently, on the stochastic variation of the equation of state.
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1. Introduction

The uncertainty in the determination of the Hubble parameterH, which is a measure of
the expansion rate of the universe, is one of the most intriguing issues in the history of
cosmology. The origin of the uncertainty is obvious from the redshift-magnitude diagram
(Hubble diagram). Despite rigorous attempts to control the random errors in measurement,
there is a clear scatter in it, though it is now possible to narrow down this to a great extent.
In a recent work [1], we have attempted to explain this scatter as arising from an inherent
stochastic or nondeterministic nature of the Hubble parameter. It was shown that a fluc-
tuatingw-factor in the equation of statep = wρ will lead to this kind of behavior forH.
In order to arrive at the notion of a stochastic equation of state, we consider the following.
Several recent measurements [2–6] indicate that the present universe contains components
other than ordinary matter and radiation, like vacuum energy, quintessence etc. Let the
equation of state for each component, with densityρ i , be written aspi = wiρi (i = 1;2; ::),
wherepi is the corresponding pressure (wi = 0 for dust, 1=3 for radiation,�1 for vacuum
energy, etc.; in general,�1 < wi < +1). The total energy density isρ = ∑ iρi and the
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total pressurep = ∑i pi . From the law of conservation of total energy–momentum tensor
expressed in the form

ρ̇ = ∑
i

ρ̇i =�3
ȧ
a
(ρ + p) =�3

ȧ
a

ρ(1+w) =�3
ȧ
a ∑

i
ρi(1+wi); (1)

which follows from the Einstein equation and one can write the totalw-factor as

w� p
ρ

=� ∑i ρ̇i

3(ȧ=a)ρ
�1= ∑

i

ρi

ρ
(1+wi)�1; (2)

wherea is the scale factor. The conservation of individual components, which may be
expressed aṡρi =�3(ȧ=a)ρi(1+wi), is only an extra assumption since it does not follow
from the Einstein’s field equation. Equivalently, it can be stated that in a many-component
fluid as in the above case, the Einstein equations, along with the equations of state of
individual components are insufficient to determine the individualρ̇i ’s. Thus it is more
general not to assume conservation of individual components and this will lead to the
creation of one component at the expense of other components. Since they are not uniquely
determined by the field equations, such creation can be considered as sporadic events, like
those occurring in galactic nuclei, which can result in fluctuations in the ratioρ i=ρ . Here
we make the assumption that this will lead to a stochastic equation of state, as seen from eq.
(2) above. Consequently, also the expansion rate will be fluctuating and the equation for
the Hubble parameter will appear as a Langevin type [7] equation (Recently Padmanabhan
[8] has proposed a similar scenario in which the observed cosmological constant arises
from quantum fluctuations of some energy density and consequently the FRW equations
are to be solved with a stochastic term on the right hand side). In [1], it was assumed for the
sake of simplicity that space sections are flat andw is a Gaussianδ -correlated stochastic
force with zero mean. With these assumptions, we have written the Fokker–Planck (FP)
equation, whose solution gives the theoretical probability distribution function (PDF) for
H0 at timet0, denoted asW(h; t0) (whereH0 = 100hkm s�1 Mpc�1; the subscript 0 denotes
the present epoch). Using the redshift-apparent magnitude dataµ o for SN Ia used in [2],
we computed the observational PDFp(hjµo) for h in the present universe, again assuming
its space sections to be flat. This PDF arises from the point-to-point variance of the Hubble
flow. We compared the two plots for the present universe and found them to agree well, for
a value of the diffusion constantD appearing in the FP equation equal to 4�1013 s.

This result is a first step towards an understanding of the anomalous scatter in the Hubble
diagram at high redshifts. However, there are certain refinements to be made in our anal-
ysis. One drawback of the above scheme of comparing these two PDF’s is that when we
derivedW(h; t), the assumption was made thatw has zero mean value, whereas the obser-
vational PDFp(hjµo) was evaluated for a model which contains dust and vacuum energy,
which has the mean total pressure negative. Instead, if we had used in this evaluation the
expression for the distance modulus for a flat universe which is dust dominated (i.e., with
w= 0), an observational PDF will be obtained, but the best fit value forh would be ridicu-
lously low. (This is all the fuss about the new observations – that they are incompatible
with anΩΛ = 0 flat model.)

Another shortcoming is that though in both cases we take the PDF forh, it remains to
be explained how legitimate is the comparison ofW(h; t0) for the present universe with a
PDF p(hjµ0) evaluated using the data that include high redshift objects, which belong to
the distant past.
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In this paper, we attempt to rectify these two defects and to make a more rigorous test of
the stochastic assumptions using observational data by (1) comparing both the theoretical
and observational PDF’s evaluated for the same model, which is an alternative flat model
[9] and (2) evaluating the observational PDFp(h j jµo j) for the Hubble parameter at the
same epocht j as that in the theoretical PDFW(hj ; t j). This procedure helps us to compare
the theoretical and observational PDF’s for the Hubble parameter for the same model, and
at the same epoch. The value of the diffusion constant evaluated at any time is obtained
as nearly a constant, in agreement with our assumptions. A novel feature in our present
approach is that we evaluate the observational PDF for Hubble parameter at various instants
in the past, also with an objective of justifying our assertion that the scatter increases as we
go into the past.

The paper is organized as follows: Section 2 gives a brief review of the alternative
model to be used and then develops the stochastic approach in it. Section 3 gives the new
technique of finding the PDF forh at any time in the past or present epochs and the results
obtained on comparison between the theoretical and observational PDF’s. The conclusions
derived from it are discussed inx4.

2. Stochastic approach in the new model

In all FRW models, the Einstein equations, when combined with the conservation of total
energy–momentum tensor can be written in terms of the Hubble parameter as

Ḣ =�H2� 4πG
3

(ρ +3p) : (3)

Overdot denotes time derivative. If we restrict ourselves to flat models, then (withp=wρ),

Ḣ =�3
2

H2(1+w) : (4)

In [1], we considered this flat case and assumed thatw is a Gaussianδ -correlated
Langevin force term with zero mean value. This means that the mean total pressure of
the universe is zero, the same as that for dust. But many recent observations are incom-
patible with this model and hence, as mentioned in the Introduction, we look for a more
observationally correct, but simple model to apply our stochastic treatment.

The deterministic model [9] we propose to use is the one in which the total energy
density obeys the conditionρ +3p= 0 and hence having a coasting (a ∝ t) evolution. This
model is derived on the basis of some dimensional considerations in line with quantum
cosmology. If we assume that the energy components in this model are dust and vacuum,
then the above condition givesρm=ρv = 2 and if they are only radiation and vacuum, then
ρr=ρv = 1. In [9], it was shown that in this model, most outstanding cosmological problems
like those of flatness, horizon, monopole, entropy, size and age of the universe, and the
cosmological constant are absent. It was also shown that this model can solve the problem
of generation of density perturbations at scales well above the present Hubble radius and
that it can generate such density perturbations even after the era of nucleosynthesis. Though
it is mentioned in the paper that recent observations on the redshift-apparent magnitude
relation are at variance with the predictions of this model, in a recent communication [10],

Pramana – J. Phys.,Vol. 60, No. 1, January 2003 3



Moncy V John, C Sivakumar and K Babu Joseph

this issue was studied in detail and found that those observations do not provide any strong
evidence against it.

It may be noted that the underlying model described above deviates from ‘main stream’
cosmology to some extent and the most significant cosmological observations such as nu-
cleosynthesis, large scale structures and microwave background radiation, in this model
are not well-studied. However, to repeat our statements above, we choose this model to
implement our stochastic approach mainly due to its simplicity and its capability to explain
the recent supernova data.

In view of the fact that this model hasw = �1=3 in the deterministic case, we rewrite
the above eq. (4) withw0 � w+(1=3), as

Ḣ =�3
2

H2
�

2
3
+w0

�
: (5)

We now assume thatw0 fluctuates about its zero mean value and isδ -correlated. Making a
substitution

x� 1
H

the above equation becomes

ẋ= 1+
3
2

w0: (6)

Whenw0 = 0, this equation is analogous to that of a particle moving in a medium with con-
stant velocity. With a fluctuatingw0, the analogous particle is subjected to random forces
as it moves. We write the FP equation for the distribution function for the variablex as [7]

∂W0

∂ t
(x; t) =

�
�D(1) ∂

∂x
+D(2) ∂ 2

∂x2

�
W0 (x; t) ; (7)

the solution of which gives the PDFW 0 for the variablex at timet. Here the drift coefficient
D(1) is the constant velocity term, equal to unity, and the diffusion coefficientD (2) � D is
assumed to have some constant value, to be determined from observation. The FP equation
is solved by first assuming that the variables are separable

W0 (x; t) = φn (x)e�λnt ; (8)

whereφn (x) andλn are the eigenfunctions and eigenvalues of the Fokker–Planck operator

LFP=

"
�∂D(1)

∂x
(x)+

∂ 2D(2)

∂x2 (x)

#
: (9)

Now we define two more functions in order to get a solution for the FP equation

Φ(x)��
Z

D(1)

D(2)
dx0 =� x

D
(10)

and
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ψn(x) = exp

�
Φ
2

�
φn(x) = exp

�
� x

2D

�
φn(x); (11)

whereΦ(x) is treated as a stochastic potential andψn (x) are the eigenfunctions of the
Hermitian operatorL defined as

L = exp

�
Φ
2

�
LFPexp

�
�Φ

2

�
: (12)

Making use of eqs (8) and (11), the time independent part of FP equation becomes

∂ 2ψn

∂x2 (x) =

�
1

4D2 �
λn

D

�
ψn (x) =�k2ψn (x) : (13)

Here

k=�
�

λn

D
� 1

4D2

�1=2

: (14)

The most general solution to (7) is

W0 (x; t) =
∞

∑
n=0

cne�λntφn (x) : (15)

For λn < 1=4D, the solutionψn (x) is exponentially diverging, which is not an admissible
solution. Thus we conclude thatλn � 1=4D so that

φk(x) = Aexp
� x

2D
+ ikx

�
: (16)

We make use of the completeness relation

δ (x�x0) =
Z +∞

�∞
ψ�

k (x)ψk(x
0)dk (17)

to specify the initial conditionx= x0 at t = t 0. The transition probability for the variable to
change fromx0 at timet 0 to x at timet is [7]

P(x; t j x0; t 0) = eLFP(t�t0)δ (x�x0)

= exp

�
Φ(x0)

2
� Φ(x)

2

�

�
Z +∞

�∞
dkψ�

k (x)ψk(x
0)exp

��λ (k)(t� t 0)
�

(18)

=
1

2
p

πD(t� t 0)
exp

"
� [(x�x0)� (t� t 0)]

4D(t� t 0)

2
#
;

where we have chosenA= 1=
p

2π for normalization purpose. For the special initial condi-
tionW0(x; t 0) = δ (x�x0), the transition probabilityP(x; t j x0; t 0) is the distribution function
W0(x; t) [7]. In our case, we have the initial conditionx= x0 = 0 att = t 0 = 0, so that
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W0

(x; t) = P(x; tj0;0) = 1

2
p

πDt
exp

"
� (x� t)

4Dt

2
#
; (19)

which is in Gaussian form and has its peak moving along in such a way that the expectation
value of the variable ishxi = t. This corresponds to the deterministic solution of (6). The
width of the Gaussian is found from the varianceσ 2 = h(x�hxi)2i = 2Dt and we find
σ � hxi till t = 2D. We can immediately rewrite this distribution function in terms of the
stochastic Hubble parameterH as

W00(H; t) =
1

2H2

1p
πDt

exp

"
� (1�Ht)2

4H2Dt

#
: (20)

With H = 100h km s�1 Mpc�1, t = t17�1017 s andD = D17�1017 s, the PDFW(h; t) can
be written as

W(h; t) =
3:0856

2h2

1p
πD17t17

exp

"
�
�
3:0856�ht17

�2

4h2D17t17

#
: (21)

For the range of values of interest, 1< t17 < 5 andD17� 10�3, W(h; t) is approximately
a Gaussian. For fixedD, the half width of the Gaussian is found to increase as we go to
lower values oft.

3. PDF for HH from observational data

From the Hubble diagram, one can find the PDF for the present Hubble constantH 0 in
the following way. The traditional measure of distance to a SN is its observed distance
modulusµo = mbol�Mbol, the difference between its bolometric apparent magnitude and
absolute magnitude. In the FRW cosmology, the distance modulus is predicted from the
source’s redshift,z, according to

µp = 5log

�
DL

1Mpc

�
+25; (22)

whereDL is the luminosity distance, found as

DL = r ja(t0)(1+z): (23)

a(t0) is the present scale factor andr j is the radial coordinate of the SN Ia which emitted
the light at some timet j in the past. In flat FRW models,r j is found as

r j =

Z t0

t j

cdt
a(t)

: (24)

For the coasting model discussed in the previous section, fork= 0, r j can be evaluated as

r j =
ct0

a(t0)

Z t0

t j

dt
t
=

ct0
a(t0)

ln(1+z); (25)
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so that

DL =
c(1+z)

H0
ln(1+z): (26)

One can use this expression in (22) to obtain the predicted distance modulus of an object
with redshiftz. Conventionally, assuming that the observed and predicted distance moduli
coincide, one can find a value ofH0. For a collection of objects, also one can find the
likelihood forH0, from aχ2 statistic

χ2 = ∑
i

(µp;i �µo;i)
2

σ2
i

; (27)

whereσi is the total uncertainty in the corrected peak magnitude of SN Ia. For the special
model we are considering,h is the only parameter and the normalized PDF can now be
obtained as [3]

p(hjµ0) =
exp(�χ2=2)R ∞

�∞ dhexp(�χ 2=2)
: (28)

As in [1], we computep(hjµo) for the new model using the SNe data in [2], which
corresponds to their Fit C and attempt to comparep(hjµo) with the PDFW(h; t0) to eval-
uate the diffusion constantD appearing in this expression. It is found that the two curves,
shown in figure 1, coincide for a value ofD� 2:36�1013 s. (This corresponds to an age
4:8583�1017 s.) Since our primary objective is to make an order of magnitude evaluation
of D, we chose a fiducial absolute magnitude for SN Ia in computingµ o, equal to�19:3
mag. Slight variations in this quantity will not significantly affectD, though the best fit
value forh may change.

In the above, we compared the theoretical and observational PDF’s for the same alter-
native model and thus it does not have the first shortcoming mentioned in the Introduction.
The other incompatibility which still exists can be explicitly stated as follows:W(h; t0)

is the PDF for the Hubble parameter of the present universe and it contains the diffusion
constantD. But p(hjµo), which we attempt to identify withW(h; t0), depends on the scat-
ter in the Hubble diagram for all ranges of redshift. For instance, if we include more high
redshift objects in our sample, the scatter would be larger and hence the half-width of the
distributionp(hjµo) will be larger. This, in turn, will affect the computed value ofD, which
is quite unreasonable.

This problem can, however, be overcome if we agree to computep(h j jµo j) for each
value of redshiftz (or for small enough redshift intervals centered about such values),
and compare these withW(hj ; t j ) that corresponds to the same epocht j . To do this, we
modify (26) by re-evaluatingr j in (25) in a different way. One can also write, for the new
deterministic model

r j =
ctj

a(t j)

Z t0

t j

dt
t
=

c
Hja(t j)

ln(1+z); (29)

so that
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Figure 1. Observational and theoretical PDF’s vs.h, using the apparent magnitude-
redshift data for Type Ia supernovae as given in [1], which corresponds to their Fit
C. The continuous line is for the observational PDF whereas the dotted line gives the
theoretical PDF.

Figure 2. Observational and theoretical PDF’s vs.hj (wherehj corresponds to the
Hubble parameter for the epoch centered about redshiftsz= 0:05, 0.15, 0.35, 0.45,
0.55, 0.65), using the apparent magnitude-redshift data for Type Ia supernovae as given
in [1], which corresponds to their Fit C and which lies in the intervalz�0:05.
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Table 1.

No. of SNe
(N) in the Best fit Standard Age in units Diffusion

Redshift interval value of deviation of 1017 s constant
z z�0:05 h σh σh(

p
N) t17 D

0.05 15 0.693 0.011 0.0426 4.4502 0.5775�1014

0.15 3 0.772 0.025 0.0433 3.9987 2.147�1014

0.35 5 0.830 0.024 0.0537 3.7204 1.5�1014

0.45 15 0.875 0.017 0.0658 3.528 1.655�1014

0.55 7 0.985 0.026 0.0688 3.1345 1.12�1014

0.65 6 1.043 0.030 0.0735 2.959 1.226�1014

DL =
c(1+z)2

Hj
ln(1+z): (30)

Evaluatingµp using this expression in (22), we can calculateχ 2 and hence alsop(hj jµo j),
which is the PDF for the Hubble parameter at some particular value ofz. We divide the
data in [2] for various ranges aroundz= 0:05, 0.15, 0.35, 0.45, 0.55 and 0.65, each with
∆z= 0:05. The PDF for the average Hubble parameter for such intervals is calculated
with an expression identical to (28). The results are plotted in figure 2 along with the
correspondingW(hj ; t j ) which overlaps with them. The relevant parameters are given in
table 1.

4. Conclusions

It can be noted from figure 2 and table 1 that for the intervals with larger values ofz, the
68.3% credible region ofp(hjµo j) has a half-widthσh which also increases (The intervals
with centre atz= 0:15 and 0.35 are exceptions to it, but this may be due to the fact that
these intervals contain only very few objects. As more SN Ia are observed in these redshift
bins, an accurate picture will emerge.) This behavior is the one expected from theory,
as noted while plotting the theoretical PDF (21). The value of the diffusion constantD
evaluated for various intervals, however, does not show any dependence onz. This justifies
our assumption (taken for the sake of simplicity) thatD is some constant.

A novel feature of the present analysis is that we have computed the PDF forH at
various epochs in the past. However, there is a limitation, even in the present analysis; the
intervals we have considered are with∆z= 0:05 and this value may not be small enough to
give correct answers. The procedure may be improved very much in the future, when the
number of observed SN Ia becomes large.

Though the results are encouraging, it should be kept in mind that the measurements
are made with finite accuracy and hence have a scatter arising from the intrinsic statistics
of measurement error. In this paper we have attempted to matchp(hjµ o), the conditional
probability for the Hubble parameter given the SNe data, which in turn is proportional to
the likelihood of the Hubble parameter, with a theoretical PDF forH that arises from the
speculated stochastic variation in the expansion rate of the universe. The present theory can
survive only if p(hjµo) does not become narrower with increase in accuracy of measure-
ment. Until it is confirmed by future observations like the supernova acceleration probe
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(SNAP) [11], which aims to give precise luminosity distance of�2000 SN Ia up toz= 1:7
every year, the computed value of the diffusion constant cannot be claimed as accurate. It
is safer to conclude that the scatter in the SN Ia data available with us places limits on the
stochastic variation in the expansion rate and consequently, on the stochastic variation of
the equation of state. In other words, it is justifiable to consider the value ofD computed
by us using SN Ia data as an upper limit to a possible diffusion constant for the universe.
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