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The geometry of Larmor nutation
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Abstract. The nutation accompanying the well-known Larmor precession discussed with respect
to an inertial frame in an earlier paper is now considered in the rotating Larmor frame where the
precession is absent and the nutation is therefore fully emphasized. It is shown that, in this frame, the
nutating vector generates, in general, what may be calledinterpenetrating partial cones, the two parts
of which merge into a single cone traced twice over, when the orbit of the charged particle changes
to a circle – giving an immediate explanation of the discontinuous jump in the nutation frequency to
twice its value as the orbit changes continuously from an ellipse to a circle.
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1. Introduction

In an earlier paper [1] it was shown that, the angular momentum vector~L of a charged
particle in the combined central electric field and a uniform magnetic field executes, in ad-
dition to the well-known Larmor precession [2–4], a high frequency nutation in an inertial
frame. The expression for cosθL (eq. (3.6) of [1]), whereθL is the angle between the angu-
lar momentum vector and the magnetic field, turned out to be somewhat involved reflecting
the fact that the motion of~L is the combined motion of a precession and a nutation. Graphs
depicting the motion for selected values of parameters were also given. We now show that
in the Larmor frame, rotating with the Larmor frequencyω , the precessional part~L� of~L
is obviously frozen and the nutational part stands out in relief. We have, in this frame, as
vivid a geometrical picture of nutation, as we have of precession in the inertial frame. We
shall see that in the general case of an elliptic orbit of the charged particle, the nutational
part~λ of the angular momentum, which we shall call the nutation vector, actually gener-
ates the lateral surface of a double cone, the two parts of which are on the same side of a
common vertex, and which, in general, are irregular and interpenetrating, depending upon
the position of the elliptic orbit of the charged particle. The two parts of the double cone
approach each other as the eccentricitye of the elliptical orbit tends to zero and actually
merge into a single cone whene= 0. Its lateral surface is then traced twice over in one
period of the charge explaining, at once, the discontinuous jump of the nutation frequency
to twice its value as the orbit changes from an ellipse into a circle.
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For ready reference, we collect here, the main results of our earlier paper [1]. The
equation of motion of a charged particle of charge�q (q> 0) moving in the combined
central electric field and a uniform magnetic field is

d(m~v)
dt

= f (r)r̂ �
q
c
~v�~B: (1.1)

On taking the cross product with~r, we obtain

d~L
dt

=�2m~r� (~v�~ω); ~L =~r�m~v; ~ω =
q~B
2mc

(1.2)

where~L is the angular momentum of the charge andω = j~ω j = qj~Bj=2mc is the Larmor
frequency. Writing the right hand side of eq. (1.2) as a sum of two equal halves and
expressing one of them using Jacobi identity [5] as

�m~r� (~v�~ω) = m~v� (~ω�~r)+m~ω� (~r�~v) (1.3)

we obtain

d~L
dt

= ~ω�~L+
d~λ
dt

(1.4)

where

~λ = m~r� (~ω�~r): (1.5)

Defining

~L� =~L�~λ (1.6)

eq. (1.4) takes the form

d~L�

dt
= ~ω�~L�

+~ω�~λ : (1.7)

Since~ω�~r is thevelocity of transport[6] of the charged particle,~λ = m~r� (~ω�~r) would
be theangular momentum of transportand since~L is the absolute angular momentum,
i.e., the angular momentum with respect to the inertial frame, we see that~L� is therelative
angular momentum, i.e., the angular momentum with respect to the rotating Larmor frame.
Denoting the time derivative with respect to the rotating frame by d�=dt and noting that

d
dt

=
d�

dt
+~ω� (1.8)

eq. (1.7) would assume the form

d�~L�

dt
= ~ω�~λ : (1.9)
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We now note that~ω�~λ = ~ω�m (~r� (~ω�~r)) is of the order 1=c2 and is quadratic in~B.
Neglecting this term for the case of weak magnetic fields, eqs (1.7) and (1.9) respectively
assume the form

d~L�

dt
� ~ω�~L� (1.10)

and

d�~L�

dt
� 0: (1.11)

Equation (1.10) shows that it is~L� (and not~L) which is precessing around the field~B
and eq. (1.11) shows that the relative angular momentum~L� is a constant vector in the
rotating Larmor frame in the approximation where~ω�~λ is neglected. In other words, the
dynamical behavior of the angular momentum~L =~L�+~λ , in the Larmor frame is entirely
that of the angular momentum of transport~λ .

2. The geometry of nutation

The fact that~L� is constant in the Larmor frame implies that the orbit of the charged
particle lies in a plane perpendicular to~L�. Taking thez-axis of the inertial frame along
the direction of the field~B (or ~ω) and theZ-axis of the Larmor frame along~L�, we choose
theY-axis of the rotating frame in theZ–z plane so that the vector~ω has, in this frame, the
components

~ω = (0; ω sinθ ; ω cosθ ) (2.1)

whereθ is the angle between theZ- andz-axes. TheX-axis is evidently perpendicular
to ~ω . If ~r is the position vector of the charged particle, we clearly have, in the Larmor
approximation

~r � (X; Y; 0) (2.2)

and the nutation vector~λ = m~r� (~ω�~r) with components~λ � (λX; λY; λZ); which may
be calculated by the method of successive approximation, on using theX, Y of eq. (2.2)
obtained in the previous Larmor approximation. We have

λX =�mω sinθXY (2.3)

λY = mω sinθX2 (2.4)

λZ = mω cosθ (X2
+Y2

): (2.5)

We note that the orbit of the charged particle is, in general, an ellipse in theXY plane
and we assume that the major axis of the ellipse is inclined at an angleψ to theX-axis (see
figure 1).

Introducing polar coordinates(r;φ) defining the position of the charge where the polar
angleφ is measured from the initial line taken along the major axis of the ellipse, the
equation of the orbit is evidently
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Figure 1. Elliptic orbit of the charged particle in the Larmor frame.

l
r
= 1+e cosφ (2.6)

wheree is the eccentricity of the orbit andl , the semilatus rectum:

l = a(1�e2); (2.7)

a, being the semi-major axis of the ellipse. Thus the Cartesian coordinatesX, Y of the
charge are given by

X = r cosφ 0 (2.8)

Y = r sinφ 0 (2.9)

φ 0 = φ +ψ andr = l=(1+e cos(φ 0�ψ)): Using eqs (2.6), (2.8) and (2.9) in eqs (2.3)–
(2.5) we obtain

λX(φ
0) =�

mω l2 sinθ cosφ 0 sinφ 0

(1+e cos(φ 0�ψ))2 (2.10)

λY(φ
0

) =
mω l2 sinθ cos2 φ 0

(1+e cos(φ 0�ψ))2 (2.11)

λZ(φ
0) =

mω l2 cosθ
(1+e cos(φ 0�ψ))2 : (2.12)

Note thatXλX +YλY = 0 showing that the vector~λP � (λX ; λY; 0) is always orthogonal
to~r :

Alternatively, the orientation of the vector~λ relative to the Larmor frame is fully speci-
fied if we know the angular separationα from theZ-axis (or from~L�) and the angleβ
between theX-axis and the projection~λP of~λ on theX–Y plane. From eqs (2.10)–(2.12)
we have

λP� j
~λPj=

q
λ 2

X +λ 2
Y =

mω l2 sinθ jcosφ 0j

(1+e cos(φ 0�ψ))2 (2.13)
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and therefore

tanα =
λP

λZ
= tanθ jcosφ 0j; (2.14)

tanβ =
λY

λX
=�cotφ 0 ) β = φ 0�π=2: (2.15)

SinceλY is always positive,β can only lie in the range 0� β � π and therefore we must
have

β =

8<
:

φ 0 +π=2 when 0� φ 0 � π=2;
φ 0�π=2 whenπ=2� φ 0 � 3π=2;
φ 0 +π=2 when 3π=2� φ 0 � 2π :

(2.16)

We see from eq. (2.14) thatα is maximum whenφ 0 = 0 andφ 0 = π : In each case, we have,
β = π=2 and~λP is along the positive direction of theY-axis whileαmax = θ , the angle
betweenZ- andz-axes.

In order to study the manner in which the nutation vector~λ varies as the charge moves
in its orbit, it is convenient to consider first the projection curve traced by the tip of the
vector~λP in the X–Y plane and this information, together with the wayλ Z varies, gives

the complete picture of the variation of~λ asφ 0 changes from 0 to 2π . Since the projection
curve in theX–Y plane in the general case ofψ 6= 0 retains most of the characteristics of
the case withψ = 0, as we shall see presently, it is desirable first to discuss this special
caseψ = 0 as it shows some illuminating symmetry properties and its analysis is simple
and elegant. In the general case ofψ 6= 0, we need only examine the portion of the curve
in the neighborhood of the originO of the coordinate system, where there is a significant
difference between the two cases.

In the first case whereψ = 0, we note that whenφ 0 is replaced by�φ 0 (or (2π� φ 0)),
λY(φ

0) remains unaltered whileλX(φ
0) changes sign. This shows that the projection curve

is symmetric about theY-axis. Secondly, we see that asφ 0 steadily increases from 0 to 2π ,
λX becomes zeroat φ 0 = 0; π=2; π ; 3π=2; 2π and since

dλY

dφ 0

=
2 λX

(1+e cosφ 0)
; (2.17)

these are precisely the values ofφ 0 for whichλY assumes its extremal values given by

λY(0) = λY(2π) =
mω l2 sinθ
(1+e)2 ( relative maximum);

λY(π=2) = λY(3π=2) = 0 ( minimum);

λY(π) =
mω l2 sinθ
(1�e)2 ( maximum): (2.18)

We shall now sketch the form of the projection curve traced by the tip of the vector~λP �

(λX; λY), which we shall see is a loop within a loop.
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Figure 2. Projection curve traced by the tip of the nutation vector~λ , projected on to
theX–Y plane (i.e., the plane to which the motion of the charged particle is confined)
of the Larmor frame, whenψ = 0.

If φ 0 = 0 att = 0 we start with the pointA1 of figure 2:OA1 = λY(0) = (mω l2 sinθ )=
(1+e)2 andλX = 0: As φ 0 increases the representative point moves towards the negative
direction of theX-axis asλX is negative for suchφ 0. The next zero ofλX occurs atφ 0 =

π=2, whenλY is also equal to zero and we arrive at the originO of the coordinate system.
This accounts for the partA1B1O of the curve forφ 0 in the range 0� φ 0 � π=2.

As observed before, the mirror reflectionA1B0

1O of A1B1O is also a part of the curve and
this is traced whenφ 0 is replaced by�φ 0 or equivalently by 2π�φ 0 so that the partA1B0

1O
is obtained when 3π=2� φ 0 � 2π . Thus whenφ 0 is increased fromπ=2, the representative
point cannot move alongOB0

1A1 but along the partOB2A2 for the rangeπ=2� φ 0 � π and
reaches the maximum valueOA2 = λY(π) = mω l2 sinθ=(1�e)2. The mirror reflection
A2B0

2O is now traced forφ 0 in the rangeπ � φ 0 � 3π=2 . Finally, the representative point
touchesA1 again after tracing the partOB0

1A1 for 3π=2� φ 0 � 2π . Thus, in one complete
period of the charged particle, this double loop is traced by the tip of the two-dimensional
vector~λP which has components(λX;λY): For a circular orbit of the charge,e= 0, the
inner loop of the projection curve swells up and the outer one shrinks to a common circle
of diametermω l 2 sinθ , and the circle is traced twice over in one period of the charge,
which immediately explains the discontinuous jump in the nutation frequency to twice its
value as the orbit of the particle changes from an ellipse to a circle. More explicitly, when
e= 0, we have

λ 2
X +

�
λY�

1
2

mω l2 sinθ
�2

=

�
1
2

mω l2 sinθ
�2

which is the equation of a circle with radius1
2mω l2 sinθ and centre

�
0; 1

2mω l2 sinθ
�
.

Whenψ 6= 0, we note that

λX(π=2+ψ) = mω sinθ l2 cosψ sinψ = λX(3π=2+ψ)

λY(π=2+ψ) = mω sinθ l2 sin2 ψ = λY(3π=2+ψ) (2.19)

i.e., the two segments of the projection curve intersect at a point. Since the corresponding
β (see eq. (2.16)) values areβ = φ 0� π=2= π=2+ψ� π=2= ψ andβ = φ 0 + π=2=
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3π=2+ ψ + π=2 = ψ , it is clear that the vectors~λP(π=2+ ψ) and~λP(3π=2+ψ) are
coincident along the major axis of the orbit. The projection curves corresponding to the
casesψ = π=4 andπ=2 are given in figures 3 and 4.

Since the general form of the projection curve traced by the tip of~λP is now available,

the form of the space curve traced by the tip of~λ is readily obtained by considering the
variation ofλZ with φ 0.

Observe thatλZ is positive when 0� θ < π=2, while it is negative whenπ=2< θ � π .
In the foregoing discussion, we will restrict ourselves to the case 0� θ < π=2 and note
that whenπ=2< θ � π , the resulting space curve is merely a mirror reflection (about the
X–Y plane) of that obtained for 0� θ � π=2.

We first note that

dλZ(φ
0)

dφ 0

=
2mω l2ecosθ sin(φ 0�ψ)

[1+e cos(φ 0�ψ)]
3 (2.20)

Figure 3. Projection curve for the caseψ = π=4.

Figure 4. Projection curve for the caseψ = π=2.
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is positive and thereforeλZ is an increasing function in the range 0< φ 0�ψ < π while
it is negative so thatλZ is a decreasing function in the rangeπ < φ 0�ψ < 2π and the
derivative vanishes forφ 0�ψ = 0; π : It is clear from eq. (2.12) thatλZ is minimum for
φ 0�ψ = 0 or for φ = 0 andλZ is maximum forφ 0�ψ = π or for φ = π . But for these
values ofφ 0, the correspondingβ values which follow from eq. (2.16) are clearlyβ =

φ 0+π=2= ψ +π=2 andβ = φ 0�π=2= π +ψ�π=2= ψ +π=2 again. Thus

λ min
Z =

mω cosθ l2

(1+e)2

λ max
Z =

mω cosθ l2

(1�e)2 (2.21)

both lie in the plane containing theZ-axis and thelatus rectumof the orbit of the charged
particle. Also, the relation

λZ(π=2+ψ) = mω l2 cosθ = λZ(3π=2+ψ) (2.22)

shows that the two segments of the space curve intersect at a point which lies in the plane
containing theZ-axis and themajor axis (see eq. (2.19)) of the elliptic orbit.

Takingψ � π=2 to be specific we now study the variation ofλ Z with φ 0, as it varies from
0 to 2π : At φ 0 = 0; we haveλZ = mω l2 cosθ=(1+e cosψ)2 and asφ 0 increasesλZ ini-
tially decreases to its minimum valueλ min

Z = λZ(ψ) = mω cosθ l2=(1+e)2 and thereafter
increases withφ 0 when it reaches its maximumλ max

Z = λZ(π +ψ) = mω cosθ l2=(1�e)2.
Between these two extrema we have

(i) λZ(π=2) = mω cosθ l2=(1+e sinψ)2 at whichφ 0; λX = 0 = λY so that the repre-
sentative point of the locus is on theZ-axis;

(ii) φ 0 =π=2+ψ corresponds to the intersection point whereλZ(π=2+ψ)=mω cosθ l2

and
(iii) φ 0 = π , λZ(π) = mω l2 cosθ=(1�e cosψ)2, where the point of the locus lies in the

Z–Y plane sinceλX(π) = 0; λY(π) = mω l2 sinθ=(1�e sinψ)2.

Now, asφ 0 increases further fromπ +ψ to 2π , λZ steadily decreases assuming the values
λZ(3π=2) = λZ(3π=2) = mω l 2 cosθ=(1�e sinψ)2, the point of the locus being on theZ
axis; λZ(3π=2+ψ) = mω l 2 cosθ at the intersection point and finallyλZ(2π) = λZ(0) =
mω l2 cosθ=(1+e cosψ)2.

These values ofλZ together with the form of the projection curve discussed earlier show

that the nutation vector~λ generates – what may be called –interpenetrating partial cones.
We observe that theZ- andz-axes both lie on the surface of thisdouble cone. The intersec-
tion point of the two segments lies in the plane containing theZ-axis and the major axis,
while the extrema lie in the plane defined by theZ-axis and the latus rectum of elliptic
orbit.

3. Summary

In this paper, the nutational motion of the angular momentum vector of a charged particle
moving under the influence of a central electric field and a uniform magnetic field has been
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analyzed in the rotating Larmor frame. The advantange in adapting the Larmor frame is
that the well-known Larmor precession of the angular momentum is absent in this frame
and therefore the nutational motion of the angular momentum can be investigated in an
elegant manner. It is shown that the nutation vector generatesinterpenetrating partial
cones, the two parts of which are on the same side of a common vertex. As the orbit of the
charged particle changes continuously from an ellipse to a circle (i.e., when the eccentricity
e of the elliptic orbit approaches zero), the two parts of the double cone generated by the
nutation vector tend to merge into a single cone, the lateral surface of which is traced
twice over in one period of the charged particle. This provides a natural explanation of the
discontinuous jump of the nutation frequency to twice its value as the orbit of the charged
particle changes gradually from an ellipse to a circle.
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