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The geometry of Larmor nutation
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Abstract. The nutation accompanying the well-known Larmor precession discussed with respect
to an inertial frame in an earlier paper is now considered in the rotating Larmor frame where the
precession is absent and the nutation is therefore fully emphasized. Itis shown that, in this frame, the
nutating vector generates, in general, what may be calletbenetrating partial coneshe two parts

of which merge into a single cone traced twice over, when the orbit of the charged particle changes
to a circle — giving an immediate explanation of the discontinuous jump in the nutation frequency to
twice its value as the orbit changes continuously from an ellipse to a circle.
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1. Introduction

In an earlier paper [1] it was shown that, the angular momentum véctifra charged
particle in the combined central electric field and a uniform magnetic field executes, in ad-
dition to the well-known Larmor precession [2—4], a high frequency nutation in an inertial
frame. The expression for c8s (eq. (3.6) of [1]), wherd, is the angle between the angu-

lar momentum vector and the magnetic field, turned out to be somewhat involved reflecting
the fact that the motion df is the combined motion of a precession and a nutation. Graphs
depicting the motion for selected values of parameters were also given. We now show that
in the Larmor frame, rotating with the Larmor frequenioythe precessional patt* of L

is obviously frozen and the nutational part stands out in relief. We have, in this frame, as
vivid a geometrical picture of nutation, as we have of precession in the inertial frame. We
shall see that in the general case of an elliptic orbit of the charged particle, the nutational
part?\ of the angular momentum, which we shall call the nutation vector, actually gener-
ates the lateral surface of a double cone, the two parts of which are on the same side of a
common vertex, and which, in general, are irregular and interpenetrating, depending upon
the position of the elliptic orbit of the charged particle. The two parts of the double cone
approach each other as the eccentrieitf the elliptical orbit tends to zero and actually
merge into a single cone wher= 0. Its lateral surface is then traced twice over in one
period of the charge explaining, at once, the discontinuous jump of the nutation frequency
to twice its value as the orbit changes from an ellipse into a circle.
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For ready reference, we collect here, the main results of our earlier paper [1]. The
equation of motion of a charged particle of charge (g > 0) moving in the combined
central electric field and a uniform magnetic field is

@:f(r)r"wa 1.1

On taking the cross product withwe obtain

L -
d =-2mrx (Vx &), L=FxnwW,

! oo B

~ 2mc (1.2)

whereL is the angular momentum of the charge ame- | @| = g|B|/2mcis the Larmor
frequency. Writing the right hand side of eq. (1.2) as a sum of two equal halves and
expressing one of them using Jacobi identity [5] as

—mP X (VX @) =mVx (@ xF)+madx (Fx V) (1.3)
we obtain

% =dxL+ % (1.4)
where

A=nPx (Dx7). (1.5)
Defining

[*=C-2A (1.6)

eg. (1.4) takes the form

dr*

=Xl +@xA. 1.7
aq WxL"+wx .7

Since x T is thevelocity of transporf6] of the charged particle;\ =mF x (& x F) would

be theangular momentum of transpoaind sincel is the absolute angular momentum,
i.e., the angular momentum with respect to the inertial frame, we seé thatherelative
angular momentumi.e., the angular momentum with respect to the rotating Larmor frame.
Denoting the time derivative with respect to the rotating frame hiddand noting that

il + X (1.8)
ed. (1.7) would assume the form
dC*
dt

—@OXA. (1.9)
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We now note thaf x A = @ x m (Px (@ x 7)) is of the order 1c? and is quadratic itE.
Neglecting this term for the case of weak magnetic fields, eqs (1.7) and (1.9) respectively
assume the form

d(; ~HxL* (1.10)
and
d“L*
~ 0. 1.11
& (1.11)

Equation (1.10) shows that it i* (and notL) which is precessing around the fief
and eq. (1.11) shows that the relative angular momerittins a constant vector in the

rotating Larmor frame in the approximation wheex Ais neglected. In other words, the
dynamical behavior of the angular momentiira: L* + A, in the Larmor frame is entirely
that of the angular momentum of transpart

2. The geometry of nutation

The fact thatl* is constant in the Larmor frame implies that the orbit of the charged
particle lies in a plane perpendicular . Taking thez-axis of the inertial frame along
the direction of the field (or @) and theZ-axis of the Larmor frame alonj*, we choose
theY-axis of the rotating frame in the—z plane so that the vectdb has, in this frame, the
components

@ = (0, wsinB, wcosh) (2.1)

where8 is the angle between thé& andz-axes. TheX-axis is evidently perpendicular
to @. If T is the position vector of the charged particle, we clearly have, in the Larmor
approximation

F=(X,Y, 0 (2.2)

and the nutation vector = nv x (6 x T) with component§ = (Ay, Ay, A7), which may
be calculated by the method of successive approximation, on using thef eq. (2.2)
obtained in the previous Larmor approximation. We have

Ay = —mw sin OXY (2.3)
Ay = mw sin OX2 (2.4)
A, = mw cosB(X? +Y?). (2.5)

We note that the orbit of the charged particle is, in general, an ellipse MYhaane
and we assume that the major axis of the ellipse is inclined at an girtgleheX-axis (see
figure 1).

Introducing polar coordinates, @) defining the position of the charge where the polar
angle @ is measured from the initial line taken along the major axis of the ellipse, the
equation of the orbit is evidently
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Figure 1. Elliptic orbit of the charged particle in the Larmor frame.

I

F:1+ecos(p (2.6)
whereeis the eccentricity of the orbit arldthe semilatus rectum:

| =a(l—¢€?), (2.7)

a, being the semi-major axis of the ellipse. Thus the Cartesian coordiMatéf the
charge are given by

X =r cos¢/ (2.8)
Y =rsing (2.9

¢ =@+ andr =1/(1+ecog¢ —)). Using egs (2.6), (2.8) and (2.9) in egs (2.3)-
(2.5) we obtain

mwl? sind cosy' sing/

Ax(¢) = (A1ecodq )2 (2.10)
. Mmwl?sinf cos ¢/

N(¥) = (1t ecodg — 0 (2.11)

A (@) = mal® cos (2.12)

(1+ecod¢' —y))*

Note thatXAy + YAy = 0 showing that the vectc;YP = (Ay, Ay, 0) is always orthogonall
tor.

Alternatively, the orientation of the vectarrelative to the Larmor frame is fully speci-
fied if we know the angular separationfrom the Z-axis (or from L*) and the angle3

between the&X-axis and the projectioﬁP of A on theX-Y plane. From egs (2.10)—(2.12)

we have
3 _ 7752 Mmwl®sing|cosy|
Yo= el =\ A+ N = e g — 0 (2.13)
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and therefore

tana = ;—P =tan |cosy/|, (2.14)
z

tanB = j—Y =—cot¢ = B=¢ +m/2 (2.15)
X

Since) is always positivef3 can only lie in the range & < rmand therefore we must
have

¢ +m/2 whenO< ¢ <m/2,
B=< ¢ —m/2 whenm/2< ¢ <3m/2, (2.16)
¢ +m/2 when31/2< ¢ <2m

We see from eq. (2.14) thatis maximum wherp’ = 0 andg’ = 7. In each case, we have,
B=rm/2 and7\F> is along the positive direction of thé-axis while anax = 6, the angle
betweerz- andz-axes. .

In order to study the manner in which the nutation vectoraries as the charge moves
in its orbit, it is convenient to consider first the projection curve traced by the tip of the
vector?\P in the X-Y plane and this information, together with the why varies, gives

the complete picture of the variation Efasq)’ changes from 0 to72 Since the projection
curve in theX-Y plane in the general case gf# O retains most of the characteristics of
the case withp = 0, as we shall see presently, it is desirable first to discuss this special
casey = 0 as it shows some illuminating symmetry properties and its analysis is simple
and elegant. In the general casa/o# 0, we need only examine the portion of the curve
in the neighborhood of the origid of the coordinate system, where there is a significant
difference between the two cases.

In the first case whergy = 0, we note that wheg’ is replaced by-¢' (or (2rm— ¢')),
Ay (¢') remains unaltered whilg, (¢') changes sign. This shows that the projection curve
is symmetric about thg-axis. Secondly, we see that@ssteadily increases from 0 to2
Ay becomes zerat¢' =0, 11/2, m, 311/2, 2rmand since

d)\_Y_ 2 Ay
d¢  (1+ecosy)’

these are precisely the valuesgffor which A, assumes its extremal values given by

(2.17)

mwl? sin@ _ :
Ay (0) = Ay (2m) = arer ( relative maximun,
Ay (11/2) = Ay (311/2) = 0 ( minimum),
~ mwl? sinB

Ay (M) = ez ( maximum. (2.18)

We shall now sketch the form of the projection curve traced by the tip of the vﬁgtm
(Ax, Ay), which we shall see is a loop within a loop.

Pramana — J. Phys.Vol. 59, No. 4, October 2002 625



K N Srinivasa Rao, A V Gopala Rao and A R Usha Devi

fi]
_,-'-'_'_'__'_ ____"-\-_
,-""_-:E—J—h_ 1-\""&
/ i i N
[ I|-+‘: ll|.'1.:\- ¥
// /
o Vi
R_&E—..HT _--______.-'
el I -
or e
&,
X

Figure 2. Projection curve traced by the tip of the nutation veatoprojected on to
the X-Y plane (i.e., the plane to which the motion of the charged particle is confined)
of the Larmor frame, whegy = 0.

If ¢ =0 att = 0 we start with the poind, of figure 2: 0A; = A, (0) = (mwl? sin6)/
(1+€)? andAy = 0. As ¢ increases the representative point moves towards the negative
direction of theX-axis asAy is negative for suckp’. The next zero of\y occurs aty’ =
/2, whenA, is also equal to zero and we arrive at the origiof the coordinate system.
This accounts for the pa#, B, O of the curve forp' in the range & ¢’ < 17/2.

As observed before, the mirror reflectianB; O of A;B,Ois also a part of the curve and
this is traced whe' is replaced by-¢' or equivalently by Zr— ¢’ so that the pa,B]O
is obtained when®/2 < @' < 2mt. Thus wheny' is increased fronmr/ 2, the representative
point cannot move alon@B) A, but along the pat®B,A, for the rangeT/2 < ¢’ < mand
reaches the maximum val@A, = A, (1) = mwl? sin6/(1—e)2. The mirror reflection
A,B0 is now traced fokp' in the ranget < ¢’ < 371/2 . Finally, the representative point
touchesA, again after tracing the pa@Bj A, for 3r1/2 < ¢/ < 2. Thus, in one complete
period of the charged particle, this double loop is traced by the tip of the two-dimensional
vector A, which has componentg\,, A, ). For a circular orbit of the charge,= 0, the
inner loop of the projection curve swells up and the outer one shrinks to a common circle
of diametermwl 2 sin@, and the circle is traced twice over in one period of the charge,
which immediately explains the discontinuous jump in the nutation frequency to twice its
value as the orbit of the particle changes from an ellipse to a circle. More explicitly, when
e= 0, we have

1 2 (1 2
AZ+ <)\Y — Emm|2 sin@) = <§mw|2 sin@)
which is the equation of a circle with radigsnwl? sin6 and centrg0, 1mwl? sing).
Wheny # 0, we note that
A (T1/24 ) = mwsinB 12 cosy sing = Ay (311/2+ )
A (/24 @) = mwsinB 12 sir? ¢ = A (311/2+ @) (2.19)

i.e., the two segments of the projection curve intersect at a point. Since the corresponding
B (see eq. (2.16)) values afe= @' — /2 =mn/2+ Y —m/2=Y andB = ¢' + /2=

626 Pramana — J. Phys.Vol. 59, No. 4, October 2002



The geometry of Larmor nutation

3n/2+ Y+ m/2 =, itis clear that the vectorﬁp(n/2+ y) and XP(37T/2+ Y) are
coincident along the major axis of the orbit. The projection curves corresponding to the
casegp = /4 andr/2 are given in figures 3 and 4.

Since the general form of the projection curve traced by the tiﬁpdb now available,

the form of the space curve traced by the tipXofs readily obtained by considering the
variation ofA, with ¢'.

Observe thad, is positive when & 8 < 11/2, while it is negative whem/2 < 6 < 1.
In the foregoing discussion, we will restrict ourselves to the casef0< 11/2 and note
that whenr/2 < 6 < m, the resulting space curve is merely a mirror reflection (about the
X-Y plane) of that obtained for€ 6 < /2.

We first note that

dAz(¢) _ 2mawl2ecosh sin(¢ — )

dg’ [1+ecogq — )P (2:20)

Figure 4. Projection curve for the case = /2.
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is positive and thereforg, is an increasing function in the range<0p’ — ¢ < 1 while
it is negative so thad, is a decreasing function in the range< ¢’ — ¢ < 2 and the
derivative vanishes fap’ — ¢y = 0, 1. It is clear from eq. (2.12) that, is minimum for
¢ — ¢ =0 orfor g =0 andA, is maximum forg/ — ¢y = T or for ¢ = m. But for these
values of¢@’, the corresponding values which follow from eq. (2.16) are cleaily=
¢+mn2=y+mn/2andf = ¢ —n/2=mn+ Y — /2= Y+ /2 again. Thus

2
min _ M@ coso|

A
z (1+e)?2
mew cosBl?
Amax _ 2.21
Z (1—6)2 ( )

both lie in the plane containing tieaxis and thdatus rectunof the orbit of the charged
particle. Also, the relation

A, (11/2+ @) = mwl? cosd = A, (311/2+ ) (2.22)

shows that the two segments of the space curve intersect at a point which lies in the plane
containing theZ-axis and thenajor axis (see eq. (2.19)) of the elliptic orbit.
Takingy < 11/2 to be specific we now study the variatiomigf with ¢/, as it varies from
0 to 2rt. At ¢’ = 0, we haveA, = mwl? cosf/(1+ e cosy)? and asy’ increases),, ini-
tially decreases to its minimum valag" = A, (@) = mw cosflI?/(1+ €)? and thereafter
increases witlp’ when it reaches its maximud'® = A (11+ ) = mw cosfI?/(1—e)?.
Between these two extrema we have

(i) A,(1/2) = mwcoshl?/(1+esiny)? at which¢g/, A, = 0= A, so that the repre-
sentative point of the locus is on tBeaxis;
(ify ¢ =m/2+y correspondsto the intersection point whisér/2+ () = mw cosdl?
and
(iiiy @ = m A,(m) = mwl? cosB/(1— e cosy)?, where the point of the locus lies in the
Z-Y plane sincé\, (1) = 0, A (1) = mwl? sin/(1— e siny)?.

Now, as¢’ increases further front+ ¢ to 211, A, steadily decreases assuming the values
A5(311/2) = A,(31/2) = mwl? cosB/ (1 — e siny)?, the point of the locus being on tie
axis; A, (31/2+ @) = mwl? cosP at the intersection point and finally, (211) = A,(0) =
mawl? cosf/(1+ e cosy)?.

These values of;, together with the form of the projection curve discussed earlier show
that the nutation vectox generates — what may be callethterpenetrating partial cones
We observe that thé- andz-axes both lie on the surface of thisuble coneThe intersec-
tion point of the two segments lies in the plane containingZtais and the major axis,
while the extrema lie in the plane defined by #waxis and the latus rectum of elliptic
orbit.

3. Summary

In this paper, the nutational motion of the angular momentum vector of a charged particle
moving under the influence of a central electric field and a uniform magnetic field has been
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analyzed in the rotating Larmor frame. The advantange in adapting the Larmor frame is
that the well-known Larmor precession of the angular momentum is absent in this frame
and therefore the nutational motion of the angular momentum can be investigated in an
elegant manner. It is shown that the nutation vector genenstipenetrating partial
conesthe two parts of which are on the same side of a common vertex. As the orbit of the
charged particle changes continuously from an ellipse to a circle (i.e., when the eccentricity
e of the elliptic orbit approaches zero), the two parts of the double cone generated by the
nutation vector tend to merge into a single cone, the lateral surface of which is traced
twice over in one period of the charged particle. This provides a natural explanation of the
discontinuous jump of the nutation frequency to twice its value as the orbit of the charged
particle changes gradually from an ellipse to a circle.
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