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Stochastic resonance and chaotic resonance in bimodal
maps: A case study
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Abstract. We present the results of an extensive numerical study on the phenomenon of stochastic
resonance in a bimodal cubic map. Both Gaussian random noise as well as deterministic chaos are
used as input to drive the system between the basins. Our main result is that when two identical
systems capable of stochastic resonance are coupled, the SNR of either system is enhanced at an
optimum coupling strength. Our results may be relevant for the study of stochastic resonance in
biological systems.
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Stochastic resonance (SR) has been the focus of intense research over the past decade be-
cause of its potential applications in diverse areas [1-7]. It refers to the situation where

an increase in input noise improves a system’s sensitivity to discriminate weak signals [8—
10]. The recent interest in SR is mainly due to the fact that it plays a crucial role in many
biological systems in extracting a weak periodic signal embedded in a large amount of
background noise [5,7,11]. It is also bound to have a large influence on the future devel-
opment of nonlinear devices and for use in communications and information transmission
processes [8,12].

Recently, the concept of chaotic resonance (CR) has also been introduced where the
switching is induced using deterministic chaos rather than Gaussian random noise [13].
This is especially important because chaos is widespread in natural systems and it is often
difficult to distinguish between noise and chaos in experimental situations. But most of the
studies on SR and CR have been done using the standard bistable potential with a fixed
point attractor, even though a few other models have also been used [14-16]. Another
interesting problem which remains to be studied in detail is the effect of coupling on SR
whether the signal boosting ability can be further improved by a suitable coupling between
individual bistable systems.

Here we undertake a detailed numerical study of the phenomenon of SR using random
noise as well as deterministic chaos. The two parameter cubic map [17] has been used for
this purpose which shows bistability in periodic as well as chaotic attractors. Our results
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indicate that while SR is present with both types of attractors, the phenomenon is more
effective in the environment of random noise compared to that of deterministic chaos. An
even more interesting result is that when two identical systems capable of SR individually
are coupled, the SNR of both systems increases and reaches a maximum value at a finite
coupling strength. This result is in striking similarity with the result obtained by éunag
[18] in the case of globally coupled bistable systems.

We now introduce the two parameter cubic map of the form

Xopq = (%) =b+aX,— (Xn)°. 1)

It has been shown to possess a rich variety of dynamical properties including bistability
[17]. In particular, ifa, is the value of the parameter at whi€h(X;,a,,b) = 1, then for
a> a, there is a window irb, where bistability is observed. The bistable attractors are
clearly separated witlX > 0 being the basin of one arXl < 0 that of the other. For
example, fora = 1.4, all initial conditionsX,, € [-1.5,1.5] tend to a single asymptotic
attractor (of period J2,4...) which remains in0,1.5] for b > 0.1 and in[—1.5,0] for
b < —0.1. Butforbe [-0.1,0.1], both attractors are stable so that initial val¥gse [0, 1.5]
tend toX* in the positive half oX andX; € [-1.5,0] to —X* in the negative half oK. In
other words, the system shows bistability for 1.4,b = [-0.1,0.1] = [-b,, b, ] with two
attractors of period 1 co-existing.

As we increase the value afit can be shown that fa= 2.1, two attractors of period 2
are co-existing in a narrow window arouhe: 0, namelyp = [-b,,b,] C [-b;,b,;]. The
basin of the positive attractor is sth; > 0 and that of the negative attractdy < 0. As
ais increased further, fax = 2.25, two attractors of period 4 co-exist in a further narrow
window[—b,,b,] C [-b,,b,] and so on. Finally, foa = 2.4, two chaotic attractors co-exist
in a very narrow windovb = [— b, be].

Incidently, it should be mentioned that our system can be considered to be a more general
version of the one parameter cubic map

Xn+1 = (%) =(@a-1)X— aXf? (2)

in which SR studies have already been reported [13,19].

With the combined effort of the noise and the signal added externally to the system the
iterates, originally confined to one basin, shuttles between the two basins in a systematic
manner in accordance with the signal, leading to SR. To study the SR with period one at-
tractors of the system, the parameters choseaaré.4 andb = 0.01. A random Gaussian
noise of variance 0.2 and zero mean and a small periodic signal are added to the system so
that it becomes

f(X) = E&(t) 4+ Zsin(2mpt) + b+ aX — X3 (3)

whereé (t) represents the Gaussian noise an{2ipt) a small periodic signal witlp =

1/T = 1/8 as the frequencyE andZ represent the strength of the noise and the signal
respectively which can be tuned to give the desired amplitudes for the noise and the signal.
It is well known that for SR to occur, the system has to remain in an unstable equilibrium
[9]. Physically, it means that the state of the system should be near the basin boundary. If it
is deep inside the well, even the combined amplitude of noise and signal will not be able to
effect switching, destroying SR in the system. In order to achieve this, we have restricted
the X values in the range-1.5,1.5], by a proper scaling.
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Figure 1. (a) Variation of SNR with noise amplitudg for periodic bistable attrac-
tors witha = 1.4, indicating SR.If) Variation of SNR with noise for chaotic bistable
attractors witha = 2.4.

We use the most important quantifier to study SR in the system, namely, the signal to
noise ratio (SNR) [8,9]. To obtain the SNR, the amplitude of the nBiée varied from
0.45 to 0.55 taking a small signal amplitude= 0.16. For these noise inputs the power
spectrum of the time series is calculated using the FFT. Then SNR is given by the relation:
SNR=log,,(S/N) whereN is the average background noise around the sigridle noise
level N is measured by averaging the values for five bins to the left of the signal and five
to the right. The error in the measurement of peak height and noise lex@l0801. Our
results are shown in figure 1a. The bell-shaped curve clearly shows SR having a peak value
for noise strengtle = 0.5. If the value oZ is changed from @6, there is a corresponding
change in the value & where the peak is obtained.

The above calculations are repeated taking2.4 andb = 0.01 where the system pos-
sess two chaotic bistable attractors. To get the SNR in this case, the signal amplitude is
chosen aZ = 0.8 and the peak is obtained f&r= 1.28. This is shown in figure 1b. The
SR studies on chaotic attractors are very rare [14]. Here we find that even though the at-
tractor is inherently chaotic in one basin, its inter-well hopping is regular at a finite noise
amplitude. If the intrawell chaotic motion is somehow suppressed, and the output is mea-
sured only when the system makes an inter-well transition, we get almost periodic signals
from strange attractors with the help of finite amount of noise.

Another interesting phenomenon is chaotic resonance, where instead of random noise,
a chaotic time series is used along with the periodic signal to drive the system between the
wells. For this, we use a chaotic time series generated from the logistic map

f(X)=1-2x2 4)

using an initial random seed and it is used in place of the Gaussian noise to calculate
the SNR for the above parameter valageandb. The results, both for periodic as well

as chaotic attractors are shown in figure 2. One qualitative difference between the SNR
curves for SR and CR is that the SNR profile is in general sharper for SR whereas the data
for CR is much more scattered. It probably implies that even though SR occurs both with
random noise and deterministic chaos, the phenomenon is more pronounced in a noisy
environment, that is, a random noise is more effective in boosting a small periodic signal
than deterministic chaos. This result is especially important in the study of biological
systems as they are known to extract signals from a natural environment which may be
inherently noisy or chaotic. The question whether a neuron can distinguish between noise
and chaos has become an important scientific debate of late [20].
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Figure 2. (a) Variation of SNR with chaos amplitude for periodic bistable attractors.
(b) Variation of SNR with chaos amplitude for chaotic bistable attractors.
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Figure 3. (a) SNR variation with amplitude of random noig&efor various coupling
strengths for the coupled system. Only a few important values are shown for the sake
of clarity. (b) Variation of SNR peak with coupling strenggras seen in figure 3a. Note

the sharp increase in SNR fgraround 0.15.

The response of identical systems working in a similar environment can be greatly en-
hanced if there is an effective coupling between the individual elements so that there is a
collective response in place of individual ones [21]. This is particularly importantin a phe-
nomenon like SR because it can lead to the amplification of very small signals immersed in
noise. Here we consider two identical systems represented by the cubic map and capable
of SR separately, but their outputs are coupled:

X1 = b+aX,— X3 +9(Yn— Xa) + EE(t) + Zsin(27mpt) (5)
Y1 =b+a¥%— Y3 +g(Xa— Yn) + E&(t) + Zsin(2mpt). (6)

A difference coupling is employed witthrepresenting the coupling strength. Our aim is

to study how the presence of an identical system changes the performance or SNR of the
original sysem, through coupling. We consider two identical systems evolving indepen-
dantly starting from different initial conditions, which is the most practical situation to be
expected. Note that for the coupling to exist, there should be a finite value for the coupling
term. In other words, iK andY are exactly equal, there is no effect for coupling.

Takinga = 2.4 andb = 0.01 in the regime of the chaotic bistable attractors the SNR
of the system is calculated wifit) as the Gaussian noise for various coupling strengths
g. The results are shown in figure 3a. Fp& 0, they represent two isolated systems
without any coupling. Ag is increased from zero, the peak value of SNR increases slowly
initially, but goes through a sudden maximum arognd 0.15, before decreasing once
again for large values af. Figure 3b makes it more clear where SNR peak values are
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plotted againsg. It is evident that at a finite coupling strength, the signal is boosted to
its maximum through a collective response by the system. At the same time for too large
coupling strength, the SNR peak value decreases below thgitf@ and further increase

in g (over coupling) destroys SR in the system.

A simple explanation that can be offered for the above observations is that when one sys-
tem misses the interstate switching, the nearby system may not. The coupling then forces
the other system also to switch. This cooperative behavior induces enhanced regularity in
the switching and increase the SNR of either systems. In other words, the coupling be-
tween two identical systems (having the same Kramer's rate), brings about a collective SR.
This is further confirmed by the fact that if the second system has no noise or signal (that
is, not capable of SR independantly), the SNR reduces with coupling.

The existence of a critical coupling strength where the SNR is boosted to a maximum
can be understood intuitively in the following way. At any stage, if the two systems differ
only by a very small amount, either system switches independantly without the help of
the other, making the effect of coupling nominal. Coupling becomes most effective, if the
states of the two systems differ by an optimum amount. From the view point of SR one can
say that the system near the basin boundary can help the other system to switch over, thus
enhancing the SNR through coupling. When the difference betXgemdY,, becomes
too large, the coupling once again becomes ineffective. That this is indeed happeging as
is increased can be seen from figure 4, where the valdgsaridy, are plotted for various
values ofg. As gis increased, they become more and more scattered, indicating that their
difference increases with. Thus the forced switching is most effective at an optimum
value ofg.

Coupling srength,g=.01

¥n

n

n

Figure 4. Plot of X, vs. Y, for various values of for the coupled system. Note that
(Xn —Yn) increases on the averagegds increased.
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Figure 5. (a) SNR variation for the coupled system when it is driven by deterministic
chaos for various coupling strengthb) Variation of SNR peak witly as seen in figure
5a. The peak is less pronounced compared to the case of random noise.

This result is significant in that the amplification of weak signals brought about by SR
with the help of noise can be further enhanced by a suitable coupling. A somewhat similar
result has been reported in the case of globally coupled bistable systems [18]. Here, there
is a collective effect near a spontaneous ordering transition at a critical noise intensity. As
a result, there is a collective or coherent SR which can be utilized, for example, for the
detection of ultra small signals in biological systems using a network of globally coupled
SQUIDS.

The above calculations are repeated with) as a chaotic time series from the logistic
map instead of the Gaussian noise and the results are presented in figure 5. Even though the
SNR peak still goes through a maximum arogre0.15, the increase is smaller compared
to noise. It once again confirms that the random noise still has an upper hand in boosting a
signal, compared to deterministic chaos.

There are many situations where coupling has been used effectively to enhance the out-
put as in the study of biological systems and in the development of certain nonlinear de-
vices. Recently, SR has been reported in a coupled excitory—inhibitory neural pair [22]
for the detection of a signal immersed in noise. We hope our numerical observations can
initiate further studies along these directions.
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